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Chapter 1

Introductory Chapter: Signal and
Image Denoising
Mourad Talbi

1. Introduction

Both signal and image are unfortunately degraded by different factors that affect
as noise during acquisition or transmission. Those noisy effects decrease the perfor-
mance of visual and computerized analysis. It is clear that cancelling the noise from
the signal facilitates its processing. The denoising process can be described as to cancel
the noise while retaining and not distorting the quality of processed signal or image
[1–4]. The conventional manner of denoising for noise cancelling consists in applying
a band/low-pass filter with cut-off frequencies. Though conventional filtering
methods are capable to suppress a relevant of the noise, they are not able when the
noise is located in the band of the signal to be processed. Consequently, numerous
denoising techniques were introduced in order to overcome this problem. The
algorithms and processing approaches employed for signals can be also used for
images and this is due to fact that an image is viewed as a two-dimensional signal.
Consequently, the signal processing methods for one-dimensional signals can be
adapted for processing two-dimensional images. Due to the fact that the origin and
non-stationarity of the noise corrupt the signal, it is not easy to model it. Nevertheless,
when the noise can be considered as stationary, an empirically recorded signal that is
degraded by an additive noise is formulated as follows [1]:

y jð Þ ¼ x jð Þ þ σ � ε jð Þ, j ¼ 0, 1, … , n� 1 (1)

With y jð Þ is the noisy signal, x jð Þ is the clean signal and ε jð Þ are independently
normal random variables and σ designates the level noise corrupting jð Þ. The noise can
be modeled as stationary independent zero-mean white Gaussian variables [5, 6]. If
this model is employed, the objective of noise cancellation consists in reconstructing
x jð Þ from a finite set of y jð Þ values without considering a particular structure for the
signal. The commonly used approach for noise cancellation models noise as a high
frequency signal corrupting in additive manner, the clean signal. These high frequen-
cies can be bringing out employing Fourier transform, ultimately cancelling them by
an adequate filtering. This noise cancelling method is conceptually clear and efficient
since it is depending only on computing DFT (Discrete Fourier Transform) [7].
However, there is some issue that should be considered. The most important having
same frequency since the noise owns important information in the original signal.
Filtering out these frequency components introduces noticeable information loss of
the desired signal. It is clear that a technique is strongly needed for preserving the
prominent part of the signal having relatively high frequencies as the noise has. As an
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example, the wavelet-based noise removal approaches have provided this prominent
part conservation. De-noising of natural images degraded by Gaussian Noise
employing wavelet based denoising techniques are very efficient due to the fact that it
is able to capture the energy of a signal in few energy transform values. The wavelet
de-noising scheme thresholds the wavelet coefficients arising from the standard dis-
crete wavelet transform [8]. In Ref. [8], it was introduced to investigate the suitability
of different wavelet bases and the size of different neighborhood on the performance
of image denoising techniques in term of peak signal-to-noise ratio (PSNR) [8].

In Ref. [9], Di Liu and Xiyuan Chen introduced an image denoising technique
applying an ameliorated bidimensional empirical mode decomposition (BEMD) and
using soft interval thresholding. At first step, a noise compressed image is constructed.
After that, this noise compressed image is decomposed by applying BEMD into a series
of intrinsic mode functions (IMFs), which are separated into signal-dominant IMFs and
noise-dominant IMFs employing a similarity measure based on ℓ2-norm and a proba-
bility density function, and a soft interval thresholding is employed in adaptive manner
for cancelling the noise inherent in noise-dominant IMFs. The denoised image is finally
obtained via the combination of the signal dominant IMFs and the denoised noise
dominant IMFs. The performance of this image denoising technique [1] was applied to
multiple images with different sorts of noise, and the results obtained from the appli-
cation of this technique [1] were compared to those obtained from the application the
some traditional techniques in different noisy environments. Simulation results in terms
of peak signal-to-noise ratio, mean square error, and energy of the first IMF, proved
that this denoising technique [9] outperforms the other denoising techniques.

Hybridization of the BEMD with denoising approaches has been introduced in the
literature as an efficient image denoising technique.

In Ref. [10], Student’s probability density function was proposed in the calculation
of the Mean Envelope of the data during the BEMD sifting process for making it
robust to values that are far from the mean. The obtained BEMD was named tBEMD.
To prove the efficiency of the tBEMD, many image denoising approaches were used in
the tBEMD field. Among these approaches, we can mention the discrete wavelet
transform (DWT), fourth-order partial differential equation (PDE), linear complex
diffusion process (LCDP), and nonlinear complex diffusion process (NLCDP). For
experiments, a standard digital image and two biomedical images are considered. The
original images are degraded by additive Gaussian Noise with three diverse levels.
Based on PSNR (peak signal-to-noise ratio), the obtained results show that DWT,
PDE, LCDP, and NLCDP, all perform better in the tBEMD domain compared to the
conventional BEMD domain. Moreover, the tBEMD is faster than conventional BEMD
in case where the noise level is low. However, in case where it is high, the calculation
cost in terms of processing time is similar. The efficiency of the presented approach
makes it promising for clinical applications.

This book is intended for engineers and researchers in the fields of signal and
image processing. Indeed, this book deal with a large number of signal and image
denoising techniques. These techniques include an innovative image denoising
approaches.

2. Examples of signal and image denoinsing

In this section, we will give some examples of signal and image denoising obtained
from the application of the discrete wavelet transform (DWT).

4
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Figure 1.
An example of PCG denoising using DWT [1]: (a) clean PCG signal, (b) noisy PCG signal, (c) denoised PCG
signal, (d) difference between the original and the denoised signal.
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2.1 Phonocardiogram denoising

The acoustical vibrations records from the heart, acquired through microphones
from human chest, named phonocardiogram (PCG), consist of both the murmurs and
the heart sounds. Those records of acoustic signals are unfortunately corrupted by
diverse factors which effecting as noise. Those effects cause the decreasing of the
performance of visual and computerized analysis [1, 11, 12].

Figure 1 illustrates an example of PCG denoising using DWT.
According to Figure 1, the noise is considerably reduced and the waveform of the

original signal is conserved because the difference between the original and the
denoised signals is very small. Consequently, the denoising technique based on
thresholding in DWT domain and applied in Ref. [1], shows its performance in noise
reduction while conserving the information contained in the original PCG signal.

Figure 2.
An example of medical image denoising by applying thresholding in the DWT domain: (a) a noisy medical image
with PSNR ¼ 62 dB, (b) denoised image obtained from the application of a denoising technique based on
thresholding in the DWT domain.

6

Denoising – New Insights



2.2 Image denoising

All digital images are degraded by different types of noise during their acquisition
and transmission. As an example of these images, the medical one is likely disturbed
by a complex sort of addition noise depending on the devices that are employed for
capturing or storing it. There are no medical imaging devices that are noise free. The
most commonly employed medical images are produced fromMRI and CT equipment
[1]. The additive noise corrupting medical image causes the reducing of the visual
quality that complicates diagnosis and treatment.

Figure 2 illustrates an example of a medical image denoising using DWT.
A noise-added medical image and its denoised one obtained from employing a

wavelet denoising technique are illustrated in Figure 2. The added noise has Gaussian
distribution, and symlet 6, decomposition level of two, hard thresholding were used as
the parameters for the application the wavelet-based denoising technique [1].

3. Conclusion

In this chapter, we deal with a number of signal and image denoising techniques
existing in the literature. We also give two examples of signal and image denoising by
applying the denoising techniques based on thresholding in the Discrete Wavelet
Transform domain. Those examples show the performance of these denoising
techniques.

Author details

Mourad Talbi
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of Researches and Technologies of Energy (CRTEn), Tunis, Tunisia
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Chapter 2

Sound Absorption Measurement:
Alpha Cabin and Impedance Tube
Pavel Němeček

Abstract

The stage of development of absorbent materials, when necessary to verify their
properties in relation to established requirements, plays one of the key challenges in
current research. Nowadays, experimentation represents the only reliable way to
quantify sound absorption. Thus, the determined sound absorption coefficient is used
to compare individual development variants, and also, it is used in a selection of
material from the commercial offer. Therefore, the main part of research is devoted to
measurements in the impedance tube and in the alpha cabin, because these procedures
play one of the most challenging roles in practice. All used experimental methods are
based on the theory about transformation of sound energy into other forms of energy
in the material. Nevertheless, the physical nature of sound absorption and individual
measurement principles are not covered in this chapter, nor are any sound insulation
measurements. It deals solely with the sound absorption and determination of the
sound absorption coefficient. As a results, this chapter further summarizes basic
information on a sound absorption measurement, and mainly, focuses on practical
recommendations as well as applicability of results. First and foremost, these individ-
ual procedures may represent a considerable international overlap in the field.

Keywords: sound absorption coefficient, impedance tube, alpha cabin, sound
absorption measurement, reverberation time

1. Introduction

Sound absorption measurement serves as an activity associated with the design,
verification and application of suitable materials for solving an acoustic situation of
enclosed spaces. These materials have a specific composition, may be applied to large
surfaces, and their properties must typically meet many requirements (thermal insu-
lation, mechanical resistance, low dirtiness, compactness, etc.). Absorbent materials
are used in building acoustics, the automotive industry and everywhere where
humans and noise sources are in a confined space.

This chapter covers the experimental determination of the sound absorption coef-
ficient of industrially produced materials or samples in the stage of development,
which are intended for the reduction, or regulation of noise in closed spaces. The
chapter also contains a brief description of basic comparison methods and a more
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detailed description of two laboratory methods, i.e. the measurement of sound
absorption in an impedance tube and in an alpha cabin. The goal is to provide a basic
description of experimental methods, their comparison, evaluation and determination
of accuracy.

In practice:

• the requirements for noise in a closed space are given,

• the properties of absorbent materials are derived from them,

• materials are developed,

• their properties are experimentally verified and compared with the requirements,

• materials are optimized,

• materials are applied,

• verification of the optimized space is carried out, compliance with the space
requirements is evaluated.

• The results are put into practice.

2. Basics of measuring sound absorption

Sound absorption is the ability of a material environment to absorb coming sound.
It is a process in which sound energy falling on a sample of material is transformed
into another form, mainly thermal energy. In the ideal case, the sound energy that
encounters the sample (WINBOUND) is partly reflected (WREFLECTION), partly trans-
mitted through the sample (WTRANSMISSION) and partly absorbed into the sample
(WABSORPTION). Applies to:

WINBOUND = WREFLECTION + WABSORPTION + WTRANSMISSION.
When experimentally investigating absorption, certain conditions need to be met

so the equation above can be applied. The conditions are:

• It can be assumed that the material sample is fully involved in the energy balance.

• The source of sound energy is controlled.

• The measurement system does not significantly affect the measurement results
(by its principle, dimensions and other metrological and non-metrological
properties).

There are additional requirements for experimental methods:

• They should enable a statistical approach, respecting the variability of the
measurement system as well as the variability within the sample.

• Selected method should satisfy the intended use of the results with its accuracy.

10
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• Selected method should be fast and repeatable.

• The absorption frequency bandwidth should be as wide as possible.

• Method with a perpendicular incident of sound waves on the sample and

• Method with an omnidirectional impact of sound waves on the sample.

To the methods used, it should also be mentioned:

• Determination of sound absorption is always an estimation with a definable
precision. A result cannot always be related to a specific application due to
variability within samples (each sample taken from the production differs from
another).

• A measurement is always indirect, the sound absorption coefficient is always
calculated from other measured quantities.

• It is assumed for all measurement methods that the sample is placed near a
surface that has zero sound transmission, hence WTRANSMISSION = 0. Therefore,
all incident acoustic energy is absorbed or reflected.

• Most of the methods compare results with and without a sample. Results without
a sample assume absorption to be equal to zero.

• Variability caused by the instability of the excitation signal (energy encountering
the sample) is averaged. Variability of the measurement system has a defined
measurement uncertainty.

3. Physical and metrological basis of sound absorption measurement

A measurement can be considered as the only objective option to determine
the sound absorption coefficient α. Other options, such as simulations and
modeling in a virtual environment, face problems with an accurate determination of
the boundary conditions and with the definition of the internal structure of the
material. Validation of materials intended to solve a sound situation in closed spaces
requires a determination of the sound absorption factor by experiment, therefore on a
real part by objective methods. Requirements are set, for example, by the automotive
industry or the building materials industry. Knowledge of the sound absorption coef-
ficient makes it possible to model sound propagation in closed spaces using special
software.

Measuring the sound absorption coefficient is a topic mainly for:

1. Independent testing laboratories,

2.Research organizations,

3. Industrial companies involved in the development and production of absorbent
materials.
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In the next part of the text, 4 measurement methods are described. Two of them
are very simple and serve more for a comparison to the reference sample, the other
two ones are the most used in practice. A method, which is used mainly by indepen-
dent testing laboratories and complies the international standards be briefly
mentioned.

The following points apply to all described methods:

1.Measurement methods are always indirect. The sound absorption coefficient is
always determined by calculation from measurements of other quantities. The
evaluation of sound absorption is based on the consequences of the energy
conversion, which is a decrease in the sound pressure level (sound intensity)
after passing through the sample, a change in the reverberation time after the
application of an absorbing material or from the deformation of the reflected
wave.

2.A known source(s) is used to excite the acoustic energy (incident acoustic
energy).

3.An experiment assumes that the acoustic energy encountering the sample is
partially absorbed by the sample and the rest of the energy is reflected. The
sample therefore lies/rests on a soundproof surface during measurement. The
measurement is always based on the principle that energy from the measuring
system is prevented from passing through the sample. The assumption is that the
incident energy is reflected from the surface behind the sample and partially
absorbed as it passes through the sample. If a relatively large sample is available,
the absorbed energy is evaluated using the reverberation time, for smaller
samples the resultant wave (sum of incident and reflected wave) is mapped in
the near space.

4.The result is a frequency spectrum of the sound absorption factor in the
bandwidth allowed by the method.

5.The result is evaluated statistically.

3.1 Approximate and comparative methods of measuring sound absorption

In this chapter are described simple methods of sound absorption measurement.
Their description serves rather to complement the technical and historical context of
sound absorption measurements. It is based on conditions where it is not possible or
preferred to use more advanced methods. These methods:

• Are easily applicable in operating conditions,

• Use a simple calculation model,

• Are relatively fast.

These methods cannot be characterized as laboratory methods for an objective
determination of sound absorption. They only serve as quick comparison tests in the
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optimization of the composition of absorbing layers and can be used directly at the
place of application.

3.1.1 Tone burst method

This method is currently used very rarely. However, in the available literary
sources, it is still found in various methodological variants [1–3], it is popular with
students who use it in a case when sound absorption is only one of the properties they
investigate on materials.

This is a simple method based on the idea that when a sound wave strikes a sample
at a certain angle, a reflected wave propagates at the same angle with energy reduced
by the absorbed energy. The calculation is based on processing the ratio of incident
energy and reflected energy.

The measurement takes place in a space that is as anechoic as possible, ideally
using a directional microphone and a directional speaker.

1.Measurement step: a signal with sufficient energy and bandwidth is applied to
the speaker and the sound pressure level Lp,d (its frequency spectrum) is
measured at the distance A between the speaker and the microphone.

