Skip to main content

Advertisement

Log in

Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Andes Cordillera acts as regional “Water Towers” for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°–39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657 years and captures interannual to decadal scales of variability in late spring–early summer PDSI. These changes are related to the north–south oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Niño-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross–Amundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abraham EM, Garleff K, Liebricht H, Regairaz AC, Schaebitz F, Squeo FA, Stingl H, Villagrán C (2000) Geomorphology and paleoecology of the arid diagonal in southern South America. Z Angew Geol SH1:55–61

    Google Scholar 

  • Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I: surface climate. Mon Weather Rev 116:505–524. doi:10.1175/1520-0493(1988)116<0505:OTFOTS>2.0.CO;2

    Article  Google Scholar 

  • Aceituno P, Fuenzalida H, Rosenbluth B (1983) Climate along the west coast of South America. In: Mooney HA, Fuentes ER, Kronber BI (eds) Earth system responses to global change: contrasts between North and South America. Academic Press Inc, California, pp 61–69

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr AC-19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Arblaster JM, Meehl GA (2006) Contributions of external forcings to Southern Annular Mode trends. J Clim 19:2896–2905. doi:10.1175/JCLI3774.1

    Article  Google Scholar 

  • Armesto JJ, Villagrán C, Kalin M (1996) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago

    Google Scholar 

  • Binford MW, Kolata AL, Brenner M, Janusek JW, Seddon MT, Abbott MB, Jason H (1997) Climate variation and the rise and fall of an Andean civilization. Quat Res 47:235–248. doi:10.1006/qres.1997.1882

    Article  Google Scholar 

  • Boninsegna JA (1988) Santiago de Chile winter rainfall since 1220 as being reconstructed by tree rings. Quat S Am Antarct Penins 7:315–326

    Google Scholar 

  • Boninsegna JA, Holmes R (1978) Breve descripción de un relicto de Austrocedrus chilensis (D. Don) Endl. en Huinganco (Pcia. del Neuquén). Anales Instituto Argentino de Nivología y Glaciología 4:115–123

    Google Scholar 

  • Boninsegna JA, Argollo J, Aravena JC, Barichivich J, Christie D, Ferrero ME, Lara A, Le Quesne C, Luckman BH, Masiokas M, Morales M, Oliveira JM, Roig F, Srur A, Villalba R (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228. doi:10.1016/j.palaeo.2009.07.020

    Article  Google Scholar 

  • Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756. doi:10.1126/science.1128087

    Article  Google Scholar 

  • Briffa KR, Jones PD, Wigley TML, Pilcher JR, Baillie MGL (1983) Climate reconstruction from tree rings: part 1, basic methodology and preliminary results for England. Int J Climatol 3:233–242. doi:10.1002/joc.3370030303

    Article  Google Scholar 

  • Bustamante R, Castor C (1998) The decline of an endangered ecosystem: the Ruil (Nothofagus alessandrii) forest in Central Chile. Biodivers Conserv 7:1607–1626

    Article  Google Scholar 

  • Cai W, Whetton PH, Karoly DJ (2003) The response of the Antarctic Oscillation to increasing and stabilized atmospheric CO2. J Clim 16:1525–1538. doi:10.1175/1520-0442(2003)016<1525:TROTAO>2.0.CO;2

    Article  Google Scholar 

  • Camus P (2006) Ambientes, bosques y gestión forestal en Chile: 1541–2005. Centro de Investiagciones Diego Barros Arana, LOM ediciones, Santiago

    Google Scholar 

  • Carrasco JF, Casassa G, Quintana J (2005) Changes of the 0°C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century. Hydrol Sci J 50:933–948

    Article  Google Scholar 

  • Carrasco JF, Osorio R, Casassa G (2008) Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. J Glaciol 54:538–550. doi:10.3189/002214308785837002

    Article  Google Scholar 

  • Chen G, Held IM (2007) Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophy Res Lett 34:L21805. doi:10.1029/2007GL031200

