Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering

Thumbnail Image
Date
2017-10-10
Authors
Dunlea, Ann G.
Murray, Richard W.
Santiago Ramos, Danielle
Higgins, John A.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1038/s41467-017-00853-5
Related Materials
Replaces
Replaced By
Keywords
Abstract
Authigenic clay minerals formed on or in the seafloor occur in every type of marine sediment. They are recognized to be a major sink of many elements in the ocean but are difficult to study directly due to dilution by detrital clay minerals. The extremely low dust fluxes and marine sedimentation rates in the South Pacific Gyre (SPG) provide a unique opportunity to examine relatively undiluted authigenic clay. Here, using Mg isotopes and element concentrations combined with multivariate statistical modeling, we fingerprint and quantify the abundance of authigenic clay within SPG sediment. Key reactants include volcanic ash (source of reactive aluminium) and reactive biogenic silica on or shallowly buried within the seafloor. Our results, together with previous studies, suggest that global reorganizations of biogenic silica burial over the Cenozoic reduced marine authigenic clay formation, contributing to the rise in seawater Mg/Ca and decline in atmospheric CO2 over the past 50 million years.
Description
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 8 (2017): 844, doi:10.1038/s41467-017-00853-5.
Embargo Date
Citation
Nature Communications 8 (2017): 844
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 4.0 International