2.Measurement step: a testing object of sufficient dimensions is placed on
the reflective pad. The distances from the microphone to the point of
reflection of the sound waves and the distance of the loudspeaker from the
point of reflection of the waves are identically A/2. The identical signal
emitted by the speaker is partially absorbed in the absorbing wave, the rest is
reflected to the microphone. The measurement takes place according to the
diagram below, the important thing is the same angle of incidence/reflection φ.
The frequency spectrum of the sound pressure level Lp,r is evaluated at the
microphone.
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3.Step 3: at individual frequencies (1/3 octave), the sound absorption coefficient
α(φ;f) is estimated according to the formula:

α φ; fð Þ ¼ 1� 10�
Lp,d φ; fð Þ�Lp,r φ; fð Þð

10 (1)

Method Notes:

1.The estimated sound absorption coefficient is dependent on the angle φ.
Although the method can be included in the group of methods with
omnidirectional impact of sound waves, the dependence of the result on the
angle of incidence/reflection φ is obvious.

2.For small angles φ, the method is very inaccurate.

3.The Tone Burst Method is very sensitive to background noise.

4.For example, glass can be recommended as a reflective surface, but the
assumption that this surface does not transmit sound energy, which ultimately
increases the resulting sound absorption, is not always valid.

3.1.2 Sound intensity measurement method

This approximate method requires the use of a measuring system with a sound
intensity probe.

In an open field, the reflective surface is covered with a sufficiently large sample of
the measured material. A sound source is placed at a sufficient distance from the
surface of the sample. At a close distance from the sample (approx. 0.2 distance
between the surface of the sample and the speaker), the average sound pressure level
Lp and the average sound intensity level LI reflected from the sample are measured.
The sound absorption coefficient is then calculated by the formula:

α fð Þ ¼ 4

1þ 10
Lp fð Þ�LI fð Þ

10

(2)

The incident energy is proportional to the sound pressure level, the reflected
energy is identified as a component of the sound intensity vector. Both quantities are
identified by the sound intensity probe.

Advantages of the Sound Intensity Measurement Method may be:

• Low time consumption,

• The measurement does not take place in two steps without a sample/with a
sample, but only with an applied sample, which gives the possibility to measure
the absorbency of permanent applications.

The disadvantages of the Sound Intensity Measurement Method may be:

• Lower accuracy,
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• The impossibility of relating the result only to the absorbent material sample. It is
not possible to separate the absorption of the sample and the absorption of the
substrate on which it is placed.

3.2 Accurate methods of measuring the sound absorption coefficient

3.2.1 Standard ISO 354

This international standard [4] defines the basic laboratory procedure for deter-
mining the sound absorption coefficient in a reverberation space. The procedure can
be considered the most accurate procedure leading to the determination of the sound
absorption coefficient. The method determines the sound absorption coefficient for
diffusing the sound impact and can be used to measure materials with distinct shape
structures in the straight and perpendicular direction. It is described in great detail in
the standard and is especially suitable for specialized laboratories. The standard places
strict requirements on the reverberation space, its dimensions and above all on the
dimensions of the sample. The declared frequency range is from 100 Hz to 5000 Hz.
The principle of indirect measurement of the sound absorption coefficient is based on
Sabin’s formula [5]:

A formula developed by Wallace Clement Sabine that allows designers to plan
reverberation time in a room in advance of construction and occupancy. Defined and
improved empirically the Sabine Formula [5] is.

T 60ð Þ ¼ 0:161 � V
A
jsj, (3)

Where:
T(60) = reverberation time or time required (for sound to decay 60 dB after source

has stopped) |s|,
V = Volume of room |m3|,
A = the equivalent absorption surface |m2|.
In the test room, the reverberation time is measured with and without the

mounted test sample. The reverberation time is the time during which the sound
pressure level decreases by 60 dB after the sound source is turned off. This means that
the original acoustic energy drops to 1/1000000 of its original size. In the test room,
the reason for the decrease is the sound absorption and then the reverberation time is
its measure. The equivalent surface is a hypothetical surface of a perfectly absorbing
sample that has the same properties as a real sample. The equivalent area is the basis
for calculating the sound absorption coefficient.

Advantages of determining the sound absorption coefficient according to
ISO 354:

• the possibility of measuring samples with large thicknesses,

• accuracy, repeatability,

• international acknowledgement.

Disadvantages of determining the sound absorption coefficient according to
ISO 354:
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• Reverberation room volume of at least 150 m3,

• Requirements for the shape of the room,

• Sample area 10 m2 to 12 m2,

• Possibly higher price for the testing.

Above all, the requirement for a size of a sample is a problem of using this
basic method in the sample development phase, when many possible variants
are experimentally verified with subsequent optimization. It is practically impossible for
manufacturers of absorbent materials and research organizations that are not directly
oriented towards this research to acquire such expensive laboratory facilities.

Specific information on the measurement and calculation procedure is contained
in the mentioned standard and it is not the aim of this chapter to discuss them in
more detail.

3.2.2 Measurement in an impedance tube

An impedance tube is the most common device used today to estimate sound
absorption. In the professional literature, this method is currently mentioned most
often. There are more concrete technical versions of the tube, from the own con-
struction of a research workplace to commercially offered versions. As an example,
Figure 1 shows the assembly from Brüel & Kjær Impedance Tube Kit 4206 (4206-A),
which is described in the following text.

The impedance tube principle is based on the creation of a combination of direct
and reflected waves in a rigid closed tube with an internal smooth and reflective
surface. The skeleton of the tube must be as soundproof as possible. One end of the
tube covers a sample that is being measured, on the other end of the tube there is
placed a speaker that excites by broadband noise the inner volume of the tube. A plane
wave is created between the speaker and the sample, which is a combination of
incident and reflected waves. The energy of the reflected wave is reduced by the
energy absorbed in the sample. The resulting wave is sampled in the tube and an
estimate of the sound absorption coefficient is determined by evaluating the data
obtained. The sound wave strikes the sample perpendicularly.

Basic characteristics of impedance tube measurement:

• A dimensionally small sample is measured (100 mm/39 mm for [6]), which is an
advantage for the development and optimization of materials, but a disadvantage
if the developed materials have significant spatial elements, change on the
surface or contain significant non-homogeneities.

• The strike of the sound wave is perpendicular to the sample and the measurement
result corresponds to this. The results therefore do not correspond to the behavior
of the material in real conditions, where the omnidirectional impact of sound
waves prevails. The impedance tube is therefore particularly suitable as a precise
comparison platform for the development of absorbing materials.

• The detected sound absorption coefficient represents the minimum ability
to absorb sound and it can be assumed that the results will be better with
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the methods in the diffusion field according to ISO 354 [4] and in the alpha cabin
[7, 8].

• The methods are very sensitive to sealing a sample in a tube so that all acoustic
energy passes through or reflects off the sample.

• If measurements are made for different sample diameters, it is necessary to unify
the results in common frequency bands (principally by averaging).

• If a comprehensive idea of the sound absorption is to be obtained, it is advised to
take and measure several samples from the research batch in order to cover all
possible non-homogeneities and shape and material changes.

• Despite all the disadvantages, the impedance tube is a suitable and most
commonly used platform for estimating the sound absorption coefficient and an
important aid for the development of absorbing materials, mainly due to the
speed of measurement and sample size.

Figure 1.
Impedance tube and absorptive material samples (author’s archive).
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3.2.2.1 Method using standing Wawa ratio

This method determines the sound absorption coefficient of acoustic materials
when the sound is incident perpendicularly. The specific procedure for determining
the sound absorption coefficient is described in [9]. The absorbing sample is fixed at
one end of the tube. An incident plane sine wave pi is excited by a speaker at the
opposite end of the tube. By superposition p = pi + pr of the pressures of the incident
wave pi and the reflected wave pr from the test sample, a standing wave is created in
the tube. The course of the sound pressure level of this standing wave is measured by
an adjustable microphone, which is moved along the axis of the tube through the hole
in the center of the speaker. The evaluation of sound absorption is based on the
difference in sound pressure levels ΔL between the pressure maximum and minimum
in the tube.

α ¼ 4 � 10ΔL=20

10ΔL=20 þ 1
� �2 (4)

Moving the microphone and accurately identifying the maximum and
minimum sound pressure level reduces the speed of the sound absorption
coefficient measurement. Impedance tubes for this evaluation method are more
often an individual product of test laboratories, which allows adaptation to the
desired frequency band and the way of moving the microphone and evaluating the
absorption.

3.2.2.2 Transfer-function method

This test method is similar to the previous method in that it uses the same exper-
imental scheme with a sound source at one end and a sample fixed in an impedance
tube at the other end. The procedure is described in detail in [10, 11]. In this test
method, plane waves in the tube are excited by a noise source and the sound pressure
is measured by microphones located at two fixed points (or by one microphone
moved in the tube) and by subsequent calculation of the complex transfer function at
a perpendicular incidence of sound waves. The test method is overall much faster than
the measurement procedure described in the previous chapter.

The test sample is fixed to one end of a straight, rigid, smooth and sealed
impedance tube. Plane waves are excited in the tube by a sound source (noise) and
the sound pressure is measured by microphones at two locations near the sample.
A complex transfer function is determined from the measured signals, which is
used to calculate the sound absorption coefficient. The frequency range of the
measurement depends on the dimensions of the tube and the distance between
the positions of the microphones. In order to determine the sound absorption
coefficient in a wider frequency range, measurements are made on an assembly
that contains tubes of two different diameters. Figure 1 shows a measuring set-up
that allows determining the sound absorption coefficient for a sample diameter
of 100 mm in the frequency range of 50 Hz to 6.4 kHz (for a sample thickness
of 440 mm maximum [6]) and for a sample diameter of 29 mm in the frequency
range of 100 Hz to 3.2 kHz (for a sample thickness of 200 mm maximum [6]).

Measurements can be done:
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1.By a method using two microphones that simultaneously measure the signal in
the tube at two clearly defined points,

2.By a method of one microphone, which is moved gradually to two measuring
locations during the measurement.

Procedure 1 is quick, accurate and easier to do. It is widespread in practice and
much more published.

Procedure 2 requires a specialized excitation signal, has more demanding require-
ments for processing the measured signals, and is more time-consuming. It better
eliminates phase mismatch between microphones and allows optimal selection of
microphone locations for each measured frequency. According to [10], this procedure
is recommended for evaluating of tuned resonators.

Advantages of measuring in an impedance tube:

• small sample size,

• fast measurement,

• relatively available measuring technology, availability of laboratories,

• strong information and publication background,

• the existence of an international standard.

Disadvantages of measuring in an impedance tube:

• assessment of absorption only for the perpendicular impact of sound waves,

• limited sample thickness.

3.2.3 Measurements in the alpha cabin

The Alpha cabin [7, 8, 12, 13] is an internationally acknowledged measurement
platform for determining the sound absorption coefficient at the omnidirectional
impact of sound waves. It is therefore close to measurements according to ISO 354, it
is based on the requirements of this standard, it respects the methodology as much as
possible, but removes the disadvantage of the need for large samples.

The Alpha cabin is a platform that is scaled 1:3.2 to the echo chamber parameters of
the Swiss Material Testing and Testing Laboratory (EMPA) in Dübendorf. Figure 2
shows an example of the latest design of the alpha cabin. It is a reverberant space
sound-isolated from the outside environment with non-parallel walls.

The main technical data of the alpha cabin are:

Internal cabin volume: 6.44 m3

Frequency measurement range: 400 Hz to 10 kHz (1/3oct.)

Dimensions of a standard sample: 1.0 m � 1.2 m

Surface of absorbent parts: 0.6 m2 to 2.4 m2
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The formula [7] is used to determine the sound absorption coefficient:

αS ¼ 0,966
S

1
T1

� 1
T0

� �
(5)

Where the measured quantities are:
S = sample area |m2|.
T1 = reverberation time in the sample booth |s|,
T0 = reverberation time in the cabin without sample |s|.
The ratios in the diffusion field of the alpha cabin (Figure 3) are practically the

same as in the large reverberation chamber, but for three times shorter wavelengths
(three times higher frequencies). The Alpha cabin therefore provides comparable
results on much smaller sample areas than required by ISO 354. However, the pro-
portional changes in cabin conditions run into one problem. The thickness of the
sample is the only geometric quantity that cannot be reduced in a ratio of 1:3, and thus
the absorbing surface corresponding to the edges of the sample appears three times
larger in proportion to its surface. The problem must be eliminated by edging the side
surface of the sample with soundproof material. As standard, it is solved by a metal
bounding frame with the dimensions of a standard sample, which is higher than the
usual thicknesses of the developed materials. In the case of larger thicknesses, it is
recommended to manufacture your own frame and validate it using a reference
sample. The importance of sample edging can be shown on the measurement results
of the same sample with a thickness of 20 mm with and without a bounding frame in
Figure 4. The course shows that the error of determining the sound absorption
coefficient increases with increasing frequency (Figure 5).

Figure 2.
Alpha cabin - Technical University of Liberec (author’s archive).
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The Alpha cabin measurement procedure generally requires two measurements.

1.Determination of the reverberation time in a cabin with a frame without a
sample T0,

2.Determination of the reverberation time in the cabin with a framed sample T1.

The sound absorption coefficient is then calculated according to formula (5).

Figure 3.
Alpha cabin with embedded and framed sample (author’s archive).
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The Alpha cabin has one more function, which is the evaluation of absorbing
objects. These are shaped parts that absorb sound, but the absorbing surface cannot be
determined. A typical example is the seat of a passenger car [12], which significantly
affects the noise in the closed space of the cabin due to its absorption, but it is not
possible to clearly determine the absorbing surface, or to create a sample of standard-
ized dimensions from the seat. In Eq. (5) it is not possible to substitute the absorbing
surface S, and thus the measurement result is equal to the equivalent absorbing
surface A:

Figure 4.
Results of measurements with and without a border frame.

Figure 5.
Frames for delimiting samples (author’s archive).
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A ¼ 0,966 � 1
T1

� 1
T0

� �
∣m2∣ (6)

The equivalent absorptive surface corresponds to the absolute absorptive surface
(αS = 1), which has the same absorptive capacity as the shaped part. Therefore, the
larger the equivalent surface area, the more the shaped part is able to absorb more
sound energy. An example of the result of measuring the equivalent absorbing surface
for a shaped part in the construction of a passenger car is shown in Figure 6.

The equivalent absorptive surface of shaped parts is primarily a comparative
parameter when developing or selecting a part for a protected space. However, it can
be used in the calculations of the total absorption, because according to Eq. (5):

A ¼ S � αS (7)

Advantages of measuring sound absorption in the alpha cabin:

• Measurement of the sound absorption coefficient for the omnidirectional impact
of sound waves,

• Optimal sample size considering the possibilities of developing absorbing
materials and the accuracy of the estimate,

• The possibility of determining the equivalent absorption A of shaped parts,

• Test speed and repeatability,

• A recognized platform in the automotive industry,

Figure 6.
Measurement results of the equivalent absorptive surface of a car component.
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• Possibility of estimating absorption also for non-homogeneous materials
(recycled materials, disordered fibrous materials, loose substrate, etc.),

• Possibility of estimating the absorption of decorative panels and artworks
designed to solve the acoustics of closed spaces.

Disadvantages of measuring sound absorption in the alpha cabin:

• relatively large size of the sample compared to the impedance tube,

• limited sample thickness due to the need for lateral sealing,

• large and expensive measuring equipment.

4. Conclusion

Measurement is still the most accurate and fastest procedure for determining the
sound absorption coefficient. The practical use of absorbing materials in practice
requires an objective determination of absorption for the purpose of optimizing the
acoustic properties of enclosed spaces.

