
of certain natural heuristics. These include

choosing colors that will result in the fewest local

conflicts (mentioned on 11 surveys), as well as

attempting to avoid conflicts with neighbors with

high connectivity (mentioned on 39 surveys, and

obviously applicable to only those two informa-

tion views that revealed such neighboring infor-

mation), presumably on the logic that highly

connected vertices present the most constrained

and difficult problems for subjects. Surveys and

the experimental data also revealed a number of

instances of signaling behavior by subjects, but

here there was less consistency. Some subjects

clearly alternated between two colors that were

unused in their neighborhood in an attempt to

inform neighbors of this fact. Others would

alternate between colors in an attempt to call

attention to conflicts. Although such signaling

behaviors are apparent in the data, it is unclear

whether they ever had their intended effects.

Many subjects also reported introducing conflicts

into their local neighborhood even when they had

an available color, in an attempt to perturb the

global state from a perceived stasis or local

minimum. Even excluding perturbations intro-

duced 2 s or less after the absence of any local

conflicts (to account for reaction time), the 38

experiments together had 181 such incidents.

This behavior might be viewed as a human

analog of the deliberate injection of randomiza-

tion or Bthermal noise[ into common optimiza-

tion algorithms such as simulated annealing.

Further work is needed to integrate these ob-

servations with statistical methods applied to the

experimental data, in order to develop plausible

stochastic models of individual behavior in the

coloring problem. Ideally such models, when run

in multiple independent copies, could predict

which networks would be easy or difficult for

human populations.

Although the results presented here are sug-

gestive, they are limited in a variety of important

ways. The human subject networks were small, a

perhaps necessary consequence of the carefully

controlled, simultaneous play experiments. It is

tempting to contemplateWeb-based studies (25)

on a much larger scale, which will require ad-

dressing incentives, attrition, communication,

and many other issues. The network topologies

examined here were but a sampling of the rich

space of possibilities and recent network for-

mation models. Rather than imposing a chosen

network structure on subjects, it would also be

interesting to consider scenarios in which the

subjects themselves participated in the network

formation process, while still allowing some

variability of structure. Future work should con-

sider an even wider range of natural collective

problems and activities. Candidates include

problems of agreement or consensus rather than

differentiation, and problems involving the

formation of local teams or subgroups specify-

ing certain properties (such as being fully con-

nected or having at least one member of each of

a fixed number of types or roles).
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Insignificant Change in Antarctic
Snowfall Since the International
Geophysical Year
Andrew J. Monaghan,1* David H. Bromwich,1 Ryan L. Fogt,1 Sheng-Hung Wang,1
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Antarctic snowfall exhibits substantial variability over a range of time scales, with consequent
impacts on global sea level and the mass balance of the ice sheets. To assess how snowfall has
affected the thickness of the ice sheets in Antarctica and to provide an extended perspective, we
derived a 50-year time series of snowfall accumulation over the continent by combining model
simulations and observations primarily from ice cores. There has been no statistically significant
change in snowfall since the 1950s, indicating that Antarctic precipitation is not mitigating global
sea level rise as expected, despite recent winter warming of the overlying atmosphere.

G
lobal sea level (GSL) has been in-

creasing by 1.7 mm yearj1 over the

past century (1) and 2.8 mm yearj1

over the past decade (2). One of the greatest

uncertainties in predictions of GSL rise is the

contribution of the Antarctic ice sheets (3). The

Antarctic ice budget is balanced by the buildup

of snowfall in the interior and wastage due to
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melting and calving of ice along the coastal

margins. Future scenarios from global climate

models (GCMs) suggest that Antarctic snowfall

should increase in a warming climate, mainly

due to the greater moisture-holding capacity of

warmer air (4), partially offsetting enhanced

loss at the ice sheet peripheries. Perplexing

temperature trends have been reported over

Antarctica since continuous monitoring began

with the International Geophysical Year (IGY)

in 1957–1958, varying by the season, the region,

and the time period analyzed (5, 6). A recent

study suggests a strong tropospheric warming

signal has been manifested over Antarctica dur-

ing winters since the early 1970s (7), the season

during which much of the continent receives its

maximum snowfall (8). Satellite-based ice

velocity and altimetry measurements indicate

that the West Antarctic Ice Sheet (WAIS) has

been thinning over the past decade, with a

contribution to GSL rise of 0.13 to 0.16 mm

yearj1 (9, 10), consistent with widespread melt-

ing of ice sheet grounding lines (11). In light of

these studies, it is essential to assess whether

Antarctic snowfall has been increasing.

