Fram Strait September 2003 Cruise on R/V Lance

Cruise Report

Edmond H. Hansen

Norwegian Polar Institute

1. General information

The Fram Strait September 2003 cruise was performed with R/V Lance in the period 7 to 27 September. The purpose of the cruise was to acquire hydrographic data across the Fram Strait (CTD, ADCP) along the monitoring line on 78° 50' N, and along various sections in the strait. The purpose was also to recover the existing five moorings in the East Greenland Current (EGC) and replace them with new.

Cruise participants:

Edmond Hansen, NPI (cruise leader, data responsible)
Ole Anders Nøst, NPI
Pål Erik Isachsen, NPI
Kristen Fossan, NPI
Marika Marnela, FIMR
Harvey Goodwin, NPI (first leg)
Jürgen Holfort, AWI/IfM Hamburg (first leg)
Jean-Claude Gascard, LODYC (second leg)
Jacky Lanoiselle, LODYC (second leg)

Lance captain was Hermod Isaksen.

2. Moorings

2. 1 Recovered morings

Mooring F11-5, F-14-5 and FNY were recovered in good shape. Mooring F12-5 and F13-5 was lost. The upper 250 meter of F12 was found by sealers near the island of Jan Mayen in April 2003, except the ES300 and DCM12 on the very top. Hence two current meters were recovered; RCM7 sn12646 and sn12643. The instruments were severely damaged (most likely destroyed), but the data was intact. No contact could be made with the acoustic releaser on the mooring position, and dredging for remnants of the mooring gave no result.

The releaser of F13 was in position and communicated with the deck unit. It signalled its location and verified its release, but no mooring surfaced. Dredging was performed in three rounds over several hours, but without success.

The details of the recovered moorings are summarized in Table 1 below. Lost instruments are highlighted with red fonts. A visual impression and overview of the setup of the recovered moorings is given in Appendix 1, where drawings of the mooring configuration are provided.

NPI has maintained an array of moorings in this location since 1990, and have, except for the loss of an entire mooring in 2002, not experienced any significant losses (to the knowledge of the author of this report). However, on this particular cruise extraordinary many tabular icebergs were observed. Hundred to two hundred meter deep icebergs were seen floating in the horizon across the East Greenland shelf on 78° 50`` N. Figure 1 illustrates a typical observation. The Danish Meteorological Institute

Figure 1: Icebergs in the horizon on the East Greenland shelf

reports the same observation on a cruise with coast guard vessel Triton to this area earlier in September this year.

Although it is impossible to find the cause of the recent losses, it is clear that a collision with one of the many icebergs in the area is a likely candidate. Such collisions have earlier not been a problem, as icebergs are few in this area. However, in some years the floating glacier shelves on the East Greenland fjords may disintegrate and drift out on the shelf. This is connected to the existence of fast ice, which tend to keep the floating glaciers in place (see Reeh, Thomsen, Higgins and Weidick, 2001. Sea ice and the stability of north and northeast Greenland floating glaciers, Annals of Glaciology, Vol. 33 2001, pp.474-480). As observed from Lance, there were no or very little fast ice at the coast this particular year.

Since it is likely that we are presently in a climate regime which allows the floating glaciers to disintegrate and drift away from the coast, we must reconsider our mooring configuration in order to avoid future losses. Preliminary discussions during the cruise seem to lead to the conclusion that the top of the moorings should be located deeper, and maybe even be built into a protecting shell.

Table 1: Recovered moorings in the Fram Strait September 2003

Mooring	Latitude	Water	Date and	Instrument	Serial	Instrument
	Longitude	depth (m)	time of deployment	type	number	depth (m)
F11-5	78° 49.963 N	2360	07.09.2002	ES300	48	41
	03° 16.740 W		13:20	DCM12	17	41
				SBE16	2413	49
				RCM9	834	50
				RCM7	12644	243
				RCM8	12733	1445
				RCM8	10069	2351
F12-5 ¹	78° 49.578 N	1829	07.09.2002	ES300 ¹	44	46
	04° 03.597 W		10:40	DCM12 ¹	47	46
				RCM7	12646	55
				RCM7	12643	307
				RCM8 ¹	12587	1509
				SBE37 ¹	443	1814
				RCM8 ¹	12732	1820
F13-5 ²	78° 49.580 N	980	05.09.2002	$ES300^{2}$	32	43
	05° 00.600 W		08:50	$DCM12^2$	134	43
				SBE16 ²	1974	55
				RCM7 ²	9465	56
				RCM7 ²	9708	238
				RCM8 ²	10873	970
F14-5	78° 49.152 N	282	04.09.2002	ES300	17	51
	06° 27.538 W		10:30	SBE16	1253	59
				RCM9	836	60
				RCM8	11889	272
FNY ³	78° 49.951 N	605	04.09.2002	RCM7	11059	95
	05° 24.654 W		13:10	RCM11	117	598