The current development of absorbent materials is predominantly still using fibers
or porous raw materials with an emphasis on other important properties, such as
ecology, usability of waste and recyclable resources, esthetics, non-flammability, etc.
For products designed in this way (mats, panels, absorbent elements) the main prin-
ciple of absorption is the conversion of sound energy into heat by friction of the
internal structure of the absorbing element. In general, the elements then have opti-
mal efficiency starting from the frequency that is determined by following equation:

f ¼ 86 000
H

∣Hz∣ (8)

Where:
H = the thickness of the absorbing element |mm|,
f = frequency |Hz|.
The optimal thickness equals to a quarter of the wavelength of a perpendicular

incident wave, so it can be considered the minimum value at which the material is able
to use its full potential to absorb sound. With omnidirectional impact, it can be
assumed that the optimal bandwidth will shift to lower frequencies. Figure 7 shows an
example of the measurement result in the Alpha cabin of a sample of absorbent
material with a reference thickness of 22 mm. A frequency of 3.9 kHz (4 kHz 1/3
octave) corresponds to a thickness of 22 mm. Due to the omnidirectional impact of
sound waves, the maximum absorption value is maintained even at lower frequencies
(2 kHz).

There is an inverse proportional relationship between the optimal frequency and
the thickness of the material. When considering declared frequency ranges of indi-
vidual measurement methods, Figure 8 provides a comprehensive overview of the
methods and their practical use for materials testing.

It is clear from Figure 8 that the lowest declared measurement frequency achiev-
able in the impedance tube is at frequency of 50 Hz. This would correspond to the
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optimal absorption of materials with a thickness of approx. 1700 mm, which is tech-
nically impossible. An impedance tube of such dimensions is not used in practice, but
a sufficiently wide frequency band is available for an objective assessment of

Figure 8.
Measurement methods in relation to the optimization of the thickness of the absorbent material.

Figure 7.
Sound absorption of a sample with a thickness of 22 mm - measured in the alpha cabin.
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commonly used materials. The Alpha cabin starts at a frequency of 400 Hz, which
corresponds to roughly 200 mm of material thickness when optimally used. This
thickness is usable for the Alpha cabin. The ISO 354 standard declares a minimum
frequency of 100 Hz, which corresponds to 860 mm of optimal thickness, which is
also acceptable given the dimensions of the space and the area of the sample. It should
be emphasized that the measurement according to the ISO 354 standard and in the
Alpha cabin is based on the omnidirectional impact of sound waves, the impedance
tube is based on only a perpendicular impact.

From the Figure 8, an uncovered bandwidth of sound absorption measurements
up to 100 Hz can be seen in the case of omnidirectional impact of sound waves. It
should be emphasized that physical and technical obstacles to the use of independent
methods are encountered here. The optimal thickness of the materials is greater than
860 mm and ends at 4.3 m for 20 Hz, which is the lowest frequency of the audible
band. However, this range of thicknesses of absorbing materials is difficult to use in
the real world for practical reasons. The exception is specialized anechoic chambers
with high volumes. Here, the effectiveness of absorbing materials is assessed by
measuring the reverberation time directly during implementation.

If the commercially usual area of absorbent materials (up to a maximum thickness
of 200 mm) were to be evaluated, it can be seen from Figure 9 that the optimal
platform is the alpha cabin.

Recommendations for the design and experimental verification of the proper-
ties of absorbent materials

If the absorbing material is to fulfill the expectations, its structure must be prop-
erly designed. This is a matter of material development respecting other requirements
(legislative requirements, esthetic requirements, applicability in specific conditions,

Figure 9.
Measurement methods in relation to thickness optimization of conventional absorbent material | author’s archive |.
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other specific customer requirements). An objective assessment of sound absorption
can only be achieved by measuring on an existing sample. Below is the basic procedure
for determining the sound absorption coefficient by experiment.

1.To perform the measurement, a sample must be taken that clearly states:

• what stage of development it is in, whether it is a measurement for
validation or for comparison,

• how should it be applied (directly on the wall, with an air gap, in
combination with other materials)?

2.It is necessary to establish what are the requirements for the accuracy of the
sound absorption coefficient measurement result. The accuracy of the result is
influenced by the combination of measurement speed, used HW and SW,
adherence to sample size, variability of measurement conditions and adherence
to methodology. If it will be a comparative measurement that is carried out using
the same method, a lower accuracy of the result can be accepted. If it is a
question of describing the final form of the absorbing material, it is advisable to
recommend methods with a higher quality. Standard ISO 354 can be considered
the method with the highest accuracy.

Lower accuracy methods:

• Tone Burst Method

• Sound Intensity Measurement Method

Higher accuracy methods:

• ISO 354 standard

• Measurement in an impedance tube

• Measurements in the alpha cabin

3.The sound absorption coefficient is determined by the selected method. It is
advisable to apply a statistical approach, perform repeated measurements,
determine the result and its uncertainty.

4.It is evaluated whether the measurement result met the expected goals.

5. Discussion

This chapter summarizes experimental methods for determining the sound
absorption coefficient α. The chapter addresses the user (researcher, customer, project
solvers) who are tasked with designing (developing) absorbing material and need to
verify it during the development stage or after application. Available approximate and
exact methods, their starting points, limitations, advantages and disadvantages and
usability in practice are described. The solver can thus choose a suitable method for
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the individual stages of the project solution or correctly formulate requirements for
external laboratories. The chapter further helps to understand the measurement
results in relation to the application to a specific space and guides the project solver to
be aware of possible limitations and problems.

Recommendation:

1.The most accurate measurement of the sound absorption coefficient is according
to the ISO 354 standard, but it requires a large sample area and expensive
measuring equipment. It is not suitable for the phase of development and
optimization of the properties of absorbent materials.

2.Objective results for practical application are provided by the alpha cabin, which
optimally combines sample size and measurement accuracy. However, the cost
of measuring equipment is relatively high.

3.For the phase of development and optimization of properties, an impedance tube
is ideal, which requires a minimum sample size, but the results are only suitable
for comparing individual variants.

4.Approximate methods are suitable when sound absorption is not an essential
property or it is necessary to estimate the properties of an already applied
material.

5.For material design and evaluation of sound absorption, it is necessary to have at
least basic knowledge in the field of acoustics.

6.Sound absorption is dependent on sound frequency and optimal absorption can
be achieved for material thicknesses according to Eq. (8).

7.Sound absorption and sound insulation are different properties of a material.
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Image Denoising
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Chapter 3

SAR Image Denoising Using MMSE
Techniques
Mohamed Yahia and Tarig Ali

Abstract

Synthetic aperture radar (SAR) provides many advantages over optical remote
sensing, principally the all-weather and all-day acquisition capability. For this reason,
SAR images have been exploited for many applications such as forestry, agriculture,
disaster monitoring, sea/ice monitoring. However, the main limitation in SAR images
is the contamination with the multiplicative speckle noise. The speckle damages the
radiometric quality of SAR images and contracts the performance of information
extraction techniques. Many methods have been proposed in the literature to reduce
speckle noise. These methods, however, must avoid degrading the useful information
in the SAR images, such as textures, local mean of backscatter, and point targets. The
minimum mean square error (MMSE) techniques have been largely applied in SAR
image speckle denoising. The objective of this chapter is to review and give new
insights into the MMSE denoising of SAR images. In particular, the performances of
three MMSE-based techniques which are the commonly applied Lee sigma filter and
the newly introduced iterative MMSE (IMMSE) filter, and the infinite number of
looks prediction (INLP) filter are studied.

Keywords: SAR image denoising, MMSE techniques, Lee sigma filter, IMMSE filter,
INLP filter

1. Introduction

Remote sensing imagery constitutes nowadays an important source of information
for the characterization of the Earth’s surface. The potentiality of synthetic aperture
radar (SAR) systems is recognized for geoscience and remote sensing applications due
to their operation in all-time and all-weather conditions. However, due to the coher-
ent nature of the scattering mechanisms, SAR data are affected by the multiplicative
speckle noise. The presence of speckle noise disturbs human interpretation of the
images and reduces the accuracy of postprocessing such as image classification [1].

The multi-looking process (i.e., boxcar filter) reduces speckles by averaging the
intensities of neighboring pixels [2]. Nevertheless, the spatial resolution is degraded.
Many other denoising techniques have been introduced in the literature to alleviate
this limitation by using other estimation domains including spatial [3] and wavelet
[4]. In the intensity-driven adaptive-neighborhood (IDAN) filter a region-growing
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technique is applied to produce an adaptive neighborhood [5]. The total variation
(TV) techniques [6] have been widely applied for SAR image denoising due to their
efficiency to preserve spatial details and speckle reduction. The nonlocal NL filtering
represents one of the powerful speckle reduction techniques. Zhong et al. [7] applied
the NL Means (NLM) to filter SAR images by adapting the use of Euclidean distance
to multiplicative noise. The probabilistic patch based (PPB) filter introduces a patch-
based weight to generalize the Euclidean distance-based weight used in the NL means
algorithm [8]. A hybrid NL-wavelet domain denoising technique has been proposed
[9]. Penna et al. replaced the Euclidean distance in the NLM filter with stochastic
distances in the Haar wavelet domain [10]. The NL-based filters improved signifi-
cantly the denoising performance of SAR images. However, their main disadvantage
resides in the high computing cost. Deep Learning techniques constitute a recent trend
of PolSAR speckle filtering [11–13].

The minimum mean square error (MMSE) based filters that account for the local
statistics of the image constitute an important branch of speckle filtering techniques.
Since the introduction of the Lee sigma filter in early 1980 [14, 15], many versions
have been elaborated such as Frost [16], Kuan [17], the improved Lee [18, 19], etc.
Due to their effectiveness in speckle reduction, simplicity and low computational
demand, many MMSE-based filters have been implemented in remote sensing soft-
ware. To mitigate the drawbacks of the Lee sigma filter, various versions of the
iterative MMSE (IMMSE) filter have been introduced recently [20–26]. Based on the
MMSE principle, it has been demonstrated that the filtered pixels and their variances
are linearly related. Then, a linear regression of means and variances for different
window sizes is applied to estimate the infinite number of looks prediction (INLP)
filtered pixels [27–30]. In this chapter, the improved MMSE-based Lee sigma, the
IMMSE, and the INLP denoising techniques are studied.

This paper is organized as follows: Section 2 reviews the classical MMSE-based
denoising technique and presents the updated versions, i.e., INLP and IMMSE tech-
niques. The results are shown in Section 3. Finally, Section 4 presents the conclusions
of this paper.

2. MMSE-based filters: classical version

The intensity pixel y(i) of a SAR image is affected by a multiplicative noise [2]

y ið Þ ¼ x ið Þ ν ið Þ, (1)

x(i) is the noise-free pixel and ν(i) is the speckle noise with unit mean and
standard deviation σν. It is assumed that x(i) and ν(i) are statistically independent. In
the rest of the chapter, the index (i) will be omitted. Let x̂ and x be the estimated and
the a priori mean of x, respectively.

From (1) we have

E yð Þ ¼ E x νð Þ ¼ E xð Þ E νð Þ ¼ E xð Þ (2)

where E() is a mathematical expectation (i.e., statistical mean). By exploiting the
ergodicity of the SAR data, the statistical mean is substituted by the spatial mean, i.e.,

y ¼ E y
� � ¼ E xð Þ ¼ x (3)
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Nevertheless, it has been demonstrated recently that the statistical and spatial
averaging statistics are quite different [27] since in the spatial averaging process the
processing windows are overlapping, and a spatial correlation is introduced. Hence,
replacing the statistical mean with the spatial one should be taken with caution.

The MMSE filter is assumed to be a linear combination of x and x [1]

x̂ ¼ axþ by (4)

The parameters a and b are selected optimally to minimize the MSE

I ¼ E x‐x_� �2h i
(5)

then

∂I
∂a

¼ 0 (6)

and

∂I
∂b

¼ 0 (7)

This minimization leads to [1]

a ¼ 1� b (8)

and

b ¼ var xð Þ
var yð Þ (9)

For a given X and Y two independent random variables, we have

var: XYð Þ ¼ E Yð Þ2var Xð Þ þ var: Yð Þvar: Xð Þ þ var: Yð ÞE Xð Þ2 (10)

Then

var y
� � ¼ var x νð Þ ¼ x2σ2v þ var xð Þ σ2v þ v2var xð Þ (11)

Eq. (2) gives

y ¼ x (12)

then

var xð Þ ¼ var yð Þ � y2σ2ν
1þ σ2ν

(13)

finally

x̂ ¼ yþ b y� yð Þ (14)
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b ¼ var yð Þ � y2σ2ν
var yð Þ 1þ σ2ν

� � (15)

var(y) and y are estimated using a moving window W. σ2ν is assumed to be a
constant (i.e., σ2ν ¼ 1 for single look SAR data).

2.1 Lee sigma filter

The Lee sigma filter has been implemented in several geographic information
system (GIS) software due to its effectiveness in speckle reduction, its
simplicity, and its computational efficiency. However, in amplitude and intensity
SAR data, the probability density functions (pdf) are not symmetrical, because
they follow the Rayleigh and the negative exponential distributions, respectively.
This asymmetry produces biased estimates since the original sigma range was
derived based on Gaussian distribution. Hence, to remove the bias and to
preserve the mean value, the sigma ranges were recomputed based on the
corresponding pdf. The sigma ranges of amplitude and intensity SAR data
are given in [18]. In [28], the performance of the improved Lee sigma filter is
revised.

Practical implementation

i. Define a square window W

ii. Define σ2ν (σ
2
ν ¼ 1=Nwhere is the Initial number of looks (N = 1 in our study))

iii. Compute the statistics of the pixel (y and var(y))

iv. Compute the parameter b using (15)

v. Compute the filtered pixel x̂ using (14).

3. MMSE-based filters: New insights

3.1 The IMMSE filter

The objective of SAR speckle filtering is:

• Reduce speckle noise in the homogeneous areas (i.e., averaging all pixels x̂ ¼ y).

• Maintain the spatial details (i.e., x̂ ¼ y).

Hence in general cases, we have.

x̂∈ y, y½ � or x̂∈ y, y½ � (16)

The principle of the IMMSE filter is to scan the range of x̂ in y, y½ � by the following
iterative procedure.
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x̂0 ¼ y, (17)

x̂kþ1 ¼ x̂k þ b0k y‐x̂kð Þ: (18)

If 0< b0k < 1, then x̂∞ ¼ y and x̂k ∈ y, y½ �.
The performance of the IMMSE denoising technique is the function of:

• The choice of the initial filtered image x̂0: The initial filtered image x̂0 must
ensure a high speckle reduction level. In [26], the boxcar filter was selected as an
initial filter. However, it has been demonstrated that the use of a more
sophisticated filter ensured better filtering performance [20–25].

• The choice of the parameter b0k. In fact, this parameter is a tuning factor that
controls the performance of the filtering process as the parameter b in (15). To
ensure robust speckle denoising, this parameter must satisfy three important
properties:

i. 0 ≤ b0k ≤ 1.

ii. b0k≈0 in homogeneous areas,

iii. b0k≈1 in heterogeneous areas.

Hence, by implementing N iterations (N is sufficiently low), the denoising proce-
dure maintained the filtered homogeneous areas (i. e.x̂N≈x̂0 since b0k≈0) and pre-
served spatial details (i. e.x̂N ¼ y since b0k≈1).

