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Preface

Acinetobacter baumannii, a superbug resilient against numerous antimicrobial 
agents, including last-resort options, has garnered immediate attention from public 
health authorities. The US Centers for Disease Control and Prevention (CDC) 
identifies A. baumannii as an imminent threat. At the same time, the World Health 
Organization (WHO) underscores the urgent need for research and development 
of antibiotics to address infections caused by this resilient pathogen. It has earned 
its place as a leading nosocomial “ESKAPE” pathogen, prompting the WHO to 
prioritize it as the foremost pathogen requiring urgently and critically needed new 
antibiotics.

Chapter 1, “Acinetobacter baumannii: Epidemiology, Clinical Manifestations, and 
Associated Infections”, provides a comprehensive overview of the Acinetobacter 
genus, tracing its history to the emergence of A. baumannii. The chapter explores 
the global epidemiology of Acinetobacter infections, detailing outbreaks in health-
care facilities, communities, and diverse climates, including temperate and tropi-
cal regions, as well as conflict and disaster settings. It emphasizes the impact of 
climatic conditions on the prevalence of A. baumannii, its association with various 
diseases, and its role as a significant contributor to healthcare-associated infections 
worldwide. The chapter also addresses community-acquired infections arising from 
conflicts and natural disasters. It delves into clinical manifestations associated with 
A. baumannii, encompassing pneumonia, bloodstream infections, trauma, wounds,
surgical site infections, endocarditis, meningitis, urinary tract infections, and other
related conditions. It further explores virulence factors in A. baumannii, their role
in pathogenesis, primary mechanisms of antibiotic resistance, and available treat-
ment strategies.

Chapter 2, “The Battle Against Antibiotic Resistance: Novel Therapeutic Options 
for Acinetobacter baumannii”, explores virulence factors contributing to A. bauman-
nii’s pathogenesis and high mortality rates. The chapter delves into self-survival 
mechanisms, including outer membrane proteins, lipopolysaccharides, capsular 
polysaccharides, phospholipase, nutrient-acquisition systems, efflux pumps, 
protein secretion systems, quorum sensing, and biofilm production. It subsequently 
discusses antimicrobial drug resistance and strategies to overcome these challenges. 
Recognizing the limited treatment options and the failure of most antibiotics due 
to the spread of multidrug-resistant (MDR) bacteria, the chapter advocates for 
alternative treatment approaches, such as combined treatments, the reuse of exist-
ing medications, and explores potential therapeutic avenues like new antibiotics, 
bacteriophages, antimicrobial peptides, monoclonal antibodies, nanoparticles, gene 
editing, and others.

Chapter 3, “Host-Pathogen Interactions in Acinetobacter baumannii Infections: 
Mechanisms of Immune Evasion and Potential Therapeutic Targets”, delves into the 



intricate interplay between A. baumannii and the host immune system. The chapter 
emphasizes the mechanisms employed by A. baumannii to escape and subvert the 
immune response, leading to persistent and challenging infections. It highlights key 
aspects of the host immune system, including innate and adaptive immunity, pattern 
recognition receptors, and immune cell responses, within the context of A. bauman-
nii infections. The chapter also discusses virulence factors and strategies utilized by 
A. baumannii, such as biofilm formation and quorum sensing. It identifies potential 
therapeutic targets, including novel antimicrobial agents, immunotherapies, and 
host-targeted therapies.

Chapter 4, “Treatment of Acinetobacter baumannii”, provides an overview of tradi-
tional treatment options and drug selection in MDR infections, supplemented by a 
brief review of the evidence. It also explores emerging treatment options.

Chapter 5, “Current Options for the Treatment of Urinary Tract Infections Caused 
by Multidrug-Resistant Acinetobacter baumannii”, addresses the specific challenges 
posed by urinary tract infections caused by MDR A. baumannii, considering the 
limitations imposed by urinary medication concentrations. The chapter covers 
epidemiology, main risk factors, clinical manifestations, diagnosis, and treatment.

Chapter 6, “Understanding the Harmful Impact of Polymyxins on Acinetobacter 
baumannii”, scrutinizes the resurgence of interest in polymyxins as a last-resort 
treatment for A. baumannii. It emphasizes the limited clinical options of poly-
myxin B and colistin and details challenges associated with their administration, 
including high toxicity, notably nephrotoxicity, and neurotoxicity, along with 
less common adverse effects like injection pain, hypersensitivity reactions, and 
bronchospasms.