The latest studies using global and regional

atmospheric models to evaluate changes in

Antarctic snowfall indicate that no statistically

significant increase has occurred since È1980

over the entire grounded ice sheet, WAIS, or the

East Antarctic Ice Sheet (EAIS) (12–14). A

validation of the modeled-versus-observed

changes (12) suggested that the recent model

records are more reliable than the earlier global

model records that inferred an upward trend in

Antarctic snowfall since 1979 (15). The new

studies also showed that interannual snowfall

variability is considerable; yearly snowfall

fluctuations of T20 mm yearj1 water equiva-

lent (WEQ), i.e., T0.69 mm yearj1 GSL

equivalent, are common (12) and might easily

mask underlying trends over the short record. It

is necessary to extend the snowfall record back

to the IGY so that (i) trends can be assessed

within a longer context, (ii) the snowfall record

can be compared with the entire instrumental

temperature record over Antarctica, and (iii) a

50-year benchmark for GCM evaluation is

available.

The small volume of meteorological data

over the Southern Ocean and Antarctica renders

modeled snowfall amounts highly questionable

before the modern satellite era (È1979) (13, 16).

The only other records of snowfall variability

before 1979 are from ice cores, snow pits, and

precipitation gauges. The spatial coverage of

these data has been too sparse to accurately as-

sess snowfall accumulation over the entire con-

tinent. However, in recent years scores of new

ice core records have become available, due in

large part to the International Transantarctic

Scientific Expedition (ITASE), a multinational

field program aimed at reconstructing the recent

climate history of Antarctica through ice coring

and related observations along an extensive

network of traverses (17). In this study, we used

these new records together with existing ice

cores, snow pit and snow stake data, meteoro-

logical observations, and validated model fields

to reconstruct Antarctic snowfall accumulation

over the past 5 decades.

Each observational record is representative

of an area surrounding it (a Bzone[), the size of

which depends on the atmospheric circulation,

the interaction of wind with topography, and the

time scale considered. Our method used mete-

orological model reanalysis fields to determine

zones of snowfall coherence that correlate with

the individual records at annual time scales.

Assuming these zones adequately cover most of

the continent given the available observational

records, this information can be used to synthe-

size the observations into a continent-wide

record of snowfall accumulation in a self-

consistent manner. The model reanalysis data

set we used is the European Centre for Medium-

Range Weather Forecasts 40-Year Reanalysis

(ERA-40) (18). We defined snowfall accumu-

lation from ERA-40 precipitation fields that

were adjusted to match long-term observed

accumulation records (19). Precipitation domi-

nates snowfall accumulation variability over

Antarctica at model grid scales (8, 15). ERA-40

precipitation was compared to independent

observed accumulation records for overlap pe-

riods and shown to largely reproduce the inter-

annual snowfall accumulation variability and
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Fig. 1. The composite map of the maximum absolute value of the Pearson’s correlation coefficient
(krk) resulting from correlating the ERA-40 1985–2004 percentage annual snowfall accumulation
change (with respect to the 1985–1994 mean) for the grid box containing each of the 16
observation sites (yellow dots and numbers) with every other 1--by-1- grid box over Antarctica (i.e.,
this map is a composite of 16 maps). Pink and red colors have correlations at P G 0.01. The black
lines delineate ice drainage basins (20), which are identified alphabetically by the black letters where
they intersect the grounding line. Detailed information about the observation sites is included in (19).
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trends, justifying its use for this study (19).

Figure 1 shows a composite map of the maxi-

mum correlation coefficient obtained by corre-

lating the ERA-40 simulated percentage annual

precipitation anomaly at the grid point closest

to each core with every other grid point. Corre-

lations greater than 0.5 (P G 0.01) occur over

most of the grounded ice sheet, indicating that

the zones of spatial coherence from the avail-

able observational records cover nearly the

entire continent. We used this robust relation-

ship to synthesize the observational data into a

series of continent-wide snowfall accumulation

maps for the period before 1985, when the

precipitation variability simulated by ERA-40

is questionable (12). The result is a 5-decade

time series of snowfall accumulation over the

grounded ice sheet; the first 3 decades are in-

ferred from observational records, and the final

2 decades from ERA-40. A detailed description

of the methodology is given in (19).