¹ Remnants of mooring F12-5 were found by sealers near the island of Jan Mayen in April 2003. The top 250 m of the mooring was recovered, except the ES300 and DCM12 which was lost. Two RCM8 were also lost, while two RCM7 were recovered by the sealers and brought to NPI

² Mooring F13-5 was lost

³ Mooring FNY was deployed as a test on how well we are able to resolve the EGC with the present configuration of the mooring array

2. 2 Deployed moorings

Seven new moorings were deployed to replace the recovered ones, and to extend the measurements onto the shelf. F11-6 to F14-6 were deployed as before over the EGC, while three new moorings were deployed on the shelf; F17 to F19.

F11 to F14 has very much the same configuration as in previous years. F17 is a test of a kind of tube mooring, where two Microcats are placed inside a flexible fibre reinforced hose. The upper end of the hose is only ten meters below the surface. However, two major errors were done in the construction and deployment of this mooring: First, the hose was cut in three parts to make the procedure of mounting flotation and instruments inside it simpler. The strength of the mooring is hence reduced, since this creates edges and openings where ice can get hold of the mooring. Secondly, the mooring was mounted upside down during the deployment, so that the top flotation was located at

the bottom. Hence the tube is not able to stand properly up in an upright position. Figure 2 and 3 demonstrates this mooring, see also Appendix 2.

F18 is a mooring containing only an ADCP on 122 meters depth. F19 is a "regular" tube mooring manufactured by the IfM Hamburg, with two Microcats inside. This mooring is a joint mooring by IfM, AWI and NPI. Responsible scientist here was Jürgen Holfort from IfM/AWI, now at NPI.

Details on the deployed moorings are found in Table 2 below, while drawings of the configurations are provided in Appendix 2.

Table 2: Deployed moorings

	2: Deployed mod		T.	I	I	ı
Mooring	Latitude	Water	Date and	Instrument	Serial	Instrument
	Longitude	depth	time of	type	number	depth (m)
		(m)	deployment			
F11-6	78° 49.921 N	2376	14.09.2003	ES300	19	65
	03° 16.077 W		15:40	DCM12	190	65
				SBE16	4321	73
				RCM9	1046	74
				RCM7	11475	259
				RCM11	228	1462
				RCM8	10071	2365
F12-6	78° 49.770 N	1841	14.09.2003	ES300	52	70
	04° 02.868 W		10:50	SBE37	2963	72
				RCM7	11854	91
				RCM7	10349	325
				RCM11	234	1528
				RCM8S	11625	1831
F13-6	78° 50.728 N	980	13.09.2003	ES300	51	47
	05° 00.994 W		16:00	DCM12	17	47
				SBE37	2962	48
				RCM7	7718	57
				RCM11	235	227
				RCM8	12733	1014
F14-6	78° 48.996 N	282	12.09.2003	ES300	37	88
	06° 26.915 W		07:15	SBE16	4322	98
				RCM9	834	99
				RCM8	12644	273
F17	78° 49.818 N	238	11.09.2003	ADCP	727	122
(FnyA)	08° 59.251 W		12:20			
F18 ¹	78° 49.953 N	246	11.09.2003	SBE37	2813	
(FnyB)	08° 54.146 W		14:40	SBE37	2814	
F19 ²	78° 49.821 N	189	11.09.2003	SBE37	2967	Upper
	12° 29.876 W		05:00	SBE37	2942	Lower
				AWI		
				releaser	207	

¹F18 (FnyB) was deployed upside down due to a mistake. This changed the location of the flotation in the mooring, and thereby its vertical shape. Final instrument depth uncertain, check pressure sensors

²Joint IfM Hamburg/NPI/AWI mooring. Responsible: Jürgen Holfort

3. CTD stations

96 CTD stations were taken. All CTD stations are plotted in Fig. 4. A complete CTD station list is enclosed in Appendix 3.