Chapter 7, “Carbapenem-Resistant Acinetobacter baumannii in Latin America”, sheds 
light on the escalating prevalence of Acinetobacter infections globally, focusing on 
Latin America. The chapter details the widespread occurrence of carbapenem-
resistant A. baumannii (CRAb), which poses a significant threat to public health. It 
outlines the high carbapenem resistance rates in A. baumannii worldwide, with Latin 
America experiencing some of the highest rates globally. The review summarizes the 
distribution of CRAb and its primary resistance mechanisms to carbapenems in Latin 
America.

Overall, this comprehensive assessment of A. baumannii offers a detailed exploration 
of its epidemiology, clinical manifestations, immune interactions, treatment options, 
and regional considerations, providing a valuable resource for researchers, clinicians, 
and policymakers grappling with the challenges posed by this resilient and problem-
atic pathogen.
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Chapter 1

Acinetobacter baumannii: 
Epidemiology, Clinical 
Manifestations and Associated 
Infections
Catherine Nonyelum Stanley, Amaka Marian Awanye  
and Ukamaka Chinelo Ogbonnaya

Abstract

Acinetobacter baumannii is a Gram-negative, non-flagellated bacterium belonging 
to the coccobacillus family that is readily found in the environment. It has rapidly 
evolved, from an apparently innocuous organism to an opportunistic pathogen caus-
ing infections in both the hospital and the community. A. baumannii has attained the 
status of a superbug being resistant to many, including the last-resort antimicrobial 
agents, such as carbapenems, colistin and tigecycline. The Centers for Disease Control 
and Prevention (CDC) has classified A. baumannii as an immediate threat to public 
health, while the World Health Organization (WHO) is calling for research and 
development of critically needed antibiotics to treat these infections. It has earned 
a place as one of the most problematic nosocomial ‘ESKAPE’ pathogens causing the 
WHO to designate it as first on the list of pathogens for which new antibiotics are 
urgently and critically needed. A. baumannii has several mechanisms with which it is 
able to develop resistance to different antibiotics. It persists in hospital environments 
due to its ability to form biofilms and resist drying and disinfection. There is genetic 
diversity among the isolates of A. baumannii, thus making the study of this organism 
even more complex and underscoring the importance of sustained surveillance and 
good antibiotic stewardship to safeguard the publics’ health.

Keywords: Acinetobacter baumannii, epidemiology, clinical manifestations, resistance, 
carbapenems, nosocomial infections

1. Introduction

It was the Dutch microbiologist Martinus Willem Beijerinck who in 1911 began 
the story of the genus Acinetobacter. Using medium enriched with calcium acetate, he 
had isolated a new organism from soil and named it Micrococcus calcoaceticus [1]. He 
named the organism but without a proper description of it, his report was largely dis-
regarded and the name he proposed poorly accepted [2]. Over time, the same organ-
ism was described by other researchers under different names, some of which are 
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listed as follows: Micrococcus calcoaceticus, Moraxella lwoffi, Achromobacter mucosus, 
Alcaligenes haemolysans, Diplococcus mucosus and Neisseria winogradskyi [1].

Brisou and Prevot coined the name Acinetobacter in 1954 to denote non-motile 
microorganisms in an attempt to differentiate between motile and non-motile 
members in the genus Achromobacter [3]. Paul Baumann and co-workers in 1968 
did a comprehensive survey and proposed that the species listed above were of a 
single genus with similar phenotypic properties and hence did not need to be further 
divided and then proposed the name Acinetobacter [2, 4]. The genus Acinetobacter 
became officially accepted in 1971 following the work done by the subcommittee 
on the naming of Moraxella and related bacteria [4]. In 1974, Bergey’s Manual of 
Systematic Bacteriology listed the genus Acinetobacter and further described it as a 
single species known as Acinetobacter calcoaceticus.