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge, pp 847–940

  • Cobos DR, Boninsegna JA (1983) Fluctuations of some glaciers in the Upper Atuel river basin, Mendoza, Argentina. Quat S Am Antarct Penins 1:61–82

    Google Scholar 

  • Cook ER, Krusic PJ (2006) Program ARSTAN: a tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics. Tree-Ring Laboratory Lamont Doherty Earth Observatory of Columbia University Palisades, NY

    Google Scholar 

  • Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Long-term aridity changes in the western United States. Science 306:1015–1018. doi:10.1126/science.1102586

    Article  Google Scholar 

  • Cook ER, Saeger R, Cane M, Stahle DW (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81:93–134

    Article  Google Scholar 

  • Cooley WW, Lohnes PR (1971) Multivariate data analysis. Wiley, New York

    Google Scholar 

  • Cortés G, Vargas X, McPhee J (2008) Evidence of climate change in streamflow timing in the western slope of the Southern Andes Cordillera during the 1961–2006 period. EGU Topical Conference Series 4th Alexander von Humboldt International Conference: the Andes Challenge for Geosciences. Santiago

  • Cowling A, Hall P, Phillips MJ (1996) Bootstrap confidence regions for the intensity of a Poisson point process. J Am Stat Assoc 91:1516–1524

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global dataset of Palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130. doi:10.1175/JHM-386.1

    Article  Google Scholar 

  • Dawdy DR, Matalas NC (1964) Statistical and probability analysis of hydrologic data. Part III. Analysis of variance, covariance, and time series. In: Chow VT (ed) Handbook of applied hydrology: a compendium of water-resources technology. McGraw-Hill, New York, pp 8.68–8.90

    Google Scholar 

  • Dillehay TD (2007) Monuments, resistance and Empires in the Andes: Araucanian ritual narratives and polity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis. Wiley, New York

    Google Scholar 

  • Echeverría C, Coomes D, Salas J, Rey Benayas JM, Lara A, Newton A (2006) Rapid deforestation and fragmentation of Chilean temperate forests. Biol Conserv 130:481–494. doi:10.1016/j.biocon.2006.01.017

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Fuenzalida H, Aceituno P, Falvey M, Garreaud R, Rojas M, Sanchez R (2007) Study on climate variability for Chile during the 21st century. Technical Report prepared for the National Environmental Committee (CONAMA), Department of Geophysics, Universidad de Chile, 142 pp. Accessed 1 Sept 2009. Available at: http://www.dgf.uchile.cl/PRECIS

  • Fyfe JC (2003) Separating extratropical zonal wind variability and mean change. J Clim 16:863–874. doi:10.1175/1520-0442(2003)016<0863:SEZWVA>2.0.CO;2

    Article  Google Scholar 

  • Garreaud R (2007) Precipitation and circulation covariability in the extratropics. J Clim 20:4789–4797. doi:10.1175/JCLI4257.1

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195. doi:10.1016/j.palaeo.2007.10.032

    Article  Google Scholar 

  • Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40:1–41. doi:10.1029/2000RG000092

    Article  Google Scholar 

  • Giglo N (2006) Informe País: Estado del Medio Ambiente en Chile 2005. Instituto de Asuntos Públicos, Universidad de Chile, LOM ediciones, Santiago

    Google Scholar 

  • Gillett NP, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:273–275. doi:10.1126/science.1087440

    Article  Google Scholar 

  • Gillett NP, Kell TD, Jones PD (2006) Regional climate impacts of the Southern Annular Mode. Geophys Res Lett 33:L23704. doi:10.1029/2006GL027721

    Article  Google Scholar 

  • Girardin MP, Bergeron Y, Tardif JC, Flannigan MD, Gauthier S, Mudelsee M (2006) A 229-year dendroclimatic-inferred record of forest fire activity for the Boreal Shield of Canada. Int J Wildland Fire 15:375–388

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566

    Article  Google Scholar 

  • Guttman L (1954) Some necessary conditions for common-factor analysis. Psychometrika 19:149–161. doi:10.1007/BF02289162