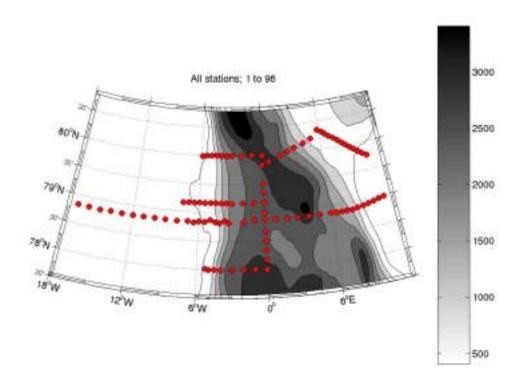


Figure 4. The position of all CTD stations

The measurements were taken with a standard Seabird SBE 9 CTD with a SBE 11+ deck unit. The temperature and conductivity sensors came directly from calibration. There were no major problems with the equipment. One to three salinity samples were taken on each station for calibration purposes.

4. ADCP

The ADCP was switched on on the westernmost point of the cruise, near Greenland. It therefore logged during the complete across-Fram Strait-section, and was left on until the meridional section ended. No processing or analysis of the data has been performed during the cruise.

5. Sea ice work

The sea ice work was led by H. Goodwin (NPI) under the internal NPI project "Surface properties and thickness of multi-year sea ice in the Fram Strait for calibration/validation of CRYOSAT" (PI: S. Gerland, NPI). The basic idea of this project is to gain detailed in situ ice thickness and related information for the locations in the western Fram Strait, the area where the four NPI-ULS moorings are installed. As one product, ice thickness distribution functions can be calculated from electromagnetic profiling and later compared with ice draft distributions for the same

locations, derived from ULS measurements. Those data will be important for calibration and validation of the CRYOSAT mission.

In total work on 6 sea ice stations was conducted during this cruise (see table below).

Sea ice	Date	Latitude	Longitude	Number	EM
Station				of	profiles
				thickness	(length
				drillings	in m)
1	08-SEP-03	78 50.882 N	5 1.818 W	1	1 (50)
2	09-SEP-03	78 49.557 N	6 26.688 W	4	1 (88)
3	11-SEP-03	78 48.895 N	4 55.927 W	3	1 (37)
4	11-SEP-03	78 48.557 N	4 54.265 W	-	1 (100)
5	13-SEP-03	78 49.617 N	5 0.912 W	3	1 (50)
6	13-SEP-03	78 50.165 N	5 2.506 W	3	1 (40)
6				14	365 m

Depending on available station time and station settings, several or all of the following investigations and measurements were applied: Ice thickness drillings, snow thickness sounding, freeboard measurement in boreholes and at the sea ice floe edges, electromagnetic profiling for the indirect measurement of total ice thickness (using NPI's Geonics EM31 instrument), surface water salinity measurement, and surface snow crystal characterization. The table above lists the length of EM31 profiles in the last column.

In addition, as for previous cruises with RV "Lance", regular ice observations were undertaken every 3 hrs. from the bridge, using a standardised scheme, which includes e.g. the different appearing ice classes and estimates of ice concentration. Those observations are consecutively implemented in NPI's GIS database with shipboard sea ice observations.

For 2004, a continuation and extension of the in situ sea ice work with a larger amount of measurements is planned.

6. Cruise log

Date	Activity
Sun 7/9	Departure Longyearbyen 1000 UTC
	Steaming toward F11
Mon 8/9	Arrival F11-5 0600 UTC. F11 on deck 0740 UTC
	Arrival F12 -51100 UTC. No contact, F12 lost
	Arrival F13-5 1500 UTC. Communicates, does not release.
	Dredging 1600-2100. No result
	Sea ice station 1, 1600-1930 UTC
	CTD stations 001 to 004
Tue 9/9	Dredging for F13-5 0800-0945 UTC.
	Arrival FNY 1030. FNY on deck 1110
	Arrival F14-5 1400 UTC. F14 on deck 1425 UTC
	Sea ice station 2
	CTD stations 005 to 010
Wed 10/9	Steaming/CTD westward