The Acinetobacter are Gram-negative, non-motile and non-fermenting strict 
aerobes. They are catalase-positive, oxidase-negative and non-fastidious bacteria 
whose DNA Guanine + Cytosine content ranges between 39 and 47% [1]. The genus 
Acinetobacter belongs to the Moraxellaceae family, Pseudomonadales order and is of the 
Gammaproteobacteria class of bacteria. Currently, about 74 species of Acinetobacter 
have been validated [5, 6]. A. baumannii is a highly ubiquitous and opportunistic coc-
cobacillus with an extensive environmental spread. It has reservoirs in almost every 
environmental niche [5]. Although A. baumannii can be found in diverse milieus, 
such as soil, water, crude oil, sewage, inanimate objects and surfaces, skin and soft 
tissues, meat and dairy products and vegetables, among others, it thrives mostly in 
hospital environments [7]. Notwithstanding that the whole genome of A. baumannii 
had been sequenced in 2007 by Smith and co-workers (strain ATCC 17978) [8], its 
routine laboratory identification remains challenging because of the phylogenetic 
relatedness of the bacterium to many other species of the genus Acinetobacter known 
collectively as the A. baumannii-calcoaceticus (ABC) complex [1, 5, 7].

The species that originally constituted the Acinetobacter baumannii-calcoaceticus 
complex (previously called genomic species) are namely: Acinetobacter baumannii, 
Acinetobacter pittii (previously called genomic species 3), Acinetobacter nosocomialis 
(genomic species 13TU), Acinetobacter seifertii, Acinetobacter lactucae (also called 
A. dijkshoorniae) and Acinetobacter calcoaceticus. These species of Acinetobacter all 
belonged to the ABC complex [9]. These species are very difficult to distinguish phe-
notypically and share a very close genetic relatedness that makes molecular methods 
necessary for their identification [10]. Besides A. calcoaceticus whose pathogenicity 
is still somewhat unclear, other members of the ABC complex are established human 
pathogens. A. baumannii is the pathogen most frequently implicated in healthcare-
associated infections (HAIs), with A. pittii and A. nosocomialis following closely [11].

Although A. baumannii was initially reasonably susceptible and responded well 
to antibiotic monotherapy, the bacterium has steadily demonstrated increasing rate 
of antibiotic resistance over the years [12]. This problem of increasing multidrug 
resistance (MDR) led the Infectious Disease Society of America (IDSA) to desig-
nate a group of bacteria consisting of Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa and Enterobacter spp. 
as ‘the ESKAPE pathogens’ as a result of their ability to evade killing by antibiotics 
[13]. A. baumannii has become a superbug having developed resistance to virtually 
all known antibiotics in clinical use such as the fluoroquinolones, aminoglycosides 
and even the last-resort broad-spectrum carbapenems [13]. Multidrug-resistant A. 
baumannii (MDRAB) has attained a global epidemiology and is being encountered in 
hospital environments across the globe. Carbapenem-resistant A. baumannii (CRAB) 
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had posed such a great burden on the healthcare system [13] that the World Health 
Organization (WHO) in 2017 listed it as a critical priority bacterium requiring the 
urgent development of new antibiotics [11]. Clinical outbreaks of A. baumannii infec-
tion have occurred in virtually every region of the world, with rates ranging between 
1 and 30% with a greater burden on Eastern Europe [11].

The Middle East region has suffered a considerable number of outbreaks of 
MDRAB, for which it earned the “Iraqibacter” title [14]. These outbreaks of the 
bacterium were encountered during the Iraq war among US military hospitals in Iraq, 
Afghanistan and Kuwait [14]. In spite of extensive and continuing researches con-
ducted to understand the antibiotic resistance mechanism of the bacterium, a clear 
and comprehensive understanding of the pathology, epidemiology and MDR mecha-
nism of A. baumannii remains elusive. Added to these concerns are the very limited 
options available for the treatment of MDRAB infections. Until recently, Colistin 
was the only antibiotic still exhibiting therapeutic efficacy on strains of MDRAB, 
thus making its treatment very difficult with very limited therapeutic options [11]. 
Unfortunately, there have been reports on the emergence and continued rise of 
colistin-resistant A. baumannii in recent years [15–17], bringing to the fore the critical 
and urgent need for new antimicrobials, alternative treatment strategies, stricter 
infection prevention and control, and institution of rational antibiotic stewardship 
programmes. This chapter focuses majorly on the discussion of the current epidemiol-
ogy of A. baumannii, its clinical manifestations and associated infections.