By the analogy of the MMSE expression of the parameter b (15), the parameter b’
has been expressed as

b0k ¼
var x̂kð Þ

1þ σ2ν
� �

var x̂kð Þ þ x̂k2σ2ν
� � (19)

In [21], the authors proposed a more sophisticated version expressed as

b0k ¼ tanh
CV2

x̂k CV2
y

C

 !
(20)

C ¼ 1

ENL0ð Þ2 , (21)

where CV is the coefficient variation and ENL0 is the equivalent number of looks
of the original image y estimated in a homogenous area,

CV yð Þ ¼ std yð Þ
y

(22)

ENL0 ¼ yð Þ2
var yð Þ (23)

where std is the standard deviation.
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3.2 Practical implementation

For a given SAR image y

i. Compute the parameter C in (21).

ii. Compute x̂0 image by applying a filter ensuring high speckle reduction level.

iii. For a given pixel,

iv. From the selected pixels of the filtered image x̂0, compute CVx̂ [21].

v. From the selected pixel of the original image y, compute CVy using the same
process in iii.

vi. Compute b0k using (20).

vii. Update the filtered pixel using (18).

viii. Apply the process for all pixels of the image.

Repeat iii to vii K iterations. K is a tuning parameter to control the speckle reduc-
tion and spatial detail preservation.

3.3 The INLP filter

The INLP is based on the statistics of the SAR intensity (i.e., multiplicative noise
model (1) and the MMSE expression (14). In [26, 29–32], it has been demonstrated that.

x̂ ¼ avar x̂ð Þ þ d (24)

where

a ¼ y� xð Þ=var xð Þ, (25)

and

d ¼ x: (26)

Eq. (24) shows that the filtered pixel x̂ is linearly related to its variance var x̂ð Þ. This
rule is applied to estimate the INLP-filtered pixel (i.e., the parameter d or the noise-
free pixel x). In the extended homogeneous area, the MMSE filtered pixel is x̂ ¼ x≈x
while in the INLP filter x̂ ¼ d≈x where d is estimated using a linear regression
between means and their variances and not using a simple mean (i.e., x̂ ¼ x≈x) as in
the original MMSE denoising technique.

3.4 Practical implementation

For each pixel of the image:

i. Define a window W having N samples.
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ii. Uniformly select Ni samples from W, where Ni = Nmin,… , N. Nmin is the
smallest number of samples.

iii. Apply the original filter to all sets of Ni samples. We obtain
X̂ ¼ x̂N, x̂N�1, … , x̂Nminð Þ.

iv. Repeat steps ii and iii L times to obtain sufficient samples.

v. For each pixel of the filtered image, compute the vector varX̂ ¼
var x̂Mð Þ, var x̂M�1ð Þ, :… , var x̂1ð Þð Þ using the window W.

vi. For each pixel of the image, perform a linear regression between
varX̂ ¼ var x̂Mð Þ, var x̂M�1ð Þ, :… , var x̂1ð Þð Þ, X̂ ¼ x̂N, x̂N�1, … , x̂Nminð Þ and
compute the filtered value (i.e., the constant d in (24)).

4. Results

EPD-ROATo assesses the performance of the studied denoising techniques, air-
borne and spaceborne SAR images were used (see Figure 1a). For the spaceborne SAR

Figure 1.
(a) Original spaceborne SAR image, (b) Boxcar filter, (c) MMSE filter (i. e. improved sigma filter [18], (d)
IMMSE filter [21].
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data, the Sentinel 1 C-band vv SAR image of Dubai UAE is considered. The airborne
SAR is the hh image of Les-Landes site, France acquired by NASA JPL AIRSAR sensor
(see Figure 2a)).

4.1 Evaluation criteria

In addition to visual inspections, quantitative parameters have been employed to
assess the performance of the studied denoising techniques. The ENL was employed to
evaluate speckle reduction level

ENL ið Þ ¼ x̂ ið Þ� �2
var x̂ ið Þð Þ : (27)

The edge preservation degree based on the ratio of averages (EPD-ROA) [33]
is used to assess the preservation of spatial details. The EPD-ROA in horizontal
direction is:

EPD� ROAH ið Þ ¼
P

m,n x̂ m, nð Þ=x̂ m, nþ 1ð Þj jP
m,n y m, nð Þ=y m, nþ 1ð Þj j , (28)

where m and n are the xy coordinates of the pixel in the selected zone, respec-
tively. EPD-ROAV is calculated by replacing in (28) the indexes (m,n + 1) by (m + 1,
n). In general cases, EPD-ROA < 1. High EPD-ROA means a high ability for spatial
detail preservation.

4.2 MMSE vs IMMSE

Figure 1 displays the filtered denoised spaceborne SAR images using the boxcar
filter (i.e., mean filter), the MMSE (improved Lee filter), and the IMMSE filters. It can
be observed that the boxcar filter reduced the speckle noise but blurred spatial details.
The MMSE filter improved the filtering performance. The IMMSE maintained the
high speckle reduction of the initial filter and enhanced considerably the spatial details
such as lines (see rectangles) and points (see arrows). It can be seen that the IMMSE
outperforms the MMSE-based filter in terms of speckle reduction and spatial detail
preservation. Quantitative results in Table 1 confirmed visual interpretations where
the IMMSE filter maintained the high speckle reduction level of the initially applied
filter and enhanced spatial details. Quantitative results show also that the MMSE filter
outperformed the boxcar filter in terms of speckle reduction and spatial detail preser-
vation. The IMMSE gave better filtering results than the MMSE filter in terms of
speckle reduction (ENLIMMSE(1124) > ENLMMSE(410)) and spatial detail preservation
(EPDIMMSE(0.98) > EPDMMSE(0.94)).

4.3 MMSE vs INLP

Figure 2 displays the filtered airborne images using the studied filters. It can be
observed visually that the MMSE filter outperformed the boxcar filter. The INLP reduced
the blurring effects introduced by the MMSE filter. This can be easily seen in lines (see
rectangles). Concerning the speckle reduction, it is observed that the INLP filter ensured
better filtering performance. In fact, the homogeneous areas appear smoother than the
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Figure 2.
(a) Original airborne SAR image, (b) Boxcar filter, (c) MMSE filter (i. e. improved sigma filter [18], (d) INLP
filter [31].

41

SAR Image Denoising Using MMSE Techniques
DOI: http://dx.doi.org/10.5772/intechopen.108362



ones ensured by theMMSE filter (see circles). These results are recorded quantitatively in
Table 2 from which it is observed that the INLP filter outperformed the MMSE filter in
terms of speckle reduction (ENLINLP(10) > ENLMMSE(9)) and spatial detail preservation
(EPDINLP(0.85) > ENLMMSE(0.84)).

5. Conclusion

In this chapter, the authors reviewed the use of the MMSE-based speckle denoising
techniques in SAR images. It has been shown that the MMSE-based filters (i.e., the
improved Lee sigma filter) ensured high speckle denoising performance. Based on the
MMSE principle, two improved MMSE versions have been introduced recently in the
literature, i.e., the IMMSE and the INLP filters. The results showed that when the
IMMSE is initialized with an image ensuring high speckle reduction, it ensures better
denoising performance than the classical MMSE-based filters in terms of speckle
filtering and spatial detail preservation. In the INLP filter, unlike the MMSE-based
filters which estimated the noise-free pixels using spatial means, linear regressions
between the filtered pixels and their variances for different window sizes are applied.
Results show that this new strategy increased the filtering performance. Future
researches will focus on the extension of the IMMSE and the INLP on additive image
denoising.

Nomenclature

b tuning factor of the MMSE filter
b’ tuning factor of the IMMSE filter
C a normalizing factor
CV the coefficient variation
CVx̂ the coefficient variation of x̂k
CVy the coefficient variation of y

ENL EPDH EPDV

Boxcar 9�9 296 0.94 0.94

MMSE 11�11 410 0.94 0.94

IMMSE 1124 0.98 0.98

Table 1.
Performances of the filters using spaceborne data.

ENL EPDH EPDV

Boxcar 5�5 10 0.83 0.83

MMSE 5�5 9 0.84 0.84

INLP 10 0.85 0.85

Table 2.
Performances of the filters using airborne data.
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d the INLP filtered pixel
E() mathematical expectation (i. e. statistical mean).
ENL0 the equivalent number of looks of the original image y
EPD-ROA the edge preservation degree based on the ratio of averages
I mean square error
K number of iterations.
N the Initial number of looks
Ni number samples selected from W
std the standard deviation
ν the speckle noise
W square window
y the intensity pixel
y spatial mean of y
x the noise-free pixel
x spatial mean of x
x̂0 the initial filtered image
x̂ filtered image
σν standard deviation of the speckle.
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Chapter 4

ANNHRPAA Based Deep Learning
Image Processing for Pneumonia
Detection
Avaragollada Puravarga Mathada Prasanna Kumar and
S.M. Vijaya

Abstract

Pneumonia is a syndrome that is cause by a bacterial disease in the lungs. This
disease is diagnosed through a chest X-ray. For triumphant treatment early diagnosis
is important. This disease can be diagnosed through X-ray imagery. Sometimes due to
the unclear chest X-ray image, it can be confused with the other bacterial disease.
Consequently, to guide clinicians requires computer-aided diagnosis system. In this, a
amalgam reverse transmission algorithms introduced by which erudition of multi-
layer network achieved. The clamor investigation of the system is performed by using
artificial neural network (ANN). Convolution neural network model vgg19 employed
to create a user-friendly webpage for diagnosing this disease. Simulated artificial
neural network hybrid reverse propagation adaptive algorithm used for deep learning
image processing method in our training stage. The test results showed for the vgg19
network is at an accurateness of 0.91.

Keywords: pneumonia, transfer learning, vgg19, deep learning, webpage

1. Introduction

Mounting scientific advancement, it is potential to use tools based on
unfathomable learning frameworks to discover pneumonia based on upper body
X-ray imagery. The confront here would be to aid the conclusion process which allows
for expedited treatment and better scientific outcome.

Pneumonia is a bacterial infection in one or both lungs which causes the inflam-
mation of lung tissue. Over 7% of the residents which is 450 million inhabitants are
affected by this disease worldwide and 4 million dies every year [1]. In India during,
2016—158,176 deaths were reported, and we continue to have the uppermost number
of child deaths all over the globe. On earth pneumonia day the report was released that
by 2030 over 11 million under-five children will be dead due to this transferable
disease [2]. In the nineteenth century, the father of modern medicine for revolution-
izing sir William Osler said pneumonia is “captain of the men of death”.

The virus can easily pass from person to person which make it spread rapidly. One
of the common symptoms of COVID-19 that can be easily identified is fever. Since the
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virus outbreak, thermal screening using infrared thermometers are used at public
places to check the body temperature to identify the indicated infected among crowd.
This prevention still lacking because it spends a lot of time to check the body temper-
ature from every person and the most importance is the close contact of the infected
might lead to spreading it to the person who do the screening process or from the one
in charge of screening to the checked people.

Clinical examination such as chest X-ray, blood test, and other techniques are used
by doctors to diagnose pneumonia in patients. In this chest X-ray is cheaper because of
the technology development in bio-medical equipment. Sometimes even the clinicians
fail to detect this disease by x-ray images due to the disturbance in images. Recent
technology such as artificial intelligence can be useful to mitigate the disease. Espe-
cially for the image classification convolution neural network (CNNs) show great
results. The main idea behind CNN is that it is an simulated model of the human
brain's visual cortex. Based on the presence of pneumonia chest X-ray images are
classified in convolution neural network.

2. Literature survey

The researchers [3] compared two CNN networks to diagnose pneumonia disease.
To train the model they used to convey learning and fine-tuning. The consequences of
the two networks are compared after the training phase. The accuracy of Xception and
vgg19 are 0.82 and 0.87 respectively. And precision for Xception is 0.86 and 0.82 for
the normal and pneumonia datasets. The precision for vgg16 is 0.83 and 0.91 respec-
tively for the normal and pneumonia datasets. Here exception is more flourishing in
detect pneumonia cases and vgg16 is better in detecting normal cases.

In [4] researchers tried the dissimilar technique for minimizing dimensionality.
They used the JSRT dataset which has 247 X-ray images. BSE-JSRT dataset can be
extracted after removing the bone shadow (dataset 02). Segmented JSRT (dataset 03)
and we can have segmented BSE-JSRT (dataset 04). T-SNE technique is use to remove
outlier (dataset 05). Here highest accuracy is obtained from dataset 05 which is 0.71
and the lowest accuracy is dataset 04 which is 0.56. From bone outline dataset 02 we
get 0.65 accuracy.

In this paper [5], the authors used the ANN implement for detect lung diseases like
pneumonia, TB. The pre- processing techniques are Lung segmentation taking out Image
classification. Back-propagation and feed-forward networks are used for image classifica-
tion. The dataset use from Sassoon sanatorium of 80 patients. They achieved an correct-
ness of 0.92. The limitation is when the CXR position and size change there is no
robustness. In this [6] researchers have used CNN techniques such as resnet-50 to diag-
nose thorax disease using chest X-ray. In pre-processing techniques, the global division
take input and local branch is trained after discovering local lesion province. Here resnet-
50 has average accuracy of 0.841. The AG-CNN raises the accurateness up to 0.868.

The researchers in [7, 8] created a cheXNet algorithm which as CNN of 121 layers
to diagnose the pneumonia disease. They have down scaled the image to 224*224 sizes.
In addition to normalization base on standard deviation and mean. The accuracy of
cheX Net is 0.435. The Artificial Neural Network model by Prasanna Kumar and
Vijaya [2] as Hybrid Back Propagation Adaptive Algorithm (ANNHBPAA) for clatter
abolition. Adaptive clatter termination using ANN has been implementing on image
signal and intelligent method for real-time signal noise cancellation based on neural
networks.
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Here [1, 9] the author has taken the data from 3 different hospitals for pneumonia
detection. For classification, they have used the cheXNet model. And for the model
training PyTorch, 0.2.0 is used. Overall, they have obtained 0.815 accuracies. But
CNN does not perform well on the external data.

There has been to a great extent follow a line of investigation by Prasanna Kumar
and Vijaya [10, 11] on active noise control (ANC) systems and obtainable simulated
results for trans image facsimile systems. The working principle of the anticipated
intelligent adaptive filter base noise cancellation system is the prolongation of prior
work.

3. Proposed solutions

Known revelation intensity, the quantity of X-rays impinge on the long-suffering
different at different location on the patient’s remains. Confrontation of X-rays pass
from side to side the patient’s composition. Some are wrapped up by the patient at the
same time as others exceed all the way through and are captivated by the imaging
detector—an additional statistically controlled process with its own inherent noise
characteristics. One time the X-rays have conceded throughout the patient, picture
“information” enclosed in the spatial allocation of the X-ray fluence.

The patient’s composition has shaped variation in the X-ray concentration that
imaging system uses to create image. Picture “signal” is the inherent arithmetic
“noise” connected with the X-ray creation method.

In distinction, when a huge quantity of radiation use, the visibility of the arith-
metical noise exist very low, perhaps even hardly noticeable. Although this can out-
come in a visually agreeable image, an unnecessarily high revelation level was used,
consequential in overexposure to the patient.

Up to this point converse noise coupled with the statistical nature of X-ray
production and their succeeding amalgamation by the patient. These process are
controlled by indispensable laws of nature and, for any given X-ray acquisition, they
establish the fundamental limit on image quality.

Final displayed image comes to that original threshold on image quality distinguish
the total of “extra” noise that the detector introduce hooked on the image. This is
fundamentally the proportion of the gesture to noise in the final image to the
“unique” signal to noise at hand in the occurrence X-ray fluence. Detector forever
adds some quantity of noise into the image so the DQE is forever less than 1 shown in
Figure 1A–C.