	CTD stations 011 to 018
Thu 11/9	F19 deployed 0500 UTC
	F17 (FnyA) deployed 1020 UTC
	F18 (FnyB) deployed 1240
	Sea ice stations 3 & 4
Fri 12/9	F14-6 deployed 0710 UTC
	CTD stations 019 to 028
Sat 13/9	F13-6 deployed 1405 UTC
	Dredging for F13-5 1600-1900
	CTD stations 029 to 031
	Sea ice stations 5 & 6
Sun 14/9	F12-6 deployed 1150 UTC
	F11-6 deployed 1350 UTC
	CTD stations 032 to 035
Mon 15/9	CTD stations 036 to 046
Tue 16/9	CTD stations 047 to 049
	Arrival Ny-Ålesund 0530
	Changing scientific crew
	Fixing hydraulic system
	Loading of cargo
	Steaming for Yermak Plateau 1600 UTC
Wed 17/9	CTD stations 050 to 067
Thu 18/9	CTD stations 068 to 073
Fri 19/9	CTD stations 074 to 079
Sat 20/9	CTD stations 080 to 085
Sun 21/9	CTD stations 086 to 094
Mon 22/9	CTD stations 094 to 096
	Steaming toward LODYC mooring deployment site SW of
	Spitsbergen
Tue 23/9	CTD station 097
	LODYC mooring deployment
Wed 24/9	Steaming south toward LODYC floats
Thu 25/9	Steaming south toward LODYC floats
	Recovery float 1
	Recovery float 2
Fri 26/9	Steaming
	Recovery float 3
Sat 27/9	Steaming toward Tromsø
	Arrival Tromsø 0600 UTC

Appendix 1: Drawings of recovered moorings

Rigg	F11-5	78 49	,963N		Dyp:	Fra bunn:	Ut:
Satt ut	7 SEP 2002 13:24	003 1	6,740W				
	ES300 DCM12 ARGOS Kevlar	SNR. 48 SNR. 17 SNR. 041 5 m	ID2305	60	41	2319	13:2
	Stålkule 37 Svivel	SNR.603					
E S	1 m Kjetting						
J	SEACAT	SNR. 2413			49	2311	13:2
Å	RCM9	SNR.834			50	2310	13:2
Ħ	10 m Kevlar						
I	40 m Kevlar						
I	40 m Kevlar						
	100 m Kevlar						
© ©	3 Glasskuler						
i.	RCM7	SNR.12644			243	2117	13:
	200 m Kevlar						
I	500 m Kevlar						
	500 m Kevlar						
	3 Glasskuler						
iii 8	RCM8	SNR.12733			1445	915	12:
Ì	500 m Kevlar						
I	200 m Kevlar						
I	200 m Kevlar						
00	4 Glasskuler 5 m Kevlar						
ķ	RCM8	SNR.10069			2351	9	12:3
Ħ	Svivel						
Ì	AR661	SNR. 577	Int Range: Release:	4A11 4A12			
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	5 m Kevlar						
8	2 m Kjetting						
_	ANKER 1110/(96	i0) kg			2360	0	

Rigg	g F12-5	78 49	,578N	Dyp:	Fra bunn:	Ned i
Satt ut	7 SEP 2002, 10:40	004 0	3,597W			
	ES300 DCM12 ARGOS 5 m Kevlar Stålkule 37	SNR. 44 SNR. 47 SNR. 048 SNR. 605	ID2985	46	1783	09:2
	2 m Kjetting					
Å	RCM7	SNR.12646		55	1774	09:2
Ĭ	10 m Kevlar					
I	40 m Kevlar					
I	100 m Kevlar					
	100 m Kevlar					
	2 Glasskuler					
ii.	RCM7	SNR.12643		307	1522	09:1
1	500 m Kevlar					
Ī	500 m Kevlar					
	200 m Kevlar					
	3 Glasskuler					
i i	RCM8	SNR.12587		1509	320	08:4
Ĭ	200 m Kevlar					
I	100 m Kevlar					
Ī	Microcat 5 m Kevlar	SNR. 0443		1814	15	08:3
	4 Glasskuler					
	RCM8	SNR.12732		1820	9	07:5
8	Svivel					
	AR861	SNR. 052	Int Range: Release:	043E + 0447 043E + 0455		
Ť	5 m Kevlar					
8	2 m Kjetting					
ρ	ANKER 1110/(96	(I) kg		1829	0	