The spatial distribution of the 50-year av-

erage annual snowfall accumulation (Fig. 2A)

closely resembles the glaciological estimate of

Vaughan et al. (20). The mean for the grounded

ice sheet is 182 mm yearj1 WEQ, larger than

the value of 149 mm yearj1 WEQ from the

Vaughan map. A subsequent analysis (21)

suggested that the Vaughan map underesti-

mated coastal accumulation and that a more

realistic estimate is 171 mm yearj1 WEQ.

Overall, our mean annual snowfall accumulation

is at the high end of published estimates E119 to
197 mm yearj1 WEQ (13, 22)^ but may be

realistic in light of recent findings.

The percentage differences of annual snow-

fall accumulation for each decade with respect

to the 50-year mean (Fig. 2A) are shown in

Fig. 2, B to F. There are regions of both posi-

tive and negative change in all 5 decades, but

no continental-scale changes of either sign

dominate any period. The amplitude of the

changes in Fig. 2, B to D, the decades recon-

structed from ice cores, is slightly dampened

compared with the final two decades (Fig. 2, E

and F). This is partly due the reconstructed data

having smaller interannual variability than the

model data; however, this does not affect the

sign of the changes and has little impact on

the results at basin and continental scales (19).

There is no widespread signal of increased

snowfall accumulation over the EAIS for 1995–

2004 that would suggest a contribution to the

recently reported thickening (23). The 1995–

2004 changes are mostly negative over WAIS,

where net ice sheet thinning is occurring (9, 10).

The statistical uncertainty associated with the

change at each grid point (due to the decadal

variability and methodology) is typically about

4 to 8%, enough to overwhelm the decadal

changes in most places.

The time series of snowfall accumulation

inferred from Fig. 2, B to F, and averaged over

EAIS, WAIS, and the entire grounded ice sheet

is shown in Fig. 3. All three regions are char-

acterized by a steady upward trend from the

beginning of the record through the early 1990s

and then a downward trend thereafter that is

most marked over WAIS (22 mm yearj1 WEQ

for the past decade compared with the prior

decade). However, this change has low statis-

tical significance (P 0 0.16), indicating that

decadal fluctuations of this magnitude (È7% of

the 50-year mean) are probably common over

WAIS. The upward trend over the ice sheets

Fig. 2. (A) 50-year mean annual snowfall accumulation (mm yearj1 WEQ). (B to F) Differences between mean annual snowfall accumulation for decade
indicated and 50-year mean, expressed as a percentage of the 50-year mean. The scale shown in (B) applies to (B) to (F). The mean accumulation, trends, and
uncertainty are quantified for each basin in (19).
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before themost recent decade corroborates earlier

studies that used regional records (24, 25). Over

EAIS, WAIS, and the grounded ice sheet, there

are no statistically significant trends in snowfall

accumulation over the past 5 decades, including

recent years for which global mean temper-

atures have been warmest (26). We performed

several experiments to test the sensitivity of the

results in Fig. 3 by adjusting parameters within

our methodology and by using other methods to

reconstruct the accumulation, and the results

were very robust (19).

Our findings are somewhat inconsistent with

Davis et al. (23), who inferred from satellite

altimetry data that an increase in snowfall accu-

mulation was the primary cause of net thicken-

ing over EAIS for 1992–2003. One reason for

the discrepancy may be that their radar data did

not extend southward of 81.6-S, a region with

strong downward trends in the past decade

(Fig. 2F). Another factor may be their method-

ology. Zwally et al. (10) found a thickening

over EAIS from satellite altimetry for a similar

period that was a factor of 3 smaller than the

value from the Davis study, arguing that their

method more accurately accounts for firn com-

paction and interannual variability of the sur-

face height. Lastly, because snowfall typically

adjusts to climate change on much shorter time

scales than the underlying glacial ice (27), a

linear thickening trend as reported in the Davis

study could be interpreted to mean that snowfall

accumulation from 1992–2003 was stepwise

higher than at some time in the past, when the

accumulation rate and the ice sheet dynamical

response were in equilibrium. In that case, the

results of Davis et al. (23) may actually suggest

that snowfall accumulation over EAIS has

changed little in the past decade, consistent

with our assessment. Despite our disagreement

as to the causality, we do not dispute that al-

timetry indicates a clear thickening signal over

EAIS (10, 23) that mitigates sea level rise.

The implications of our findings are cate-

gorized into two general ideas.