Disperse increases as soon as imaging thicker areas of the corpse—such as the
upper body. Conventional method of plummeting scatter is collimation, anti-scatter
grids, and/or utilize an air-gap.

In image processing system, noise deletion using adaptive digital sieve is a well-
known technique for extract most wanted images gesture by eliminate noise from the
lossy picture contained indication tainted by noise. For noise annulment an assort-
ment of gradient adaptive lattice (GAL) and LMS algorithms use. Of late, the cross
adaptive algorithms with neural set of connections have gained popularity in cancel-
ling the noise available in image compression and enhancement system. The opera-
tional principle of the planned intelligent adaptive filter-based noise cancellation
system (AFNCS) is the extension of prior work Kumar et al. [12] which is additional
empirically designed and computer-generated to enhance the performance of the
input synthetic signal with high opinion to denoising.
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This intelligent hybrid reverse transmission algorithm involves both GAL and LMS
algorithm. The prime objective of the proposed intelligent AFNCS is to acquire signal
as of reference signal and output noisy signal, in the middle of this signal noise is
eliminated by subtracting the reference signal and noisy signal with original signal.
Significantly reinstate the original signal by eliminate the noise by means of adaptive
control and adaptation of weights from beginning to end ANN. The following
Figure 2, indicate the chunk depiction of the AFNCS which intakes the input signal
“i(t)” and generate signal at output “O(t)” by means of adaptive system and
orientation signal “R(t)”. Lastly, the signal with errore(t) is computed by finding the
difference amongst reference signal and output signal as given in (1).

e tð Þ ¼ R tð Þ �O tð Þ (1)

Every where ‘t’ represent number of epochs.
Implementation of mixture algorithm consider this inaccuracy signal e(t) to pro-

duce a purpose for execution. This function perform the working out of required filter
coefficients. The minimize error rate indicate that yield signal is similar as that of sole
signal. Here reverse propagation algorithms are use to estimate the error speed of
every neuron. The following Figure 2 things to see the structural representation of

Figure 1.
A (left): Erect Portable Chest @ 105 kVp, 3.2 mAs with 6:1, 103 In/in Grid; B (center): Same patient, same SID
@ 95 kVp, 2.8 mAs, no Grid, processed with Smart Grid; C (right): Same capture as B without Smart Grid.

Figure 2.
Proposed adaptive filter based noise cancellation system (AFNCS).
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reverse propagation level diagram of ANN network. The layer diagram of ANN
network is finished up of three layers comprising input layer, concealed layer and
output layer. The hidden layer is active in among input and output layer which couple
both the layers. Overall back propagation network is affected by one neuron error.
The network allow image signal to propagate by means of ANN and provides output
signal. As given in Eq. (1) the error results of the output layer are computed and this
error is forward reverse to participation layer from beginning to end hidden layer in
anticipation of the considered necessary output.

Added, to reduce its inaccuracy signal, fine-tuning of weight is to execute for every
neurons. Projected hybrid algorithm combine both the reverse propagation algorithm
of LMS and GAL which help to embark upon sluggish convergence.

The proposed AFNCS revealed in Figure 1 adopt adaptive filter for carrying out of
ANN in addition to as well adopt a control method for fine-tuning of adaptive filter
parameter. The elements association is train with ANN by credence fine-tuning. The
output of ANN can be obtained by using below formula as given in (2). The following
Table 1, indicates the parameters used in design.

ANNout ¼
X

i tð Þ �Wg (2)

Each of the input are accompany by a weight.
If,

P
Wg ≥Th

Then the output of ANN will be 1 given in (3)

ANNout ¼ 1 (3)

3.1 Data

In this study, a dataset consisting of 5842 chest X-ray images provided in Table 1
by Guangzhou Women and Children’s Medical Centre, Guangzhou. The X-ray images
in the dataset are of different resolutions such as 1328 � 1160 and 1762 � 1535. The
number of no pneumonia is 1576, and pneumonia is 4266. Figure 3 shows some X-ray
image samples from the dataset. In our models 0 represents normal cases, 1 represents
pneumonia cases.

Train Test

Normal 1341 234

Pneumonia 3875 390

Total 5216 624

Table 1.
Distribution of dataset.

Figure 3.
Data samples from the dataset.
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3.2 Pre-processing

In Deep learning, we need more data to be obtained for better and reliable results.
However, there might not be more data or enough data for some problems, especially
on medical problems. so, to avoid this, experts have some solutions to solve this
problem. One of them is data augmentation which avoids over fitting and improves
accuracy. It is supported in the Keras deep learning library image data generator class
shown in Figure 4. Here we use rescale, shear range, Zoom range, Horizontal flip. We
pre-process our X-ray images dataset before it is used for diagnosing pneumonia. The
pre-processing has been performed as in following:

Unify X-ray images. Before inputting the images into our model, we downscale the
images to 224 � 224 and convert them to a NumPy array. It can be suitable for
features extraction by VGG. Perform image data argumentation methods, it is
supported in the Keras deep learning library via the image data Generator class. Here
we use rescale, shear range, Zoom range, Horizontal flip.

3.3 Architecture

AlexNet, AlexNetOWTBn, GoogleNet, VGG models are the most commonly used
in transfer learning. They are a stack of many convolution layers. we have many
difficulties with deep Convolution neural networks they are optimization of the net-
work, desertion gradient problem, and deprivation problems. The VGG NET brings a
new idea in place. It is used to solve complicated tasks and also increases detection
accuracy. VggNet tries to resolve the difficulty in the training process of deep Convo-
lution neural networks, the saturation, and degradation of correctness. In this paper,
we have used Vgg19 architecture shown in Figure 5. Vgg19 network Vgg19 has 19
layers (16 convolution layers, 3 fully connected layers, 5 MaxPool layers, and 1
SoftMax layer).

Figure 4.
(a) Rescale, (b) zoom range, (c) horizontal flip and (d) shear range for we use rescale, shear range, Zoom range,
Horizontal flip. Pre-process our X-ray images dataset before it is used for diagnosing pneumonia.
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3 � 3 filters are used in the first and second layers in the convolutional layer. Here
in the first and second layer totally 64 layers are used which results in 224 � 224 � 64
volume as the same convolution used. 3 � 3 filters are always used with a stride of 1.
The next layer is the pooling layer, here to reduce the width and height volume from
224 � 224 � 64 to 112 � 112 � 64 we use the max pool of 2 � 2 size and stride of 2
Next it is followed by 2 convolution layers which as 128 filters. Therefore, it gives the
new dimension of 112 � 112 � 128. Here pooling layer is used again to reduce the size
to 56� 56� 128. Now 256 filters of 2 convolution layers are added then it is reduced to
28 � 28 � 256 by down sampling layer. Then the stack of 3 convolution layers is
separated with 1 max-pooling layer. Finally, in the last pooling layer, we get 7 � 7 �
512 volume which is flattened into a fully connected layer with a total channel of 4096
and 1 classes of soft Max output.

4. Hardware explanation

In the projected method, the convergence speed of error signal increase with the
value of St. LMS mechanism is adopt in the proposed method because of its easier

Figure 5.
Vgg19 network.
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accomplishment, easy computational, dynamic usage of memory capability and is
performed by adjusting filter coefficient for error reduction.

To estimate the performance of the projected adaptive noise cancellation algorithm
by replication, the proposed algorithm is implemented on the experimental panel. As
revealed in Figure 6, the experimental board includes one major board and one D to
A/A to D data exchange card. The 16-bit D/A data exchange card is used to produce
two signals. One signal is the communication signals.

Initially, the time impediment opinion performance and noise cancellation perfor-
mance are evaluated in different mixed SNR environment, in that order. Secondly, the
noise cancellation performance of proposed algorithm is evaluated when the time
delay between the primary input and reference input is changing.

5. Experimental method

In order to authenticate the feasibility of the projected algorithm adaptive noise
cancellation system based is built on FPGA, which is revealed in Figure 7.

In a mathematical computing atmosphere projected model by means of soft
computation-based algorithm design and implementation. The system stipulation
required for performance includes a 64-bit operating system, an x64-based processor
supported with 4.00 GB installed memory (RAM), where the processor type is Intel®
Core™ i-8250U,CPU@1.80GHz

Figure 6.
Hardware experimental board.

Figure 7.
Adaptive noise cancellation system.
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5.1 Performed tests

We have tried many testing in different experimental setups to analyze the per-
formance of the proposed model. We have changed several network parameters and
instructions to create the model. We have split the total dataset into 80% for training
purposes and 20% for validation purposes. Then, we have experimented with the
dataset with our proposed model.

5.2 Fine-tuning

Fine-enhancement is a method used to increase the effectiveness of a task. It make
small changes to improve the outcome. Changing the parameters is so critical that
several modify affect the training process a lot for the calculation time desirable the
swiftness of convergence and the use of doling out units. Parameters setup for the
proposed model given in Table 2. This process of fine-tuning was repeated again and
again to improve the accuracy of our model.

5.3 Training

We have collected 5842 X-ray images in total as our database from Guangzhou
Women and Children’s Medical Centre, Guangzhou, where the number of no pneu-
monia is 1576, and pneumonia is 4266. All the images are graded into 2 classes
(NORMAL & PNEUMONIA) by professional graders and used to train the model.
And it is tested with 624 images.

To train the model, we have used the pretrained vggNet, which is initialized with
weights trained on ImageNet which gave better results.

5.4 Performance of the proposed model

The model which we have created will start training with the training dataset
which consists of both the actual images and the images from the augmentation Then
we have used the validation dataset to generalize the model.

Furthermore, we can see the spreading of losses (both training loss and validation
loss) concerning the number of epochs in both the training and validation phases

In this paper with the proposed model, the X-ray images were resized into 224 �
224. Then we have done the data augmentation. We used the weights of the pre-
trained vgg19 model. We have used Adam optimizer, and we have used the SoftMax

Parameter Value

Batch size 32

Steps per epoch 5216

Epoch 20

Validation steps 624

optimizer Adam optimizer

Table 2.
Parameters setup for the proposed model.
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activation function and batch size equals 32. In our model, we have set the learning
rate, decay, momentum as default values.

Then we started training our vgg19 model, after training, we have got the accuracy
score of the model which is 0.91 where we have used the standard ImageNet weights
to train the model shown in Figures 8 and 9.

We have trained our model up to 20 epochs; the training was stopped owing to the
absence of further improvement in both accuracy and loss.

Difference between actual and predicted is given in corresponding error Column
for the 6 neuron layers obtained for 5000 iterations shown in Table 3 and in Figure 10
gives Comparison of LMS, GAL, hybrid correlation coefficient for 5000 and 10,000
iterations.

6. Results

To predict pneumonia disease, we have created a webpage using flask API. Once
Flask API is designed. We can add the trained h5 file in the flask API then we can use

Figure 8.
Pretrained VGG-19 performance for pneumonia prediction task.

Figure 9.
Output of the model predicted with real data.
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the flask run command in the command prompt to run the flask file and create a
running webpage link which we can put in the browser to see the webpage.

Figure 11 shows the pneumonia disease input screen. Where user can input their
X-ray image by pressing the upload button, once the user clicks on the predict button
it will return whether the patient has pneumonia disease or not Figure 12 shows the
output of the predicted results.

Figure 10.
Comparison of LMS, GAL, hybrid correlation coefficient for 5000 and 10,000 iterations.

Figure 11.
Webpage which predicts the disease when input is given.

Figure 12.
Predicts the disease.

Algorithm Accuracy

Base paper result Vgg16, Xception 0.87, 0.82

Performance attainment Vgg19 0.91

Table 4.
Performance attainment.
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7. Bench mark

In the base paper they have used vgg16 and Xception model for performing
training. We have used extension of vgg which is vgg19, which as more trainable
parameter and gives better accuracy than vgg16 which used in our base paper. In
vgg16 we have 138 million parameter and in vgg19 we have 144 million parameters.
Vgg19 is the deeper version vgg16 (Table 4).

8. Conclusion

Projected hybrid adaptive algorithms participation signals are deterministic. LMS
as well as GAL algorithms are stochastic. Adaptive noise annulment using hybrid
adaptive algorithms implement. Compare in the midst of conventional algorithms, the
hybrid adaptive algorithms reveal that extremely fast convergence. Amid persistent
enhancement of the adaptive hybrid algorithm in addition to the rapid development
of signal processing chip it will be further widely use in mobile telecommunication
system, in addition to signal processing fields. The simulation perception investigation
of hybrid adaptive algorithms is conceded out on the convergence behaviour, correla-
tion coefficient and convergence time. After comparing, simulated results were tabu-
lated. By taking into consideration of accessible algorithms performance of hybrid
adaptive algorithms gives enhanced convergence time, convergence behaviour, cor-
relation coefficients. This technique is more systematic in eliminate noise from
corrupted signal furthermore has less time to converge, faster response and reduction
in memory.

Convolution Neural Network used to identify the pneumonia disease automati-
cally. To train this model employed transfer learning method and carried out fine-
tuning to improve the performance of the model, our model can distinguish between 2
classes of pneumonia or normal. The Vgg19 model which we have used has shown
significant performance. Results obtained confirm attained valid accuracy up to 0.91
for classifying the pneumonia disease. Inference that our model has great practical
significance in early pneumonia screening and diagnosis and has strong potential to be
applied in other disease.
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Chapter 5

Multi-Metric Near-Optimal Image
Denoising
Kenji Hara and Kohei Inoue

Abstract

It is necessary to optimize the parameters for each image input to achieve the
maximum denoising performance because the performance of denoising algorithms
depends largely on the selection of the associated parameters. The commonly used
objective image quality measures in quantitatively evaluating a denoised image are
PSNR, SSIM, and MS-SSIM, which assume that the original image exists and is fully
available as a reference. However, we do not have access to such reference images in
many practical applications. Most existing methods for no-reference denoising
parameter optimization either use the estimated noise distribution or a unique no-
reference image quality evaluation measure. In the chapter, for BM3D, which is a
state-of-the-art denoising algorithm, we introduce a natural image statistics (NIS)
based on the generalized Gaussian distribution (GGD) and the elastic net regulariza-
tion (EN) regression method and propose its use to perform the BM3D parameter
optimization for PSNR, SSIM, and MS-SSIM, respectively, which are the popular
image quality evaluation measures, without reference image and knowledge of the
noise distribution. Experimental results with several images demonstrate the effec-
tiveness of the proposed approach.

Keywords: denoising parameter optimization, BM3D, full-reference image quality,
Kullback-Leibler divergence, elastic net regularization regression

1. Introduction

Image denoising is used for various tasks, such as segmentation, enhancement,
frequency decomposition, and local feature extraction. The performance of denoising
algorithms generally depends largely on the selection of the parameters. We address
the problem of optimizing the parameters of denoising algorithms to achieve maxi-
mum performance. The most common image quality evaluation metrics used to
quantitatively evaluate the performance of denoising methods include full-reference
metrics such as peak signal-to-noise ratio (PSNR), structural similarity index measure
(SSIM) [1], and multi-scale structural similarity index measure (MS-SSIM) [2], which
assume that the original image exists and is fully available as a reference. However,
such reference images are not available in many practical applications. Therefore, no-
reference image denoising approaches have been intensively developed.
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Several methods for optimizing denoising parameters without reference have been
proposed that use cross-validation [3, 4] and the L-curve method [5, 6]. These
methods are somewhat empirical and hence not necessarily optimization methods in
the strict sense. Subsequently, a class of parameter optimization methods [7–9] was
developed to minimize an estimate of the mean-squared error (MSE) obtained using
Stein’s unbiased risk estimate (SURE) [10]. This approach performs PSNR optimiza-
tion without requiring a reference. Although PSNR is not necessarily a good evalua-
tion measure of image quality, it remains among the most popular objective image
quality metrics. However, this SURE-based approach generally necessitates the accu-
rate estimation of the noise variance in the noisy image, which is not trivial.