    Article  Google Scholar 

  • Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott PA (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge, pp 663–745

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurements. Tree Ring Bull 43:69–75

    Google Scholar 

  • Holmes RL, Stockton CW, LaMarche VC (1979) Extension of river flow records in Argentina from long tree-ring chronologies. Water Resour Bull 15:1081–1085. doi:10.1111/j.1752-1688.1979.tb01086.x

    Article  Google Scholar 

  • Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary data set for the community atmosphere model. J Clim 21:5145–5153. doi:10.1175/2008JCLI2292.1

    Article  Google Scholar 

  • INE (2004) Anuario estadístico sector eléctrico. Instituto Nacional de Estadísticas de Chile (INE), Santiago

    Google Scholar 

  • Jansen E, Overpeck J, Briffa KR, Duplessy JC, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. Climate Change 2007: The Physical Science Basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp 433–497

  • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden-Day, San Francisco

    Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • LaMarche VC (1978) Tree-ring evidence of past climatic variability. Nature 276:334–338. doi:10.1038/276334a0

    Article  Google Scholar 

  • Lara A, Veblen TT (1993) Forest plantations in Chile: a successful model? In: Mather A (ed) Afforestation policies, planning and progress. Belhaven Press, London, pp 118–139

    Google Scholar 

  • Lara A, Aravena JC, Villalba R, Wolodarsky-Franke A, Luckman BH, Wilson R (2001) Dendroclimatology of high-elevation Nothofagus pumilio forest at higher northern distribution limit in the central Andes of Chile. Can J Forest Res 31:925–936

    Google Scholar 

  • Lara A, Villalba R, Urrutia R (2008) A 400-year tree-ring record of the Puelo River summer-fall streamflow in the Valdivian Rainforest eco-region, Chile. Clim Change 86:331–356. doi:10.1007/s10584-007-9287-7

    Article  Google Scholar 

  • Le Quesne C, Stahle DW, Cleaveland MK, Therrell MD, Aravena JC, Barichivich J (2006) Ancient Austrocedrus tree-ring chronologies used to reconstruct Central Chile precipitation variability from A.D. 1200 to 2000. J Clim 19:5731–5744. doi:10.1175/JCLI3935.1

    Article  Google Scholar 

  • Le Quesne C, Acuña C, Boninsegna JA, Rivera A, Barichivich J (2009) Long-term glacier variations in the Central Andes of Argentina and Chile, inferred from historical records and tree-ring reconstructed precipitation. Palaeogeogr Palaeoclimatol Palaeoecol 281:334–344. doi:10.1016/j.palaeo.2009.07.020

    Article  Google Scholar 

  • Lohmann G (2008) Linking data and models. Past Global Changes PAGES 16:4–5

    Google Scholar 

  • Marshall GJ, Stott PA, Turner J, Connolley WM, King JC, Lachlan-Cope TA (2004) Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys Res Lett 31:L14205. doi:10.1029/2004GL019952

    Article  Google Scholar 

  • Masiokas MH, Villalba R, Luckman BH, LeQuesne C, Aravena JC (2006) Snowpack Variations in the Central Andes of Argentina and Chile, 1951–2005: large-scale atmospheric influences and implications for water resources in the region. J Clim 19:6334–6352. doi:10.1175/JCLI3969.1

    Article  Google Scholar 

  • Masiokas MH, Luckman BH, Villalba R, Delgado S, Skvarca P, Ripalta A (2009a) Little Ice Age fluctuations of small glaciers in the Monte Fitz Roy and Lago del Desierto areas, south Patagonian Andes, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 281:351–362. doi:10.1016/j.palaeo.2007.10.031

    Article  Google Scholar 

  • Masiokas MH, Rivera A, Espizua LE, Villalba R, Delgado S, Aravena JC (2009b) Glacier fluctuations in extratropical South America during the past 1,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 281:242–268. doi:10.1016/j.palaeo.2009.08.006