	F13-5 5 SEP 2002, 08:49	78 49, 005 00	,580N 0,600W		Dyp:	Fra bunn:	Ned i
	ES300 DCM12	SNR. 32 SNR. 134			43	937	09
Ĭ	Kevlar	5 m					
	Stålkule 30	SNR. M882					
	Svivel						
	2 m Kjetting						
	6 Glasskuler						
•	SEACAT	SNR. 1974			55	925	(
H	RCM7	SNR. 9465			56	924	(
	20 m Kevlar						
Ī	50 m Kevlar						
	100 mKevlar						
	10 m Kevlar						
	4 Glasskuler						
Å	RCM7	SNR.9708			238	742	08
ľ	500 m Kevlar						
Ī	200 m Kevlar						
Ĭ	10 m Kevlar						
Ī	20 m Kevlar						
	4 Glasskuler						
	RCM8	SNR.10873			970	10	08
8	Svivel						
	AR661	SNR. 84	Int Range: Release:	6130 6139			
Ì	5 m Kevlar						
8	2 m Kjetting						
<u> </u>	ANKER 1020/(90	0) kg			980	0	

	Rigg F14-5 Satt ut 4 SEP 2002, 10:27		78 49,152N 006 27,538W			Fra bunn:	Ned
L	ES300	SNR. 17			51	231	10:24
1	Kevlar	5 m					
<u> </u>	4 Glasskuler						
	SEACAT	SNR. 1253			59	221	10:2
H	RCM9	SNR. 836			60	220	10:2
Ĭ	20 m Kevlar						
Ī	20 m Kevlar						
I	20 m Kevlar						
I	50 m Kevlar						
. ↓	50 m Kevlar						
	50 m Kevlar						
	4 Glasskuler						
i i	RCM8	SNR. 11889			272	10	10:1
q	Svivel						
	AR661	SNR. 110	Int Range: Release:	6151 6152			
Ť	5 m Kevlar						
8	2 m Kjetting						
<u> </u>	ANKER 610/(530	0) kg			282	0	

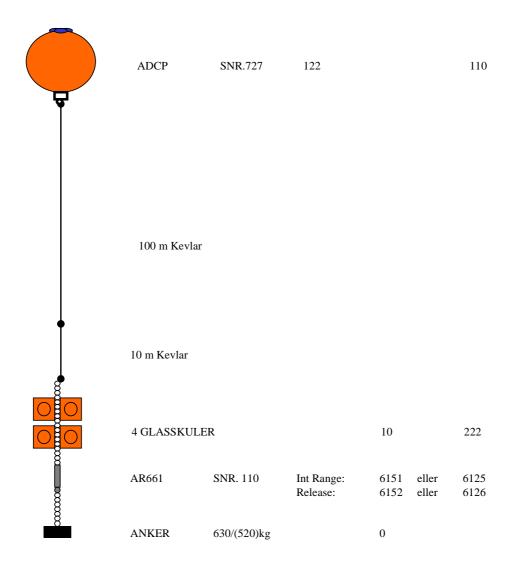
Rigg Satt ut 4	FNY 4 SEP 2002, 13:10		9,951N 4,654W		Dyp:	Fra bunn:	Ned
	Stålkule 30	SNR. M597			80	620	
[d]	Svivel						
	4 Glasskuler						
iii —	RCM7	SNR. 11059			95	510	12:1
€							
	500 m Kevlar						
	400 1 1						
	4 Glasskuler RCM11	SNR. 117			598	7	12:0
ů.	RCMIT	5NK. 117			376	,	12.0
q	Svivel						
	AR661	SNR. 290	Int Range: Release:	C343 C344			
8	4 m Kjetting						
ğ) kg					