2. Species identification

Acinetobacter baumannii can be identified by cultural growth characteristics, 
biochemical characterization and molecular methods. They are classified as aerobic, 
Gram-negative, oxidase-negative, catalase-positive, indole-negative, urease-nega-
tive, haemolysis-negative, non-motile and non-lactose fermenting rods. Although 
it lacks flagella, A. baumannii can move along wet surfaces in an intermittent and 
jerky manner called twitching motility. It is non-fastidious and is easily grown in 
the laboratory on solid media such as sheep blood agar at an optimum temperature 
of 37°C. Growth can also occur at temperatures as high as 44°C. On blood agar, the 
colonies are about 1–2 mm in diameter and appear whitish, smooth or mucoid when 
the capsule is present. When grown on MacConkey agar, the colonies are light laven-
der in color, indicating non-lactose fermenting [18]. Some molecular methods that 
have been used for the identification of A. baumannii include restriction analysis and 
sequence analysis of the 16 s ribosomal RNA (rRNA) gene, ribotyping and transfer 
RNA (tRNA) spacer fingerprinting [19–23].

3. Epidemiology of Acinetobacter baumannii

Acinetobacter infections have a broad and global epidemiology. They have been 
implicated in outbreaks in both healthcare facilities and in the community; in temper-
ate and tropical climates as well as in conflict and disaster situations [24–26]. Besides 
water and soil that constitute their natural milieu, they may also be found in pets, 
insects and other edible animals.

Common sites colonized in humans include the skin and soft tissues, blood, 
urinary, respiratory and digestive tract, wounds and the central nervous system [1]. 
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The organism is also capable of surviving in biofilms from where it can migrate to 
the lower respiratory tract and trigger a pneumonia infection [27]. It is a common 
pathogen in the intensive care units (ICUs) and is associated with hospital-acquired 
pneumonia (HAP) and ventilator-acquired pneumonia (VAP) in patients with 
prolonged hospital stay. Tubing and other equipment involved in artificial ventilation 
can serve as a source of A. baumannii infection and result in lower respiratory tract 
infection. They are also responsible for other hospital-acquired infections (HAIs), 
such as wound infections, pressure ulcers, burn infections, septicaemia, urinary 
tract infections (UTIs), secondary meningitis and infective endocarditis [28]. A. 
baumannii is associated with skin and soft tissue infections and has been reported in 
traumatic injuries and postsurgical wounds.

Among members of the ABC complex, Acinetobacter baumannii has emerged as the 
best recognized and very important pathogen responsible for healthcare-associated 
infections as a result of its ability to survive under harsh environmental conditions. Its 
capacity to tolerate drying and thrive in the presence of minimal nutritional condi-
tions confers on it a significant ability to acquire different mechanisms, which it uses 
to acquire resistance to various antimicrobial agents and to enhance its transmission in 
the healthcare setting [29, 30]. Complications arise leading to difficulty in treatment 
when burns get infected with A. baumannii. In some cases, a systemic infection can 
arise when the bacteria enter the bloodstream, leading to septicaemia. Prolonged use 
of catheters and antibiotic therapy have also been linked to A. baumannii infections. 
Although carbapenems, one of the broad-spectrum β-lactams with very high in vitro 
activity, used to be a preferred choice for treating infections due to A. baumannii, their 
clinical efficacy has suffered serious decline over time due to increasing resistance 
of the organism [31]. The organism had earlier developed resistance to many classes 
of antibiotics, such as β-lactam antibiotics, cephalosporins, aminoglycosides and 
fluoroquinolones. Only very few drugs, such as polymyxin B, colistin and tigecycline, 
are currently effective for MDRAB [32]. These drugs are expensive and are not read-
ily available in resource-limited countries. Due to the high demand for colistin in the 
treatment of CRAB infections, colistin resistance has also been reported worldwide 
[33]. Resistance to polymyxin B and tigecycline has also been reported [34, 35].