    Article  Google Scholar 

  • Meko DM (1997) Dendroclimatic reconstruction with time varying subsets of tree indices. J Clim 10:687–696. doi:10.1175/1520-0442(1997)010<0687:DRWTVP>2.0.CO;2

    Article  Google Scholar 

  • Messerli B, Grosjean M, Hofer T, Núñez L, Pfister C (2000) From nature-dominated to human-dominated environmental changes. Quat Sci Rev 19:459–479. doi:10.1016/S0277-3791(99)00075-X

    Article  Google Scholar 

  • Miller A (1976) The climate of Chile. In: Schwerdtfeger W (ed) World survey of climatology. Climates of Central and South America. Elsevier, Amsterdam, pp 113–131

    Google Scholar 

  • Miller RL, Schmidt GA, Shindell DT (2006) Forced annular variations in the 20th century IPCC AR4 simulations. J Geophys Res 111:D18101. doi:10.1029/2005JD006323

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climatological observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Montecinos A, Aceituno P (2003) Seasonality of the ENSO-related rainfall variability in Central Chile and associated circulation anomalies. J Clim 16:281–296. doi:10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2

    Article  Google Scholar 

  • Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2003) No upward trends in the occurrence of extreme floods in central Europe. Nature 425:166–169. doi:10.1038/nature01928

    Article  Google Scholar 

  • Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2004) Extreme floods in central Europe over the past 500 years: Role of cyclone pathway ‘‘Zugstrasse Vb’’. J Geophys Res 109:D23101. doi:10.1029/2004JD005034

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  Google Scholar 

  • Núñez L, Grosjean M, Cartagena I (2002) Human occupations and climate change in the Puna de Atacama, Chile. Science 298:821–824. doi:10.1126/science.1076449

    Article  Google Scholar 

  • Osborn TJ, Briffa KB, Jones PD (1997) Adjusting variance for sample size in tree-ring chronologies and other regional mean timeseries. Dendrochronologia 15:89–99

    Google Scholar 

  • Palmer WC (1965) Meteorological drought. Research Paper, vol 45. U.S. Weather Bureau

  • Pittock AB (1980) Patterns of climatic variation in Argentina and Chile. I. Precipitation, 1931–1960. Mon Weather Rev 108:1347–1361

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate Models and Their Evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge, pp 489–662

  • Rodionov SN (2004) A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31. doi:10.1029/2004GL019448

  • Rodriguez-Cabal MA, Nuñez MA, Martínez AS (2008) Quantity versus quality: endemism and protected areas in the temperate forest of South America. Austral Ecol 33:730–736. doi:10.1111/j.1442-9993.2008.01841.x

    Article  Google Scholar 

  • Samaniego H, Marquet PA (2009) Mammal and butterfly species richness in Chile: taxonomic covariation and history. Rev Chil Hist Nat 82:135–151. doi:10.4067/S0716-078X2009000100009

    Article  Google Scholar 

  • Schulman E (1956) Dendroclimatic changes in semiarid America. University of Arizona Press, Tucson

    Google Scholar 

  • Shindell DT, Schmidt GA (2004) Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys Res Lett 31:L18209. doi:10.1029/2004GL020724

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago

    Google Scholar 

  • Tercero-Bucardo N, Kitzberger T, Veblen TT, Estela R (2007) A field experiment on climatic and herbivore impacts on post-fire tree regeneration in north-western Patagonia. J Ecol 95:771–779. doi:10.1111/j.1365-2745.2007.01249.x

    Article  Google Scholar 

  • Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899. doi:10.1126/science.1069270

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Climate 13:1000–1016. doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 78:61–79. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777. doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: Surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on climate change. Cambridge University Press, pp 235–336

  • Underwood EC, Klausmeyer KR, Cox RL, Busby SM, Morrison SA, Shaw MR (2008) Expanding the global network of protected areas to save the imperiled Mediterranean biome. Conserv Biol 23:43–52. doi:10.1111/j.1523-1739.2008.01072.x