1) Interannual and interdecadal snowfall

variability must be more seriously considered

when assessing the rapid ice volume changes

that are occurring over Antarctica. With regard

to interannual variability, consider a recent esti-

mate of Antarctic ice sheet mass loss that is the

equivalent of 0.4 T 0.2 mm yearj1 GSL rise for

3 years (2002–2005) from satellite-derived time-

variable gravity measurements (28). Antarctic-

wide annual snowfall accumulation decreased

by about 25 mm yj1 WEQ, or about 0.86 mm

yearj1 GSL rise, between calendar year 2002

and 2003 (Fig. 3), suggesting that the gravity

fluctuations could be heavily influenced by

interannual snowfall variations.

With regard to interdecadal variability, the

ERA-40 snowfall accumulation is about 22 mm

yearj1 WEQ lower over WAIS for the past

decade (1995–2004) compared with the previ-

ous decade (1985–1994) (Fig. 3), the GSL

equivalent of 0.18 mm yearj1. This signal is of

the same order as the 47 Gton (0.13 mm yearj1

GSL equivalent) mass imbalance reported for

WAIS (defined by a slightly different area) from

satellite radar altimetry for roughly the past

decade (10). In neither decade is the snowfall

accumulation statistically significantly different

from the 50-year WAIS mean, suggesting that

such fluctuations are normal. The cause of the

recent mass imbalance will remain unclear until

a longer satellite record is available, but it may

be partly related to accumulation variability.

2) Antarctic snowfall is not currently com-

pensating for the oceanic-induced melting at the

ice sheet periphery. If anything, our 50-year per-

spective suggests that Antarctic snowfall has

slightly decreased over the past decade, while

global mean temperatures have beenwarmer than

at any time during the modern instrumental

record (26). Radiosonde and ERA-40 tempera-

ture data indicate a uniformwinter warming trend

in the mid-troposphere over Antarctica since the

early 1970s, but seasonally averaged ERA-40

precipitation data suggest that there has been no

commensurate increase in winter snowfall since

at least 1985 (12). These findings suggest that

atmospheric circulation variability, rather than

thermodynamic moisture increases, may domi-

nate recent Antarctic snowfall variability.

Our technique of synthesizing observational

records with model reanalysis has provided a

coherent record of Antarctic-wide snowfall ac-

cumulation variability extending back before

the modern satellite era. As more and improved

(e.g., ground-penetrating radar) accumulation

records become available, it will be possible to

revisit this study with greater accuracy. A longer

(1 to 2 centuries) reconstruction was not possible

because of the limitations of the current data set

but clearly is necessary to better understand the

multidecadal Antarctic accumulation variability.

Satellite-based techniques show great promise

for precisely measuring Antarctic ice mass

changes. It is critical to extend these records to

distinguish thickening or thinning signals from

snowfall variability.

Our results indicate that there is not a

statistically significant global warming signal

of increasing precipitation over Antarctica since

the IGY, inferring that GSL rise has not been

mitigated by recently increased Antarctic snow-

fall as expected. It may be necessary to revisit

GCM assessments that show increased precipi-

tation over Antarctica by the end of this century

in conjunction with projected warming (29).

Vigorous efforts are needed to better under-

stand this remote but important part of the

planet and its role in global climate and sea

level rise.
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Divergent Induced Responses to an
Invasive Predator in Marine
Mussel Populations
Aaren S. Freeman* and James E. Byers

Invasive species may precipitate evolutionary change in invaded communities. In southern New
England (USA) the invasive Asian shore crab, Hemigrapsus sanguineus, preys on mussels (Mytlius
edulis), but the crab has not yet invaded northern New England. We show that southern New
England mussels express inducible shell thickening when exposed to waterborne cues from
Hemigrapsus, whereas naı̈ve northern mussel populations do not respond. Yet, both populations
thicken their shells in response to a long-established crab, Carcinus maenas. Our findings are
consistent with the rapid evolution of an inducible morphological response to Hemigrapsus within
15 years of its introduction.

A
nthropogenic introductions increasingly

bring organisms into contact that have

no shared evolutionary history, which

results in novel interactions between non-native

and native competitors, prey, and predators (1).

These novel species combinations create poten-

tially strong selection pressure that can drive

evolutionary change of heritable traits (1–3).