Rates of carbapenem resistance differ according to geographic regions. The 
SENTRY Antimicrobial Surveillance Program observed that among Acinetobacter 
isolates collected between 2013 and 2016, susceptibility to meropenem was the lowest 
in Latin America (13.7%). This was followed by the Asia-Pacific region, Europe and 
the United States of America with 21.0, 22.2 and 54.9%, respectively [36]. In another 
study by Seifert and co-workers between 2016 and 2018, among Acinetobacter isolates 
collected, susceptibility to meropenem was the lowest for Africa and the Middle 
East (17.2%), closely followed by Latin America (19.6%). The susceptibility rates for 
Asia-South Pacific, Europe and North America were 31.4, 33.8 and 63.6%, respec-
tively [37]. The WHO and the European Centre for Disease Prevention and Control 
(ECDC) in their latest report showed that year 2020 witnessed a wide variation in 
the percentages of carbapenem-resistant Acinetobacter spp. across Europe. Out of 38 
countries and areas presenting data, less than 1% occurrence rate was seen in three 
countries, while the occurrence rate was 50% or greater in 35 others. Ireland, the 
Netherlands and Norway were the countries with the lowest rates, while in 21 coun-
tries, particularly in Southern and Eastern Europe, carbapenem resistance rates were 
as high as 50% or greater [31]. By means of molecular typing of A. baumannii isolates, 
the dissemination of three lineages of the organism in Europe was established and 
classified as European clones I, II and III [38]. These were later renamed international 
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clones I, II and III (IC1, IC2 and IC3) in recognition of the fact that these lineages had 
already been disseminated globally [39, 40]. Nine international clones are presently 
recognized [41]. Two multilocus sequence type (MLST) schemes, known as Oxford 
and Pasteur, have also been used to characterize A. baumannii [31]. IC1 and IC2 are 
the most widely spread clones globally and often express the acquired carbapen-
emase oxacillin-hydrolysing (OXA)-23 [25, 26]. Regional variations do occur, with 
international clone V (IC5) and international clone VII (IC7) being more prevalent 
in Central and South America while international clone IX (IC9) is more prevalent in 
Africa and the Middle East [38, 41].

A higher CRAB colonization or infection was also observed in COVID-19 
intensive care unit (ICU) in two studies in Italy. Another Italian study of 16 ICUs in 
the Piedmont area during the COVID-19 outbreak showed that 19% of COVID-19 
infected patients became colonized or were infected by CRAB during their ICU 
stay, leading to a 67% mortality rate [42]. The United States of America, Argentina, 
Europe, Brazil, Japan, China, Hong Kong, Taiwan, Korea, Middle East, Nigeria and 
other African countries are areas where several epidemiological studies have docu-
mented the occurrence of infections due to A. baumannii [43, 44]. Some tropical 
regions of the world have experienced community-acquired pneumonia, particularly 
during warm and humid months [45]. An increase in the number of MDRAB was 
witnessed among the United Kingdom (UK) and US military personnel injured while 
on deployment to Iraq and Afghanistan [46].

The Middle East has also had its fair share of A. baumannii infection. MDRAB has 
been severally documented in hospitals in the United Arab Emirates (UAE), Bahrain, 
Saudi Arabia, Palestine and Lebanon and Egypt [47, 48]. In a retrospective study 
conducted to evaluate the prevalence of MDRAB responsible for infections in patients 
admitted at the ICU of the Riyadh Military Hospital, Saudi Arabia, A. baumannii was 
the most common bacterium isolated, representing 40.9% of the samples [39].

In Nigeria and other resource-limited countries in Africa, there is paucity of 
information regarding the molecular epidemiology and antimicrobial resistance 
status of A. baumannii, mainly due to lack of capacity for the isolation, identification 
and testing of antimicrobial susceptibility of these organisms. Nonetheless, a number 
of studies have been done to establish the molecular characteristics of A. baumannii 
isolates in Nigeria. In one such study conducted in Southwest Nigeria, the genetic 
diversity and molecular mechanisms of CRAB isolated from hospitals were character-
ized. All A. baumannii isolates submitted to the antimicrobial resistance surveillance 
reference laboratory in Nigeria between 2016 and 2020 had their genomes sequenced 
[49]. Eighty-six (86) A. baumannii isolates recorded belonged to 35 different Oxford 
sequence types (Oxf STs) and 28 Institute Pasteur STs (pas STs). Sixteen of the 35 
distinct Oxford sequence types were novel. Thirty-eight of the isolates did not belong 
to any previously known international clone and more than half of the isolates 
expressed phenotypic resistance to 10 of the 12 tested antimicrobial agents. Fifty-four 
of the isolates were resistant to carbapenem, especially the IC7 and IC9 strains. In 
summary, the study recorded an increase in blaNDM-1 prevalence with widespread 
transposon-mediated dissemination of carbapenemase genes in different A. bauman-
nii lineages in Nigeria’s Southwest region. Other studies in the same region also found 
MDRAB with widespread carbapenemase resistance [49–51].