    Article  Google Scholar 

  • Veblen TT, Young KR, Orme AR (2007) The physical geography of South America. Oxford University Press, Inc., New York

    Google Scholar 

  • Villagrán C, Hinojosa LF (1997) Historia de los bosques del sur de Sudamérica, II: análisis fitogeográfico. Rev Chil Hist Nat 70:241–267

    Google Scholar 

  • Villalba R (1990) Climatic fluctuations in northern Patagonia during the last 1,000 years as inferred from tree-ring records. Quat Res 34:346–360. doi:10.1016/0033-5894(90)90046-N

    Article  Google Scholar 

  • Villalba R, Veblen TT (1997) Regional patterns of tree population age structure in northern Patagonia: climatic and disturbance influences. J Ecol 85:113–124

    Article  Google Scholar 

  • Villalba R, Veblen TT (1998) Influences of large-scale climatic variability on episodic tree mortality in Northern Patagonia. Ecology 79:2624–2640. doi:10.1890/0012-9658(1998)079[2624:IOLSCV]2.0.CO;2

    Article  Google Scholar 

  • Villalba R, Cook ER, D’Arrigo RD, Jacoby GC, Jones PD, Salinger MJ, Palmer J (1997) Sea-level pressure variability around Antarctica since A.D. 1750. Clim Dyn 13:375–390. doi:10.1007/s003820050172

    Article  Google Scholar 

  • Villalba R, Cook ER, Jacoby GC, D’Arrigo RD, Veblen TT, Jones PD (1998) Tree-ring based reconstructions of northern Patagonia precipitation since AD 1600. Holocene 8:659–674. doi:10.1191/095968398669095576

    Article  Google Scholar 

  • Vuille M, Milana JP (2007) High-latitude forcing of regional aridification along the subtropical west coast of South America. Geophys Res Lett 34:L23703. doi:10.1029/2007GL031899

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Wilson R, Wiles G, D’Arrigo R, Zweck C (2007) Cycles and shifts: 1,300 years of multi-decadal temperature variability in the Gulf of Alaska. Clim Dyn 28:425–440. doi:10.1007/s00382-006-0194-9

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684

    Article  Google Scholar 

  • Young KR, León B (2006) Tree-line changes along the Andes: implications of spatial patterns and dynamics. Phil Trans R Soc B. doi:10.1098/rstb.2006.1986

Download references

Acknowledgments

This work was carried out with the aid of grants from the Inter-American Institute for Global Change Research (IAI) CRN II # 2047 supported by the US National Science Foundation (GEO-0452325), Universidad Austral de Chile (DID-UACh D-2007-07), Chilean Research Council (FONDECYT 1050298 and FONDECYT PDA-24), Chilean Ministry of Planning (ICM project P04-065-F), and the Argentinean Agency for Promotion of Science (PICTR 02-186). We are grateful to D. Shea from the NCAR Climate and Global Dynamics Division for providing the Niño-3.4 region SST record extracted from Hurrell et al. (2008). The AAO data were obtained from Joint Institute for the Study of the Atmosphere and Ocean (JISAO; http://jisao.washington.edu/data/aao/). Other than the first author, order of authorship is alphabetical. D. C. is grateful to Ma Paz Peña, Natalia Carrasco and Mauricio Fuentes for their great help during fieldwork and Jonathan Barichivich for helpful discussion about this research. We acknowledge Chilean Forest Service CONAF, Juan Manquepi, Lito Cáceres, and Comunidad Pehuenche Ralko-Lepoy for permission to collect A. chilensis samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan A. Christie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christie, D.A., Boninsegna, J.A., Cleaveland, M.K. et al. Aridity changes in the Temperate-Mediterranean transition of the Andes since ad 1346 reconstructed from tree-rings. Clim Dyn 36, 1505–1521 (2011). https://doi.org/10.1007/s00382-009-0723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0723-4

Keywords

Navigation