Recently, Zhu et al. [11] proposed a no-reference optimization method based on a
perceptual and no-reference image quality evaluation metric, which requires no
knowledge of the noise distribution. Their image quality evaluation metric is very
interesting in itself, but is not necessarily widely used. To the best of knowledge, most
existing methods for no-reference denoising parameter optimization either use the
estimated image noise or individual no-reference image quality evaluation metrics.
The only exception is the no-reference parameter optimization method by D’Elia et al.
[12], which requires no estimation of noise statistics and achieves its optimality only
under the SSIMmetric. However, PSNR and MS-SSIMmetrics are also widely used for
the assessment of image quality. Thus, a denoising algorithm to guarantee the near-
optimality with respect to the non-SSIM criterion, particularly for PSNR and MS-
SSIM, is proposed in this chapter. The proposed framework can also easily be
extended to incorporate any full-reference image quality measurement metrics that
might be discovered in the future.

In the chapter, we propose a novel technique for no-reference parameter optimi-
zation in the BM3D denoising algorithm, which is the current state-of-the-art
denoising method. Our method adaptively depends on which of the following most
widely used full-reference image quality evaluation metrics is optimized: PSNR, SSIM,
and MS-SSIM, and requires no knowledge of the noise distribution. To do so, we
introduce a natural image statistics (NIS) model based on the generalized Gaussian
distribution (GGD) and an elastic net regularization regression model. The pipeline of
our method is illustrated in Figure 1. Experimental results using SIDBA images are
presented to show the effectiveness of the proposed method.

The reminder of chapter is organized as follows. In Section 2, we describe a
statistical model of natural images in the wavelet transform domain. In Section 3, we
formulate a minimization problem of a statistical distance measure to estimate the
optimal parameters under the SSIM and MS-SSIM metrics. In Section 4, we derive
a regression-based bias correction procedure to estimate the optimal parameter
under the PSNR metric by refining a quasi-optimal parameter. In Section 5, we

Figure 1.
Pipeline of our method.
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present experimental results obtained by applying the proposed framework to each
state-of-the-art denoising method. Section 5 concludes the chapter.

2. Statistical model of natural images

In this section, we use a slight modification of Mallat’s statistical model of natural
images [13] based on generalized Gaussian modeling in the wavelet transform
domain. The generalized Gaussian distribution (GGD) [14] refers to a family of
symmetric distributions, which includes the Gaussian, the Laplacian, and the
uniform distributions as special cases. Recently, GGD has been successfully used in
the fields of pattern recognition and image processing, in applications such as
texture retrieval [15], digital watermarking [16], face recognition [17], and image
segmentation [18–20].

The probability density function (pdf) of GGD with a mean zero is given by

p x; α, βð Þ ¼ β

2αΓ 1=βð Þ e
� x=αj jβ , (1)

where α and β are, respectively, the scale and shape parameters (GGD parameters)
and Γ zð Þ ¼ Ð∞0 e�ttz�1dt z>0ð Þ is the gamma function. For β ¼ 2, Eq. (2) is equivalent
to the Gaussian distribution, whereas for β ¼ 1, it is equivalent to the Laplace distri-
bution. When β ! 0þ, Eq. (2) becomes a Dirac delta function distribution, and when
β ! þ∞, the distribution converges to a uniform distribution, as shown in Figure 2,
and when β ! þ∞, the distribution converges to a uniform distribution. The
maximum-likelihood estimation (MLE) [21, 22], moment-based [23], and global
convergence (GCM) [24] methods are widely used to estimate the GGD parameters
α, βð Þ. As described below, a statistical feature for natural image is described as a set of
the estimated parameters of GGD from the marginal distribution of multiresolution
wavelet coefficients of a given set of training images [25].

In the proposed approach, we first acquire a large number (K) of grayscale natural
images. We first apply the discrete wavelet transformation (DWT) to each compo-
nent image to decompose it into high-pass subbands (SB) of three different frequency
levels and three different orientations, including horizontal subbands Hj

� �
j¼1,2,3,

Figure 2.
The probability density functions of generalized Gaussian distribution with different shape parameters β.
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vertical subbands Vj
� �

j¼1,2,3, diagonal subbands Dj
� �

j¼1,2,3, and low-pass subbands

A3, where j ¼ 1,2,3 denotes the resolution level of the DWT. Then, for each of the

9 ¼ 3� 3ð Þ high-pass subband components Gj
� �

G¼H,V,D

n o
j¼1,2,3

, of each image, we

generate a normalized histogram (SB histogram) with a bin width h ¼ 3:5s=n1=3, where
n is the number of pixels and s is the standard deviation of the pixel values, using
Scott’s rule [26]. For each of the 9 SB histograms of each image, we estimate the

GGD parameters α̂ kð Þ
Gj
, β̂

kð Þ
Gj

n o
G¼H,V,D

� �

j¼1,2,3
, by the MLE method [21, 22], where

k ¼ 1,⋯,K is the image number. Finally, as a learning result from natural images,
we obtain a set of GGDs for the 9 SB components whose pdfs are given by

pGj
xð Þ ¼ f x; αGj , βGj

� �
, (2)

where f �; � , �ð Þ is the pdf of GGD defined by Eq. (2). αGj and βGj
are respectively

the mean values of the total number K of the estimated α and β parameters for each SB
component; that is,

αGj ¼
1
K

XK

k¼1

α̂ kð Þ
Gj
, βGj

¼ 1
K

XK

k¼1

β̂
kð Þ
Gj
: (3)

3. Parameter quasi-optimization

In the study, we address the problem of optimizing the parameters of the BM3D
algorithm (block-matching and 3D filtering) [27]. The BM3D algorithm is designed to
denoise images corrupted with zero-mean additive Gaussian noise. A modified ver-
sion called SAR-BM3D has also been proposed, which assumes multiplicative speckle
noise.

Firstly, the algorithm divides a noisy image into blocks. The similar blocks are
stacked together to form a 3D array. Then, based on the structural similarity in each
group, collaborative filtering and weighted averaging are carried out. The BM3D
algorithm requires that an associated parameter σ be set to the noise variance of the
image. However, accurate estimation of the noise distribution present in an image is
not trivial. In addition, such an optimal denoising parameter generally varies
depending on the selection of evaluation criteria.

Here, we consider that the quasi-optimal parameter σ is obtained as the value of σ
selected such that a statistical difference between the set of SB histograms of the
denoised image using BM3D algorithm and the set of GGD pdfs is minimized. We
adopt as the Kullback-Leibler divergence (KLD) [28] as one of the most widely used
statistical measures. We solve the following optimization problem.

σ ¼ argmin
σ

X3
j¼1

X
G∈ H, V, Df g

DKL PGj kQGj
σð Þ

� �
, (4)

where DKL PGj kQGj
Θð Þ

� �
denotes the KLD between two distributions PGj and

QGj
Θð Þ as
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DKL PGj kQGj
σð Þ

� �
¼
X
i

pGj
xið Þ log

pGj
xið Þ

QGj
i jσð Þ , (5)

where xi and QGj
i jσð Þ G ¼ H, V, D; j ¼ 1,2,3ð Þ are the center and the value of the

i-th bin in each SB histogram of the denoised image using BM3D algorithm, respec-
tively. pGj

�ð Þ G ¼ H, V, D; j ¼ 1,2,3ð Þ is the GGD pdfs defined in Eq. (3).

However, the quasi-optimal parameter σ did not necessarily achieve an optimal
denoising in some evaluation criteria. Thus, we used a paired t test at a signifi-
cance level of α ¼ 0:05, to determine whether there was a statistically significant
difference between the quasi-optimal parameter σ and each of σ ∗

PSNR, σ
∗
SSIM, and

σ ∗
MS�SSIM, which denote the ground-truth optimal parameters for the popular

image quality evaluation metrics PSNR, SSIM, and MS-SSIM, respectively. As
described in Section 5, our experimental results suggest that there is a statistically
significant difference in only PSNR between the quasi-optimal and ground-truth
optimal parameters. Thus, hereinafter we assume that both of the estimated
SSIM-optimal parameter σ̂SSIM and the estimated MS-SSIM-optimal one σ̂MS�SSIM

are given by the quasi-optimal parameter σ and that there was a bias between the
ground-truth PSNR-optimal parameter σ ∗

PSNR and σ. In the next section, we
describe a method to correct the bias to obtain the estimated PSNR-optimal
parameter σ̂PSNR.

4. Regression-based bias correction

We generate N training pairs of noisy and noise-free images by adding zero-mean
Gaussian noise of different levels of noise variance and different random seed numbers
to original images. Let yi

� �
PSNR i ¼ 1, ⋯, Nð Þ (the subscript PSNR is omitted hence-

forth for brevity) be the objective variable that is the ground-truth PSNR-optimal

parameter σ ∗
PSNR for the i-th training pair. Let xi ¼ xi, x2i , ⋯, xpi

� �T i ¼ 1, ⋯, Nð Þ be
the explanatory variable vector, where xi is the estimated quasi-optimal parameter σ
from the i-th noisy image. Let ξ0, ξð ÞPSNR be the regression parameter, where ξ0 ∈ and

ξ ¼ ξ1, ξ2, ⋯, ξp
� �T

∈p.

Ordinary least squares regression is commonly used to perform polynomial
regression. Least squares regression is a simple method, but it is widely known that a
more stable and interpretable solution is obtained by incorporating regularization into
the solution of ordinary least squares. In such regularization regression models, lasso
regression is a typical and well-known approach to impose a L1 norm penalty [29].
However, if there are training samples with high correlation as the noisy training
images in our learning system, lasso tends to select only one sample and ignore others.
Therefore, the bias correction described in this section is achieved with an elastic net
[30], which is a robust regression model and avoids this problem. Using the elastic net
regularization regression, the regression parameter is obtained by solving the follow-
ing optimization problem.

ξ̂0, ξ̂
n o

¼ argmin
ξ0, ξð Þ∈pþ1

XN
i¼1

yi � ξ0 � xT
i ξ

� �2 þ Pλ ξð Þ, (6)
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where the regularization term Pλ ξð Þ is expressed as a linear combination of the L1
norm ∥ξ∥1 and the L2 norm ∥ξ∥22 as

Pλ ξð Þ ¼ λ1∥ξ∥1 þ λ2∥ξ∥22 ¼ λ1
Xp

j¼1

∣ξj∣þ λ2
Xp

j¼1

ξ2j , (7)

where λ1 and λ2 are the positive magnitudes of the L1 and L2 norm penalties,
respectively. By using the solutions of Eq. (7), the estimated PSNR-optimal parameter
σ̂PSNR is expressed as follows.

σ̂PSNR ¼ σ þ
Xp

j¼0

ξ̂j
� �

PSNR
σj: (8)

Note that for correctness the subscript PSNR is shown explicitly in Eq. (8). In our
experiments, we used the degree p of the polynomial as p ¼ 3 and the tuning param-
eter λ of the elastic net as λ1 ¼ λ2 ¼ 5.

5. Experimental results

K ¼ 6000 training images described in Section 3 were randomly selected from
photography websites such as http://pro.foto.com and http://sozaing.com. All the
images were cropped to be the size of 256 � 256 pixels. Figure 3(a, b, c) shows the
plots of the KLD (red curves, left vertical axes) and PSNR, SSIM and MS-SSIM (blue
curves, right vertical axes) for different values of the BM3D parameter σ (horizontal
axes) for the Lena image corrupted by Gaussian noise N 0, 30ð Þ, respectively. From
Figure 3, it may be observed that the quasi-optimal parameter σ, which is the value of
σ minimizing KLD, was slight smaller than the ground-truth PSNR-optimal parameter
σ ∗
PSNR, whereas σ was almost equal to the ground-truth SSIM-optimal and MS-SSIM-

optimal parameters σ ∗
SSIM and σ ∗

MS�SSIM.
Next, a total of 50 ¼ 5� 5� 2ð Þ noisy SIDBA images (Lena, Pepper, Airplane,

Parrots, and Girl) corrupted by five different zero-mean Gaussian noise
N 0, σnð Þ, σn ¼ 10, 20, ⋯, 50ð Þ for different two seeds of random number generator
were prepared as training images, and then, the regularization regression described in
Section 4 was applied on the training image set to determine the relationships
between the quasi-optimal parameter σ and each of the ground-truth optimal
parameters σ ∗

PSNR, σ
∗
SSIM, and σ ∗

MS�SSIM.

Figure 3.
Plots of KLD (red curves) and popular image quality evaluation metrics (blue curves) versus different BM3D
parameters σ. (a) KLD and PSNR. (b) KLD and SSIM. (c) KLD and MS-SSIM.
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To this end, first we qualitatively evaluated the denoising parameter
quasi-optimization described in Section 3. Figure 4(a, b, c) shows the plots of the
ground-truth optimal parameters σ ∗

PSNR, σ
∗
SSIM, and σ ∗

MS�SSIM (vertical axes) versus the
quasi-optimal parameter σ (horizontal axes), respectively. From Figure 4(a), it may
be observed that σ is smaller than σ ∗

PSNR and the trend becomes more significant for
larger noise variance. In contrast, from Figure 4(b, c), it may be observed that σ was
very close to both of σ ∗

SSIM and σ ∗
MS�SSIM. Furthermore, to quantitatively evaluate the

denoising parameter quasi-optimization, we used a paired t test at a significance level
of α ¼ 0:05 to compare the quasi-optimal parameter σ with each of the ground-truth
optimal parameters σ ∗

PSNR, σ
∗
SSIM, and σ ∗

MS�SSIM. The results showed no statistically
significant differences for SSIM (the paired t test yielded a p value of 0:1167>0:05)
and MS-SSIM (the paired t test gives a p value of 0:1744>0:05), and hence, we
estimate the SSIM-optimal and MS-SSIM-optimal parameters as σ̂SSIM ¼ σ̂MS�SSIM ¼ σ.
In contrast, the above results showed a statistically significant difference for PSNR
(the paired t test gives a p value of 5:2962� 10�8 <0:05), and thus, we calculated
Eq. (8) to find the estimated PSNR-optimal parameter σ̂PSNR.

To qualitatively evaluate the parameter optimization described in Section 4, we
illustrate in Figure 5(a) the plots of the ground-truth PSNR-optimal parameter σ ∗

PSNR
(vertical axis) versus the quasi-optimal parameter σ (blue plots, horizontal axis) and
the estimated PSNR-optimal parameter σ̂PSNR (red plots, horizontal axis) for the

Figure 4.
Plots of ground-truth optimal parameters versus different quasi-optimal parameters σ. (a) σ ∗

PSNR versus σ. (b)
σ ∗
SSIM versus σ. (c) σ ∗

MS�SSIM versus σ.