Some strains of the genus Acinetobacter have developed mechanisms that enable 
them to survive for long periods under harsh environmental conditions. This ability 
to withstand adverse conditions promotes their transmission in healthcare settings 
through contaminated fomites [52, 53].
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3.1 Climatic conditions

Originally, Acinetobacter was more prevalent in tropical environment and was 
recorded as causing 17% of pneumonias associated with ventilator use in the ICU of a 
Guatemalan hospital. Only Pseudomonas had a higher prevalence than Acinetobacter in 
that study with 19% [54]. Over the last 5 decades, members of the genus Acinetobacter 
have evolved to become frequent nosocomial pathogens of concern even in the tem-
perate regions [55]. This evolution of Acinetobacter from a little known apparently 
innocuous organism to an opportunistic pathogen credited with causing infections 
in both the hospital and the community has been linked to their possession of several 
survival mechanisms and their ability to rapidly develop resistance to most available 
antibiotics [56]. HAIs due to Acinetobacter have been established to be more prevalent 
in the tropical weather in summer compared to other seasons [57]. Between 1987 and 
1996, the CDC received a report that reviewed 3447 cases of infections involving 
Acinetobacter. The rates of infection were established to be about 50% more from July 
to October compared to other seasons of the year. This increase was thought to be 
probably due to higher humidity of the air and contaminants suspended and transmit-
ted in the air as aerosols. It is worthy of note that the condensate from air-conditioning 
units has been found to predispose to epidemic Acinetobacter infections [57].

3.2 Disease associations

Acinetobacter attained global prominence as a major cause of nosocomial infec-
tions. Patients in intensive care and those with compromised immunity were most 
vulnerable to Acinetobacter infection. Acinetobacter infections have however not been 
confined to healthcare settings alone. Cases of community-acquired infections due to 
Acinetobacter were reported in Australia and Asia. Outbreaks of Acinetobacter infec-
tions were also reported among soldiers during the war in Iraq [14].

3.3 Nosocomial infections

Acinetobacter has established itself as a prominent cause of healthcare-associated 
infections worldwide. The National Healthcare Safety Network (NHSN) in a 2016 
report evaluated the prevalence of antimicrobial-resistant pathogens associated with 
nosocomial infections in the United States of America [58]. Among the frequent 
Gram-negative isolates, Acinetobacter species accounted for 12.8 and 8.8%, respec-
tively, for VAP infection isolates and central line-associated bloodstream infection 
isolates, while catheter-associated urinary tract infection isolates and surgical site 
infection isolates accounted for 1.3% each.

Patients in the ICU, particularly the young and the elderly, and those in long-term 
care settings are more susceptible to A. baumannii [58]. Other factors that may predis-
pose patients to infections with A. baumannii include recent surgery, catheter use, 
tracheostomy, artificial ventilation, parenteral nutrition and treatment with broad-
spectrum antibiotics like carbapenem, fluoroquinolones and ceftriaxone [59, 60]. For 
neonates, low birth-weight, parenteral feeding and catheter use may pose added risks 
[61, 62]. Outbreak investigations are a primary data source for information about 
healthcare-associated Acinetobacter infections [54].