Appendix 2: Drawings of deployed moorings

Rigg F	11-6	78 49	9,921N	Dyp:	Fra bunn:	Ut:
	14 SEP 2003 15:40		5,077W			
	ES300 DCM12 ARGOS Kevlar	SNR. 19 SNR. 190 SNR. 23050 5 m	ID041	65	2311	13:21
	Stålkule 37 Svivel	SNR.596				
ξ Σ	1 m Kjetting rustfri					
L	SEACAT	SNR. 4321		73	2303	13:16
F	RCM9	SNR.1046		74	2302	13:16
₿	0,5 m Kjetting rustfri					
	40 m Kevlar					
I	40 m Kevlar					
	100 m Kevlar					
	3 Glasskuler 4 m Kjetting galvani:	sert				
	RCM7	SNR.11475		259	2117	13:03
å	0,5 m Kjetting rustfri	i				
I	200 m Kevlar					
I	500 m Kevlar					
Ţ	500 m Kevlar					
	3 Glasskuler 2 m Kjetting rustfri					
₩	RCM11	SNR.228		1462	914	12:40
8	0,5 m Kjetting rustfri	i				
I	500 m Kevlar					
I	200 m Kevlar					
Ţ	200 m Kevlar					
<u></u>	4 Glasskuler 2 m Kjetting rustfri					
ii.	RCM8	SNR.10071		2365	11	12:23
	0,5 m Kjetting rustfri Svivel	i				
8	AR861	SNR. 053	Pinger på: Pinger av: Release: Release m/ping:	043F + 0447 043F + 0448 043F + 0455 043F + 0456		
ğ	7 m Kjetting galvani	sert				
<u> </u>	ANKER 1110/(960)	kg		2376	0	

Rigg F12	2-6	78 49,	770N	Dyp:	Fra bunn:	Ned i vann:
Settes ut 14	SEP 2003, 10:48	004 02	2.868W			
	ES300	SNR. 52		70	1771	10:48
	Microcat 5 m Kevlar	SNR.2963		72	1769	10:48
	Stålkule 37	SNR.602				
	2 m Kjetting rustfri					
	RCM7	SNR.11854		91	1760	10:48
Å	0,5 m Kjetting rustfri					
Ĭ	40 m Kevlar					
•						
	200 m Kevlar					
<u>o</u>	3 Glasskuler					
	3 m Kjetting galvanis	ert				
Å	RCM7 0,5 m Kjetting rustfri	SNR10349.		325	1516	07:52
Ì	500 m Kevlar					
Ī	500 m Kevlar					
Ţ	200 m Kevlar					
©	2 Glasskuler 2 m Kjetting galvanis	ert				
₩	RCM11	SNR. 234		1528	313	07:27
&	0,5 m Kjetting rustfri					
	200 m Kevlar					
Ī	100 m Kevlar					
	4 Glasskuler					
	2 m Kjetting rustfri					
i i	RCM8S	SNR.11625		1831	10	07:7
- <u>-</u> -	0,5 m Kjetting rustfri					
4	Svivel					
	AR861	SNR. 182	Ping på: Ping av: Release: Release m/ping:	04AF + 0447 04AF + 0448 04AF + 0455 04AF + 0456		
8	7 m Kjetting					
*	ANKER 1110/(960)	kg		1841	0	

Rigg F13-6 Satt ut 13 SEP 2003, 16:04		78 50,77 005 00,9		Dyp:	Fra bunn:	Ned i vann:	
	ES300 DCM12	SNR. 51 SNR.17			47 47	977 977	14:04 14:04
	Microcat	SNR. 2962					
	Kevlar	5 m					
	Stålkule 37	SNR.McLane					
	Svivel 2 m Kjetting						
HE A	RCM7	SNR.7718			57	965	14:04
	50 m Kevlar						
	100 m Kevlar						
I	10 mKevlar						
I	5 m Kevlar						
	4 Glasskuler						
å å	RCM11	SNR.235			227	795	13:38
I	500 m Kevlar						
Ĭ	200 m Kevlar						
Ī	10 m Kevlar						
I	20 m Kevlar						
Ţ	40 m Kevlar 10 m Kevlar						
	4 Glasskuler						
i d	RCM8	SNR. 12733			1014	8	13:16
A A	Svivel						
	AR661		Int Range: Release:	9270 9279			
Ť	5 m Kevlar						
	ANKER 1020/(900	0) kg			1022	0	