Figure 5.
Plots of ground-truth PSNR-optimal parameters σ ∗

PSNR versus different quasi-optimal parameters σ (blue points)
and estimated PSNR-optimal parameters σ̂PSNR (red points) on the training and test image sets. (a) The training
image set. (b) The test image set.
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training image set. From Figure 5(a), it may be observed that bias correction based on
the elastic net regularization regression improved the quasi-optimal parameters. To
quantitatively evaluate the parameter optimization described in Section 4, we used
a paired t test at a significance level of α ¼ 0:05 to compare the estimated PSNR-
optimal parameter with the ground-truth PSNR-optimal parameter. The results
showed no statistically significant differences (the paired t test gives a p value of
p ¼ 0:2692>0:05).

In Tables 1 and 2, we summarize the pairs of the ground-truth optimal parameters
and the metric values and the pairs of the estimated optimal parameters and the

Image σn Ground-
truth

Estimated Ground-truth Estimated Ground-truth Estimated

(σ ∗
PSNR,

PSNR)
(σ̂PSNR,
PSNR)

(σ ∗
SSIM, SSIM) (σ̂SSIM, SSIM) (σ ∗

MS�SSIM,
MS-SSIM)

(σ̂MS�SSIM,
MS-SSIM)

Lena 10 (10.8, 37.49) (10.4, 37.48) (10.2, 0.9950) (9.0, 0.9946) (10.0, 0.9930) (9.0, 0.9927)

20 (22.8, 35.42) (19.5, 35.29) (19.6, 0.9887) (18.6, 0.9884) (20.0, 0.9847) (18.6, 0.9843)

30 (32.4, 34.35) (31.6, 34.31) (29.2, 0.9814) (28.4, 0.9814) (29.8, 0.9755) (28.4, 0.9752)

40 (42.6, 33.52) (43.1, 33.52) (40.2, 0.9722) (37.8, 0.9715) (40.2, 0.9644) (37.8, 0.9611)

50 (49.6, 32.79) (49.6, 32.78) (49.6, 0.9643) (44.4, 0.9626) (45.8, 0.9531) (44.4, 0.9527)

Pepper 10 (11.4, 35.89) (10.4, 35.88) (10.4, 0.9930) (10.0, 0.9930) (10.4, 0.9917) (10.0, 0.9916)

20 (24.8, 34.19) (25.7, 34.17) (20.8, 0.9848) (23.8, 0.9843) (20.8, 0.9837) (23.8, 0.9833)

30 (34.0, 33.46) (37.8, 33.46) (30.4, 0.9754) (33.4, 0.9749) (30.4, 0.9744) (33.4, 0.9738)

40 (45.0, 32.90) (46.2, 32.89) (40.2, 0.9638) (40.8, 0.9636) (40.2, 0.9631) (40.8, 0.9630)

50 (53.0, 32.41) (51.6, 32.40) (45.0, 0.9525) (47.2, 0.9522) (44.6, 0.9522) (47.2, 0.9517)

Airplane 10 (10.2, 36.53) (10.9, 36.53) (10.2, 0.9635) (9.8, 0.9634) (9.4, 0.9903) (9.8, 0.9902)

20 (22.2, 35.21) (20.3, 35.17) (20.6, 0.9371) (19.4, 0.9358) (19.0, 0.9787) (19.4, 0.9786)

30 (34.0, 34.51) (32.0, 34.49) (30.0, 0.9137) (28.8, 0.9125) (28.2, 0.9666) (28.8, 0.9663)

40 (41.4, 33.68) (40.6, 33.66) (39.0, 0.8893) (37.4, 0.8884) (37.0, 0.9529) (37.4, 0.9529)

50 (51.6, 32.78) (50.4, 32.76) (44.8, 0.8720) (44.2, 0.8717) (43.0, 0.9424) (44.2, 0.9417)

Parrots 10 (10.6, 37.74) (10.4, 37.73) (10.6, 0.9889) (9.0, 0.9873) (10.4, 0.9905) (9.0, 0.9897)

20 (23.8, 35.46) (20.4, 35.41) (20.2, 0.9770) (18.6, 0.9753) (20.6, 0.9793) (18.6, 0.9780)

30 (34.0, 34.46) (31.5, 34.43) (30.6, 0.9645) (28.4, 0.9631) (30.6, 0.9675) (28.4, 0.9662)

40 (42.4, 33.88) (43.3, 33.86) (40.2, 0.9512) (38.0, 0.9462) (42.0, 0.9549) (38.0, 0.9475)

50 (51.0, 33.32) (50.9, 33.31) (48.2, 0.9379) (44.8, 0.9362) (48.0, 0.9420) (44.8, 0.9400)

Girl 10 (9.6, 35.53) (10.9, 35.43) (9.0, 0.9385) (9.8, 0.9373) (10.4, 0.9878) (9.8, 0.9877)

20 (20.4, 33.95) (19.9, 33.94) (19.0, 0.9044) (19.0, 0.9044) (19.8, 0.9742) (19.0, 0.9741)

30 (31.6, 33.22) (30.8, 33.19) (28.6, 0.8711) (27.8, 0.8706) (28.6, 0.9569) (27.8, 0.9566)

40 (43.8, 32.74) (41.4, 32.72) (40.4, 0.8384) (36.4, 0.8323) (40.2, 0.9376) (36.4, 0.9353)

50 (53.4, 32.33) (48.5, 32.32) (50.2, 0.8066) (43.2, 0.8046) (47.2, 0.9179) (43.2, 0.9177)

Table 1.
Comparison of the ground-truth optimal parameters, the ground-truth metric values, the estimated optimal
parameters, and the estimated metric values. The comparisons are shown for the training image set.
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metric values for different levels of zero-mean Gaussian noise variance and different
metrics for the training image set and a test image set consisting of four SIDBA images
(Balloon, Couple, Earth, and Barbara; hereinafter are referred to as “the testing image
set”), respectively.

In Figure 5(b), we show the plots of the ground-truth PSNR-optimal parameter
(vertical axis) versus the quasi-optimal parameter (blue plots, horizontal axis) and the
estimated PSNR-optimal parameter (red plots, horizontal axis) for the test image set.
From Figure 5(b), as well as the results in Figure 5(a), our bias correction visually
improves the quasi-optimal parameters. As in Figure 5(a), we used a paired t test at a
significance level of α ¼ 0:05 to compare the estimated PSNR-optimal parameter with
the ground-truth PSNR-optimal parameter. The results showed no statistically signif-
icant differences (the paired t test gives a p value of p ¼ 0:1920>0:05), and hence, we
can confirm the validity of σ̂PSNR.

Figure 6 illustrates a visual comparison of the denoising results. Figure 6(a)
shows the standard Barbara image. Figure 6(b) shows the enlarged detail in the eye

Image σn Ground-
truth

Estimated Ground-truth Estimated Ground-truth Estimated

(σ ∗
PSNR,

PSNR)
(σ̂PSNR,
PSNR)

(σ ∗
SSIM, SSIM) (σ̂SSIM, SSIM) (σ ∗

MS�SSIM,
MS-SSIM)

(σ̂MS�SSIM,
MS-SSIM)

Balloon 10 (10.6, 38.64) (10.26, 38.61) (10.0, 0.9767) (8.8, 0.9736) (10.2, 0.9888) (8.8, 0.9876)

20 (22.4, 36.54) (20.2, 36.44) (19.6, 0.9515) (18.4, 0.9489) (20.6, 0.9721) (18.4, 0.9709)

30 (33.2, 35.52) (31.1, 35.46) (30.2, 0.9287) (28.0, 0.9254) (29.6, 0.9533) (28.0, 0.9520)

40 (47.0, 34.90) (43.7, 34.87) (40.2, 0.9068) (38.4, 0.8960) (40.2, 0.9348) (38.4, 0.9235)

50 (56.4, 34.36) (51.7, 34.34) (48.4, 0.8886) (45.8, 0.8860) (48.4, 0.9167) (45.8, 0.9155)

Couple 10 (9.8, 36.33) (10.5, 36.29) (9.2, 0.9303) (9.2, 0.9303) (9.6, 0.9872) (9.2, 0.9871)

20 (20.2, 33.60) (19.3, 33.59) (18.8, 0.8535) (17.6, 0.8530) (17.6, 0.9665) (17.6, 0.9665)

30 (30.2, 32.66) (28.2, 32.63) (27.4, 0.7847) (25.8, 0.7835) (26.0, 0.9420) (25.8, 0.9419)

40 (40.2, 32.25) (37.8, 32.22) (35.6, 0.7216) (33.4, 0.7199) (34.0, 0.9157) (33.4, 0.9154)

50 (56.8, 32.18) (49.3, 32.14) (43.4, 0.6704) (43.0, 0.6702) (43.0, 0.8893) (43.0, 0.8893)

Earth 10 (11.0, 36.26) (11.4, 36.24) (10.8, 0.9862) (10.4, 0.9862) (10.2, 0.9899) (10.4, 0.9897)

20 (22.4, 34.57) (22.3, 34.57) (20.6, 0.9711) (20.2, 0.9709) (17.4, 0.9759) (20.2, 0.9742)

30 (34.0, 33.74) (33.3, 33.74) (31.0, 0.9551) (29.8, 0.9549) (27.0, 0.9582) (29.8, 0.9557)

40 (41.6, 33.11) (44.8, 33.09) (40.2, 0.9405) (39.4, 0.9351) (34.0, 0.9347) (39.4, 0.9295)

50 (54.6, 32.55) (52.4, 32.53) (47.2, 0.9257) (46.8, 0.9256) (43.0, 0.9191) (46.8, 0.9141)

Barbara 10 (11.6, 37.40) (11.4, 37.38) (10.8, 0.9702) (8.4, 0.9599) (10.8, 0.9951) (8.4, 0.9940)

20 (22.8, 35.26) (22.3, 35.25) (21.0, 0.9396) (18.4, 0.9324) (21.4, 0.9872) (18.4, 0.9862)

30 (33.6, 34.24) (33.3, 34.23) (30.4, 0.9029) (28.6, 0.9756) (30.4, 0.9761) (28.6, 0.9557)

40 (43.8, 33.81) (44.8, 33.79) (40.2, 0.8717) (38.6, 0.8462) (40.2, 0.9662) (38.6, 0.9578)

50 (54.0, 33.33) (52.4, 33.32) (46.8, 0.8374) (45.0, 0.8348) (45.8, 0.9532) (45.0, 0.9530)

Table 2.
Comparison of the ground-truth optimal parameters, the ground-truth metric values, the estimated optimal
parameters, and the estimated metric values. The comparisons are shown for the test image set.
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Figure 6.
Visual comparison of denoising results. (a) Barbara image. (b) Enlarged detail of (a). (c) Image corrupted by
Gaussian noise N 0,σn ¼ 30ð ). (d) Enlarged detail of (c). (e) Denoised image with the BM3D algorithm the
parameter σ of which is the estimated noise variance from (c) (σ̂n ¼ 20:6). (f) Denoised image with the BM3D
algorithm the parameter σ of which is the estimated PSNR-optimal parameter σ̂PSNR ¼ 33:3. (g) Denoised image
with the BM3D algorithm the parameter σ of which is the estimated SSIM-optimal parameter σ̂SSIM ¼ 28:6. (h)
Denoised image with the BM3D algorithm the parameter σ of which is the estimated MS-SSIM-optimal parameter
σ̂MS�SSIM ¼ 28:6. (i) Enlarged detail of (e). (j) Enlarged detail of (f). (k) Enlarged detail of (g). (l) Enlarged
detail of (h).
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area of the original Barbara image shown in (a). Figure 6(c) shows the noisy
Barbara image corrupted by additive zero-mean Gaussian noise N 0, σn ¼ 30ð Þ.
Figure 6(d) shows an enlarged detail in (c). Figure 6(e) shows the denoised image
by the BM3D with the directly estimated noise variance from the noisy Barbara
image shown in (c) as the parameter value. Figure 6(f, g, h) shows the denoised
images by the BM3D with the estimated PSNR-optimal, SSIM-optimal and MS-
SSIM-optimal parameters, respectively. Figure 6(i–l) shows the enlarged details in
(e), (f), (g), and (h), respectively. These results indicate that the BM3D model was
able to denoise the noisy image with reasonable accuracy by using our estimated
optimal parameters.

Finally, for each of the image quality evaluation metrics PSNR, SSIM, and MS-
SSIM, we compare the measure value of the BM3D denoised image using our esti-
mated optimal parameters, against that using the estimated noise variance from the
input noisy image. Figure 7(a, b, c) shows the plots of the mean values of PSNR,
SSIM, and MS-SSIM at each noise variance across the test image set, respectively.
From these results, it may be observed that the BM3D algorithm with our estimated
optimal parameter outperformed that with the directly estimated noise variance from
the input images.

6. Conclusions

We addressed the problem of estimating the optimal parameter of state-of-the-art
denoising algorithm BM3D algorithm without any reference and without any knowl-
edge of the noise distribution, adaptively depending on which of the following widely
used image quality evaluation metrics are optimized: PSNR, SSIM, and MS-SSIM. The
proposed method for SSIM and MS-SSIM optimization is formulated as a minimiza-
tion problem for a Kullback-Leibler divergence measure based on the natural image
statistics and generalized Gaussian distribution based prior. The method for PSNR
optimization is formulated as a combination of the above optimization and an elastic
net regression, which provides a very robust regression model. From our experimental
results, we have confirmed that the proposed statistical measure and robust regression
approach can be used to optimize the denoising parameter of the BM3D algorithm.

Figure 7.
Plots of image quality evaluation metric values versus different levels of image noise variance for the direct
estimation of the image noise variance (blue lines and points), our proposed method (red lines and points), and the
ground-truth (black lines and points). The comparisons are shown for the test image set. (a) PSNR. (b) SSIM. (c)
MS-SSIM.
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Perspective Chapter: New Image
Denoising Approach Based on SWT
and 2-D Dual-Tree Discrete
Wavelet Transform
Mourad Talbi and Riadh Baazaoui

Abstract

In this chapter, we propose a new image denoising approach. It consists in apply-
ing a Stationary Wavelet Transform (SWT) based image denoising technique, in the
domain of 2‐D Dual-Tree Discrete Wavelet Transform. In fact, this proposed
approach consists first of applying the 2‐D Dual-Tree Discrete Wavelet Transform to
the noisy image. Then, the obtained noisy wavelet coefficients are denoised by apply-
ing to each of them a SWT based image denoising technique. Finally, the denoised
image is reconstructed by applying the inverse of the 2‐D Dual-Tree Discrete Wavelet
Transform to the obtained denoised wavelet coefficients. For applying this SWT based
image denoising technique, we use soft thresholding, the Daubechies 4 as the mother
wavelet and the decomposion level is equal to 5. The performance of this proposed
image denoising approach, is pouved by the results obtained from the computations of
PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity).

Keywords: image denoising, 2-D dual-tree discrete wavelet transform, SWT-2D,
PSNR, SSIM, standard deviation

1. Introduction

Noisy images frequently arise in the high-level vision tasks and this makes
image denoising becoming an important task in the low-level vision domain [1]. For
example, take a given denoising model:

y ¼ xþ n (1)

With x, y and n are respectively the clean images, the given noisy image and the
Additive Gaussian Noise (AWGN) having σ as standard deviation [1]. There are
diverse approaches for reducing noise that various researchers have done. Each of
these approaches owns its advantages and disadvantages. In [2], a review of some
significant work in the domain of image denoising based on the denoising
techniques were presented. These techniques can be classified as wavelet domain,
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spatial domain, or both techniques can combine for obtaining an advantage of them.
In the medical domain, Mittal et al. [3] have presented a methodology for improving
and eliminating the high noise of the medical image employing the Stationary
Wavelet Transform (SWT) technique. In their work, an efficient and simple approach
for adaptive noise elimination was used, the SWT-2D denoising method on the med-
ical image that is degraded by noise. In this chapter, we propose a novel approach of
Image denoising. It consists in applying a Stationary Wavelet Transform (SWT) based
image denoising technique [4] in the domain of 2-D Dual-Tree Discrete Wavelet
Transform. This SWT-based image denoising technique [4] is based on soft
thresholding of the noisy wavelet coefficients obtained from the noisy image
decomposition using the SWT-2D. For this decomposition, we use Daubechies 4 as
the mother wavelet and the level is equal to 5. Those choices are the same as those
in ref. [4].

