Stable oxygen isotopes and Mg/Ca in planktic foraminifera from modern surface sediments of the Western Pacific Warm Pool : implications for thermocline reconstructions

Thumbnail Image
Date
2017-11-09
Authors
Hollstein, Martina
Mohtadi, Mahyar
Rosenthal, Yair
Sanchez, Paola Moffa
Oppo, Delia W.
Martínez Méndez, Gema
Steinke, Stephan
Hebbeln, Dierk
Alternative Title
Date Created
Location
DOI
10.1002/2017PA003122
Related Materials
Replaces
Replaced By
Keywords
Western Pacific Warm Pool
Mg/Ca calibration
Oxygen isotopes
Planktic foraminifera
Thermocline reconstruction
Abstract
Mg/Ca and stable oxygen isotope compositions (δ18O) of planktic foraminifera tests are commonly used as proxies to reconstruct past ocean conditions including variations in the vertical water column structure. Accurate proxy calibrations require thorough regional studies, since parameters such as calcification depth and temperature of planktic foraminifera depend on local environmental conditions. Here we present radiocarbon-dated, modern surface sediment samples and water column data (temperature, salinity, and seawater δ18O) from the Western Pacific Warm Pool. Seawater δ18O (δ18OSW) and salinity are used to calculate individual regressions for western Pacific surface and thermocline waters (δ18OSW = 0.37 × S-12.4 and δ18OSW = 0.33 × S-11.0). We combine shell δ18O and Mg/Ca with water column data to estimate calcification depths of several planktic foraminifera and establish regional Mg/Ca-temperature calibrations. Globigerinoides ruber, Globigerinoides elongatus, and Globigerinoides sacculifer reflect mixed layer conditions. Pulleniatina obliquiloculata and Neogloboquadrina dutertrei and Globorotalia tumida preserve upper and lower thermocline conditions, respectively. Our multispecies Mg/Ca-temperature calibration (Mg/Ca = 0.26exp0.097*T) matches published regressions. Assuming the same temperature sensitivity in all species, we propose species-specific calibrations that can be used to reconstruct upper water column temperatures. The Mg/Ca temperature dependencies of G. ruber, G. elongatus, and G. tumida are similar to published equations. However, our data imply that calcification temperatures of G. sacculifer, P. obliquiloculata, and N. dutertrei are exceptionally warm in the western tropical Pacific and thus underestimated by previously published calibrations. Regional Mg/Ca-temperature relations are best described by Mg/Ca = 0.24exp0.097*T for G. sacculifer and by Mg/Ca = 0.21exp0.097*T for P. obliquiloculata and N. dutertrei.
Description
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 1174–1194, doi:10.1002/2017PA003122.
Embargo Date
Citation
Paleoceanography 32 (2017): 1174–1194
Cruises
Cruise ID
Cruise DOI
Vessel Name