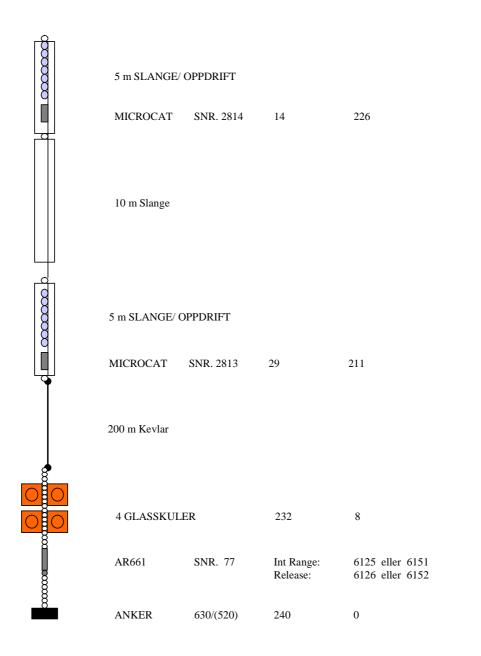

 Rigg F14-6
 78 48,996N
 Dyp:
 Fra bunn:
 Ned i vann:

 Satt ut 12 SEP 2003, 07:14
 006 26,915W
 Verify 100 or 100

	ES300	SNR. 37			88	203	07:10
Ĭ	Kevlar	5 m					
<u>o</u> <u>o</u>	4 Glasskuler						
•	SEACAT	SNR.4322			98	193	07:04
H <mark>.</mark> 8	RCM9	SNR. 834			99	192	07:04
Î	20 m Kevlar						
	50 m Kevlar						
•	50 m Kevlar						
	50 m Kevlar						
	4 Glasskuler						
	RCM7	SNR. 12644			273	9	06:52
٩	Svivel						
	AR661	SNR. 291	Int Range: Release:	C345 C346			
, 80 80	7 m Kjetting						
	ANKER 610/(530)) kg			282	0	

 Rigg FnyA
 78 49.818N
 Dyp:
 Fra bunn:
 Ned i vann:

 Satt ut
 11 SEP 2003, 12:21
 008 59.251W
 Fra bunn:
 Ned i vann:


F17

F18

 Rigg FnyB
 78 49.953N
 Dyp:
 Fra bunn:
 Ned i vann:

 Satt ut
 11 SEP 2003, 14:40
 008 54.146W
 Very 100 or 100 o

Toppen av denne riggen ble i farten montert opp ned slik at Microcat'en ble øverst og ikke slik nederst figuren viser og der den skulle ha vært.