This proposed denoising approach is completely different from the other denoising
technique based on thresholding in the domain of 2-D Dual-Tree Complex Wavelet
Transform [5]. In fact, this difference lies in the fact that we apply SWT-based image
denoising technique [4] not to the noisy image to be denoised, but to each noisy
wavelet coefficient obtained from the application of this Transform [5] to this image.
Consequently, this idea can introduce more adaptability compared to the application
of this technique based on thresholding in the domain of 2-D Dual-Tree Discrete
Wavelet Transform [5], to this image.

The remaining of this chapter is organized as follows: in Section 2, we will deal
with 2-D Dual-Tree Complex Wavelet Transform [5]. In Section 3, we will deal with
the SWT-2D-based image denoising technique [4]. In Section 4, we will detail the
image-denoising approach proposed in this work. In Section 5, we will present results
and discussion and we will conclude in Section 6.

2. 2-D dual-tree complex wavelet transform

It turns out that, for some applications of DWT (Discrete Wavelet Transform),
ameliorations can be obtained by employing an expansive wavelet transform in place
of a critically sampled one [5]. An expansive transform is one that permits to convert
an N-point signal into M coefficients with M>N. There are numerous sorts of expan-
sive DWTs; here is described the dual-tree complex DWT [5, 6]. The dual-tree com-
plex DWT of a signal x is implemented employing two critically sampled DWTs in
parallel on the same data, as illustrated in Figure 1.

The transform is 2-times expansive because for an N-point signal, it permits to
have 2NDWT coefficients. If the filters in the upper and lower DWTs are the same,
consequently no advantage is added. Though, when the filters are designed in a
specific way, consequently the sub-band signals of the upper DWT can be considered
as the real part of a complex wavelet transform, and sub-band signals of the lower
DWTcan be viewed as the imaginary part. Equivalently, for specially designed filters
sets, the wavelet associated with the upper DWT can be viewed as an approximate
Hilbert transform of the wavelet associated with the lower DWT. When designed in
this manner, the dual-tree complex DWT is approximately shift-invariant, in contrast
with the critically sampled DWT. Furthermore, the dual-tree complex DWT can be
employed for implementing 2-D wavelet transforms where each wavelet is oriented,
which is precisely useful for image processing. For the separable 2–D DWT, recall that
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one of the three wavelets does not own a dominant orientation. The dual tree complex
DWT outperforms the critically sampled DWT for applications such as image
denoising and enhancement. The complex wavelet associated with the dual-tree com-
plex DWT is illustrated in Figure 2. For determining the real part of the complex
wavelet, we set all coefficients to zero, except for one coefficient in the upper DWT,
and after that applying the inverse transform. For determining the imaginary part, the
exception is a single coefficient in the lower DWT.

3. A stationary wavelet transform (SWT) based image denoising
technique

The SWT (Stationary Wavelet Transform) [7, 8] is similar to the Discrete Wavelet
Transform (DWT) except the signal is never sub-sampled and instead the filters are
up sampled at each level of decomposition [7]. Each level’s filters are up-sampled
versions of the previous as shown in Figure 3.

Figure 1.
The dual-tree complex DWT.

Figure 2.
Complex 1-D wavelet, ψ tð Þ [5, 6].
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The SWT is an inherent redundant scheme, as each set of coefficients contains the
same number of samples as the input. So for a decomposition of N levels, there is a
redundancy of 2N.

An image denoising technique based on thresholding in the SWT domain, is
applied in our denoising system proposed in this work. This technique can be
summarized by the block diagram illustrated at Figure 4.

According to Figure 4, the Stationary Wavelet Transform 2D (SWT–2D) is firstly
applied to the noisy image, Ib, in order to obtain noisy stationary wavelet coefficients.
Those obtained coefficients are then denoised by employing soft thresholding and
finally the inverse of SWT–2D, SWT�1 � 2D is applied to the obtained thresholded
coefficients for having the denoised image, Id.

Figure 3.
(a) Wavelet decomposition tree, (b) SWT filters [7].

Figure 4.
The block diagram of an image denoising technique based on thresholding in the SWT domain.
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4. The proposed image denoising approach

As previously mentioned, in this work, we propose a new image denoising approach.
It consists in applying a SWT based image denoising technique [4] in the domain of 2-D
Dual-Tree Discrete Wavelet Transform [5]. In fact, this proposed approach consists
firstly in applying the 2-D Dual-Tree Discrete Wavelet Transform to the noisy image
and the obtained noisy wavelet coefficients are then denoised by applying to each of
them, a SWT based image denoising technique [4]. Finally, the denoised image is
reconstructed by applying the inverse of the 2-D Dual-Tree Discrete Wavelet Trans-
form to the obtained denoised wavelet coefficients. This proposed image denoising
approach can be summarized by the block diagram illustrated at Figure 5.

According to Figure 5, the 2-D dual-Tree Discrete Wavelet Transform is firstly
applied to the noisy image, Ib in order to obtain noisy wavelet coefficients,
Wb jf g sf g, 1≤ j≤ 2, 1≤ s≤ 3. Each of those coefficients is then denoised by applying a
technique of image denoising based on thresholding in SWT domain [4] and we
obtain denoised wavelet coefficients, Wd jf g sf g, 1≤ j≤ 2, 1≤ s≤ 3. To those denoised
coefficients, is applied the inverse of the 2-D dual-Tree Discrete Wavelet Transform
in order to have finally the denoised Id.

As previously mentioned, for the application of the denoising technique based on
thresholding in the SWT domain, is used Daubechies 4 as the mother wavelet. More-
over, the decomposition level is equal to 5. Those choices are the same to those in [4].
Those choices are justified by the fact that in our comparative study, we want to use
the same mother wavelet and the same decomposition level such as used in [4].

5. Results and discussion

In this section, we will present the results obtained from the computations of Peak
Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM). Those results are
obtained from the application of the proposed image denoising approach, the denoising

Figure 5.
The block diagram of the proposed image denoising approach.
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technique based on thresholding in the SWT domain [4], the image denoising technique
based on thresholding in the domain of 2-D Dual-Tree Discrete Wavelet Transform [5]
and the image denoising approach using deep neural network [9].

In the following sub-section we will present the previously mentioned evaluation
criterion, which are the PSNR and the SSIM. The PSNR is a better test since it takes the
signal strength into consideration (not only the error). The PSNR and SSIM are
expressed as follow [10]:

SSIM ¼
2μxμy þ c1
� �

2σxy þ c2
� �

μ2x þ μ2y þ c1
� �

σ2x þ σ2y þ c2
� � (2)

Where σ, σxy and μ are respectively the variance, the covariance of the image and c1
and c2 are the stabilizing constants. The SSIM value is generally between 0 and 1 and
similar images have value of SSIM near to 1.

PSNR ¼ 10 ∙ log 10
MAX2

l

MSE

� �
(3)

With MSE is the Mean Square Error, expressed as follow:

MSE ¼ 1
n

Xn
i¼1

Xi � X ∗
i

� �2 (4)

The MSE is one of the earliest tests which performed to test whether two images
are similar.

As previously mentioned, those results (Table 1) are in terms of PSNR and SSIM
and they are obtained for different images and diverse values of level (σÞ of noise

Noisy image The denoising technique

The
proposed
Image

denoising
technique

The image denoising
technique based on
thresholding in the
SWT domain [4]

The Image
denoising

technique based
on deep neural
network [9]

The image denoising
technique based on

thresholding in the domain
of 2-D Dual-Tree Discrete
Wavelet Transform [5]

Noisy st.tif
(σ ¼ 10Þ

PSNR:
34.2517
SSIM:
0.8791

PSNR:
33.7831
SSIM:
0.8962

PSNR:
28.3030
SSIM:
0.5425

PSNR:
34.1453
SSIM:
0.8675

Noisy st.tif
(σ ¼ 20Þ

PSNR:
30.6126
SSIM:
0.7722

PSNR:
30.1884
SSIM:
0.6950

PSNR:
22.4725
SSIM:
0.2850

PSNR:
30.2840
SSIM:
0.7306

Noisy st.tif
(σ ¼ 30Þ

PSNR:
28.1244
SSIM:
0.6131

PSNR:
24.5706
SSIM:
0.3719

PSNR:
18.9533
SSIM:
0.1789

PSNR:
27.7900
SSIM:
0.5977
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corrupting the original image (clean image). This noise is an Additive Gaussian White
Noise (AGWN).

In Figure 6, are illustrated some examples of image denoising by applying the
denoising approach proposed in this work and the other previously mentioned tech-
niques, used in our evaluation [4, 5, 9]. According to Figure 6, the noise is

Noisy image The denoising technique

The
proposed
Image

denoising
technique

The image denoising
technique based on
thresholding in the
SWT domain [4]

The Image
denoising

technique based
on deep neural
network [9]

The image denoising
technique based on

thresholding in the domain
of 2-D Dual-Tree Discrete
Wavelet Transform [5]

Noisy st.tif
(σ ¼ 40Þ

PSNR:
26.4861
SSIM:
0.5138

PSNR:
20.6093
SSIM:
0.2171

PSNR:
16.4559
SSIM:
0.1248

PSNR:
25.9906
SSIM:
0.4953

Noisy
Peppers..tif
(σ ¼ 10Þ

PSNR:
32.8048
SSIM:
0.8250

PSNR:
32.4622
SSIM:
0.8019

PSNR:
28.6273
SSIM:
0.6497

PSNR:
32.6519
SSIM:
0.8180

Noisy
Peppers.tif
(σ ¼ 20Þ

PSNR:
29.6501
SSIM:
0.7233

PSNR:
29.3674
SSIM:
0.6821

PSNR:
22.4648
SSIM:
0.3569

PSNR:
29.5645
SSIM:
0.7038

Noisy
Peppers.tif
(σ ¼ 30Þ

PSNR:
27.8670
SSIM:
0.6406

PSNR:
27.8481
SSIM:
0.6264

PSNR:
18.8973
SSIM:
0.2208

PSNR:
27.4151
SSIM:
0.5968

Noisy
Peppers.tif
(σ ¼ 40Þ

PSNR:
26.3256
SSIM:
0.5462

PSNR:
26.2747
SSIM:
0.5424

PSNR:
16.3708
SSIM:
0.1497

PSNR:
25.7770
SSIM:
0.5109

Noisy House.
tif (σ ¼ 10Þ

PSNR:
35.0397
SSIM:
0.9203

PSNR:
34.2284
SSIM:
0.8466

PSNR:
28.4578
SSIM:
0.5576

PSNR:
35.0360
SSIM:
0.9121

Noisy House.
tif (σ ¼ 20Þ

PSNR:
30.7882
SSIM:
0.8462

PSNR:
30.3082
SSIM:
0.7360

PSNR:
22.4921
SSIM:
0.3090

PSNR:
30.5116
SSIM:
0.7766

Noisy House.
tif (σ ¼ 30Þ

PSNR:
28.1921
SSIM:
0.6586

PSNR:
27.0232
SSIM:
0.5584

PSNR:
18.9670
SSIM:
0.2049

PSNR:
27.9388
SSIM:
0.6487

Noisy House.
tif (σ ¼ 40Þ

PSNR:
26.2186
SSIM:
0.5368

PSNR:
25.4000
SSIM:
0.4792

PSNR:
16.4148
SSIM:
0.1455

PSNR:
26.0214
SSIM:
0.5416

Table 1.
Results obtained in terms of PSNR and SSIM.
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Figure 6.
An example of image denoising: (a) clean image, (b) Noisy image (σ ¼ 20), (c) Denoised image obtained by
applying the proposed technique (PSNR = 30.6924), (d) Denoised image obtained by applying deep learning
(PSNR = 22.4978), (e) Denoised image obtained by applying soft thresholding in the SWT domain
(PSNR = 30.1884) (f) Denoised image obtained by applying soft thresholding in the domain of 2-D dual-tree
discrete wavelet transform (PSNR = 30.2840).
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considerably reduced while preserving the original image and this precisely when
applying the image denoising approach proposed in this work.

According to Table 1, the best results are highlighted in purple color and they are
practically obtained by applying the proposed image denoising approach. Conse-
quently, this proposed approach outperforms the other three techniques [4, 5, 9], used
for our evaluation.

6. Conclusion

In this chapter, we proposed a new image denoising approach. It consists in
applying a Stationary Wavelet Transform (SWT) based image denoising technique
[4] in the domain of 2–D Dual-Tree Discrete Wavelet Transform. In fact, this pro-
posed approach consists firstly in applying the 2–D Dual-Tree Discrete Wavelet
Transform to the noisy image and the obtained noisy wavelet coefficients are then
denoised by applying to each of them a SWT based image denoising technique [4].
Finally, the denoised image is reconstructed by applying the inverse of the 2–D Dual-
Tree Discrete Wavelet Transform to the obtained denoised wavelet coefficients. The
performance of this proposed image denoising approach, is proved by the results
obtained from the computations of PSNR (Peak Signal-to-Noise Ratio) and SSIM
(Structural Similarity). In fact, it permits to obtain the best values of PSNR and SSIM
compared to three other image denoising techniques existing in literature. These three
techniques are as follows: the Image denoising approach based on neural network [9],
the denoising technique based on thresholding in the SWT domain [4], and the
denoising approach based on thresholding in the domain of 2-DDual-Tree Discrete
Wavelet Transform [5]. For example, when the noisy image is Noisy House.tif with
standard deviation of Additive Gaussian White Noisen, (σ ¼ 20Þ, the proposed
denoising approach permits to obtain PSNR ¼ 30:7882 and SSIM ¼ 0:8462. However,
the denoising technique based on thresholding in the SWT domain [4], permits to
obtain SNR ¼ 30:3082 and SSIM ¼ 0:7360. The denoising technique based on deep
learning [9], permits to obtain PSNR ¼ 22:4921 and SSIM ¼ 0:3090. The denoising
technique based on thresholding in the domain of 2-D Dual-Tree Discrete Wavelet
Transform [5], permits to obtain PSNR ¼ 30:5116 and SSIM ¼ 0:7766. Consequently,
this example shows clearly the superiority of the proposed denoising approach com-
pared to the other three techniques existing in literature [4, 5, 9]. The main drawbak
of this proposed image denoising approach is its computation complexity compared to
the two other denoising techniques [4, 5]. This complexity is due to the fact that we
apply the SWT based image denoising technique [4] not to the whole noisy image but
we apply this technique [4] to each noisy coefficient obtained from the application of
the 2–D Dual-Tree Discrete Wavelet Transform, to the noisy image. Moreover, in this
proposed denoising approach, we use two completely different wavelet transforms
which are the Stationary Wavelet Transform (SWT) and the 2–D Dual-Tree Discrete
Wavelet Transform. Consequently, we have more computation complexity compared
to the two other image denoising techniques [4, 5].
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