Although several studies have shown that

invaders can evolve rapidly in a novel, invaded

environment (1), examples of invader-driven

rapid evolutionary change in native species are

rarer (1, 3, 4). Rapid evolutionary change may

particularly influence the ability of native prey to

recognize and respond to novel invasive preda-

tors with inducible morphological defenses.

Inducible defenses are the expression of al-

ternative forms (phenotypic plasticity) by orga-

nisms in response to cues from a predator or

competitor. Some commonly noted inducible

defenses include shape changes in barnacles,

spines on bryozoans and cladocerans, thickened

shells of mollusks, defensive chemicals in plants,

and morphological and behavioral characters in

anuran tadpoles (5, 6). Although selection may

act on inducible defenses (5), in terms of both

the degree of plasticity (7) and the prey_s ca-

pacity to recognize cues from predators (8, 9),

to date there have been no examples of an

invasive species driving the rapid evolution and

emergence of an inducible morphological re-

sponse. To test for the evolution of predator

recognition and expression of inducible mor-

phological defenses in a marine mussel (Mytilus

edulis), we juxtaposed the induced defenses of

two mussel populations having different histor-

ical contact with two invasive crab predators.

The Asian shore crab, Hemigrapsus san-

guineus, was first reported in North America in

New Jersey in 1988 and currently ranges from

North Carolina to the midcoast of Maine, U.S.A.

(10, 11). M. edulis is a large component of H.

sanguineus_ diet (12), but perhaps because this

is a novel predator in the North Atlantic Ocean,

nothing is known about inducible defenses in

mussels to this crab. A longer term resident of

New England, the green crab, Carcinus maenas,

was introduced from Europe to the Mid-Atlantic

United States in 1817 and currently ranges from

New Jersey, U.S.A., to Prince Edward Island,

Canada (13). C. maenas has had substantial im-

pacts on native communities throughout its intro-

duced range (13–15) and is known to induce

defenses in M. edulis from several populations

(14, 16, 17). Small mussels are vulnerable to both

crab species (12), show high relative growth

amenable to detecting induced defenses, and

represent a crucial, prereproductive stage under

strong selection.

Given the invasion history of these two crabs,

M. edulis in northern New England (specifically

northeastern Maine) has never experienced

predation by H. sanguineus. Because the genus

Hemigrapsus is not native to the Atlantic,

neither have they been exposed to any Hemi-

grapsus congeners. However, they have experi-

enced predation by C. maenas for more than 50

years. In contrast, mussels in southern New

England have experienced predation by C.

maenas and H. sanguineus for 100þ and È15

years, respectively. To determine whether natu-

ral selection has altered the mussels_ capacity to

respond to these two crabs, we quantified the

responses of mussels from these northern and

southern populations to these two crab predators.

If predator cues are species-specific, and if

selection has altered the capacity of mussels to

recognize and respond to these invasive preda-

tors, we expected that mussels from southern

New England would respond to cues from both

crabs, whereas northern mussels would respond

to cues from C. maenas but not H. sanguineus.

To compare the inducible defenses of mus-

sels from northern and southern New England

in response to C. maenas and H. sanguineus,

we collected mussels (13- to 20-mm shell

length) from floating docks at six sites each in

northern Maine and southern New England and

brought them to Northeastern University_s
Marine Science Center at Nahant, MA (Fig. 1)

(18). These mussels were then raised with

nonlethal, waterborne cues from C. maenas,

H. sanguineus, or no predator (control). Using

the final measurements of each mussel_s shell

thickness index (STI), adjusted to its initial STI,

we assessed the development of inducible

defenses (19). After 3 months, mussels had

grown, and mussels from northern and southern

New England had thickened their shells differ-

ently in response to waterborne cues from the

two invasive crab predators (i.e., there was a

significant population by predator treatment

interaction) (20). Mussels from southern sites

thickened their shells in response to waterborne

cues from H. sanguineus relative to controls

(P 0 0.011), and mussels appeared to thicken

their shells in response to C. maenas, although

the trend was not significant (P 0 0.145) (Fig. 2).

In contrast, although mussels from northern

sites developed significantly thicker shells in

response to cues from C. maenas (P 0 0.001),

they did not respond to cues fromH. sanguineus

(P 0 0.573) (Fig. 2). In addition, there were

clear population differences in the temperature-

sensitive process of shell accretion, with mus-

sels from northern populations thickening their

shells more than mussels from southern pop-

ulations (Fig. 2). These findings suggest that

northern and southern mussel populations are
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