Appendix 3: CTD station list

Stat	ion	YYYY	MM	I DD	HI	H(UTC)	M	IN I	∟at	Lon	Depth	1
1	2003		8		 48	78.8			3.29		2405	
2	2003		8		46	78.8			1.11		1810	
3	2003	3 9	8	23	11	78.8	67	- 4	1.98	33	1118	
4	2003		9		10	78.8			1.49		1509	
5	2003		9		51	78.8	58		3.67		2184	
6	2003		9		22	78.8			5.46	53	624	
7	2003		9		41	78.8			5.46		273	
8	2003		9		33	78.8			7.01		238	
9	2003		9		25	78.8			7.99		190	
10	2003		10		54	78.8			0.01		204	
11	2003		10		49	78.8			9.99		290	
12	2003		10		52	78.8).99		321	
13	2003		10		33	78.8			. 99		196	
14	2003		10		16	78.8			3.00		190	
15	2003		10		39	78.8			3.99		98	
16	2003		10		59	78.8			1.99		73	
17	2003		10		20	78.8			5.01		226	
18	2003		10		44	78.8			7.00		393	
19	2003		12		18	78.8			5.00		326	
20	2003		12	13	1	79.1			7.50		216	
21	2003		12	14	4	79.1			7.00		238	
22	2003		12		55	79.1			5.50		320	
23	2003		12		52	79.1			5.99		752	
24	2003		12		59	79.1			5.50		1120	
25	2003		12 12		22	79.1			5.00		1407	
26 27	2003		12	20 21	3 53	79.1 79.1			1.50 1.01		1658	
28	2003		12		52	79.1			3.51		1894 2097	
26 29	2003		13		35	79.1			3.00		2097 2261	
30	2003		13		36	79.1			2.01		2489	
31	2003		13		57	78.8			2.00		2604	
32	2003		14		32	78.8			01		2600	
33	2003		14		38	78.8			0.00		2560	
34	2003		15		57	78.8).99		2477	
35	2003		15		40	78.8			2.00		2486	
36	2003		15		20	78.8			2.99		2392	
37	2003		15		15	78.8			3.98		2323	
	2003			11		78.8			1.98		2632	
39	2003		15		35	78.8			5.00		2405	
40	2003		15		43	78.8			5.49		1899	
41	2003		15		22	78.8			5.98		1407	
42	2003		15		56	78.8			7.49		1132	
43	2003		15		23	78.8			7.99		1031	
44	2003		15		53	78.8			3.49		517	
45	2003		16		14	78.9			0.00		209	
46	2003		16		8	78.9			.50		202	
47	2003		16		15	78.9			0.00		216	
48	2003		16		11	78.9			.49		209	
49	2003		16	4	7	78.9			.99		136	
50	2003		17	2	8	79.7			.34		117	
51	2003		17		55	79.8			9.94		391	
52	2003		17		46	79.8			.58		450	
53	2003		17		44	79.9			21		458	
54	2003		17		42	79.9			3.83		473	
55	2003	3 9	17	6	50	80.0	80	8	3.46	58	488	

```
56 2003 9 17 8 1 80.062
                              8.105
                                       499
57 2003 9 17 8 56 80.112
                               7.727
                                       572
        9 17 9 52
58 2003
                     80.163
                               7.347
                                       539
59 2003 9 17 10 51
                     80.210
                               6.915
                                       545
60 2003 9 17 11 43
                     80.262
                               6.565
                                       555
        9 17 12 32
61 2003
                     80.300
                               6.290
                                       556
        9 17 13 29
62 2003
                     80.345
                               5.868
                                       555
        9 17 15
63 2003
                  3
                     80.217
                               5.053
                                       836
        9 17 16 41
64 2003
                     80.147
                               4.220
                                      1269
        9 17 18 38
65 2003
                     80.090
                               3.278
                                      2210
65 2003 9 17 18 38
66 2003 9 17 21 3
67 2003 9 17 23 51
68 2003 9 18 9 3
69 2003 9 18 13 26
70 2003 9 18 16 28
71 2003 9 18 20 28
72 2003 9 18 23 36
                     80.032
                               2.567
                                      2577
                     79.972
                              1.775
                                      2308
                     79.885
                              0.622
                                      2390
                             -0.998
                     80.000
                                      2663
                     79.998
                             -2.023
                                      2726
                     79.997
                             -3.008
                                     2492
                     79.995
                             -4.012 2053
73 2003 9 19 1 35
                     79.998
                             -3.495
                                     2316
                             -4.493
74 2003 9 19 4 29
                     80.003
                                     1685
                             -5.000
75 2003 9 19 6 33
                     80.000
                                     1251
                                      775
76 2003 9 19 8 52
                     80.000
                             -5.483
77 2003 9 19 11 45
                     79.987
                             -5.948
                                      329
78 2003 9 19 21 58
                     79.995
                             -0.003 2588
79 2003 9 20 1 31
                     79.835 -0.047 2714
80 2003 9 20 9 54
                     79.500
                             0.010 2759
81 2003 9 20 12 42
                     79.338 -0.010 2670
82 2003 9 20 15 13
                     79.172 -0.010 2670
83 2003 9 20 17 58 79.168 -0.988 2316
84 2003 9 20 20 50
                     78.992 -0.003
                                     2532
85 2003 9 21 0 11
                     78.668 -0.012
                                     2700
86 2003 9 21 2 13
                     78.498 0.007
                                      2715
87 2003 9 21 4 44
                     78.335
                             0.008
                                     3000
88 2003 9 21 6 47
                     78.168 -0.022
                                     3060
89 2003 9 21 9 19
                     77.998 -0.015 3100
90 2003 9 21 12 22
                     78.003 -1.005 3058
91 2003 9 21 15 16
                     78.005 -2.002 2980
92 2003 9 21 18 10
                     77.992 -3.003
                                     2832
93 2003 9 21 21 22
                     77.997 -3.997
                                      2585
94 2003 9 22 0 37
                     77.998 -5.005
                                      1147
95 2003 9 22 2 29 78.008 -5.288
                                      479
96 2003 9 22 4 50 78.000 -4.530 2115
```