There have also been Acinetobacter outbreaks traceable to common-source con-
tamination such as air conditioner or contaminated ventilator [57]. Cross-infection 
by healthcare workers caring for colonized or infected patients who do not maintain 
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proper aseptic techniques including hand washing and touching inanimate objects 
can also lead to infection outbreak [43, 45, 54]. Introduction of Acinetobacter into a 
hospital may lead to serial or overlapping outbreaks due to MDR strains often seen 
at such times. Multiple strains, which may become endemic, are established with a 
single endemic strain being prevalent subsequently [54]. Protracted colonization may 
enhance endemicity of A. baumannii following an outbreak. In one study, colonization 
persisted for up to 42 months and affected 17% of patients [46]. Multicenter outbreaks 
have been recorded across the globe, in the United States of America, Europe, South 
America, Africa, Asia and the Middle East [47, 48, 60]. In 2005, there was an outbreak 
of carbapenemase producing (OXA-40) Acinetobacter in Greater Chicago area. Several 
hospitals and long-term facilities were affected along with many patients [63].

Several factors can lead to monoclonal outbreaks happening in multiple hospitals. 
These may be spread between institutions, via movements of patients or personnel, 
or exposure to common-source contamination of food or equipment. For this reason, 
the importance of regular epidemiological surveillance as well as infection prevention 
and control measures to stop the transmission and spread of Acinetobacter in long-
term care facilities cannot be overemphasized. There is a paucity of data with respect 
to the prediction of patients suffering from infections due to Acinetobacter. Although 
mortality rates may be high among such patients, it cannot be said with certainty that 
the mortality was due to Acinetobacter infection [64]. For example, the consequence 
of Acinetobacter infections on mortality was indeterminate in a paired cohort study 
of patients with trauma [65]. Compared to control patients who had other infections 
that were not Acinetobacter, a longer stay in the ICU and increased organ failure were 
observed among cases exposed to Acinetobacter. Resistance to imipenem, compro-
mised immunity as seen in old age and diabetes mellitus, the female gender and septic 
shock constitute some of the risk factors that cause mortality in those suffering from 
Acinetobacter infections [52, 53].

3.4 Community-acquired infection

There have been reports of community-acquired Acinetobacter infection in 
Australia and Asia [26]. In Australia, pneumonia occurring in the community was 
more prevalent during the rainy season [66]. In northern Australia with tropical cli-
mate, A. baumannii was implicated in 10% of cases of severe pneumonia acquired in 
the community [67]. Infections acquired in the community have been distinguished 
by pharyngeal presence of the organism, pneumonia that is aggressive and high 
case fatality rates. Chronic obstructive pulmonary disease, alcoholism, tobacco use, 
diabetes and cancer are some noted risk factors [66, 67]. Bloodstream infections have 
also been reported [66, 68].

Between February 2012 and October 2013, Rafei and co-workers in Lebanon 
conducted a study to evaluate the epidemiology of A. baumannii in the community 
outside the human body. Using cultural methods, they tested for the presence of A. 
baumannii in different samples covering the environment, water, food and edible 
animals. Species were identified using rpoB gene sequencing and antibiotic suscepti-
bility was evaluated.

The A. baumannii isolates were studied using two genotyping approaches, namely 
multilocus sequence typing (MLST) and blaOXA-51 sequence-based typing (SBT). 
Varying amounts of A. baumannii were isolated in all the samples. But for one iso-
late that expressed a blaOXA-143 gene, all isolates were phenotypically susceptible to 
antibiotics tested and harbored no carbapenemase-encoding genes. Using MLST, 36 
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sequence types (STs) were obtained, with 24 of them being novel STs reported for 
the first time. The blaOXA-51 SBT demonstrated the presence of 34 variants; 21 of them 
were novel and all were of animal origin. Human genotypes such as international 
clones I and X (IC1 and IC10) were detected in water and animals and the possible 
involvement of these new animal clones in human disease poses a public health 
concern. The researchers then concluded that animals could serve as the possible res-
ervoir for A. baumannii and the spread of new emerging carbapenemases to humans 
[69]. The report of community-acquired infections is rare in the United States of 
America. Although the reason for the greater prevalence of Acinetobacter infections 
in certain regions has not been fully elucidated, it does appear to be connected to 
climatic differences that drive bacterial colonization.

3.5 Conflicts and natural disasters

Acinetobacter infections have been established as a common feature in wars and 
conflict situations. A rise in infections due to this organism has been reported several 
times in different conflicts such as in Korea, Vietnam, Iraq and Afghanistan, leading to 
the suggestion for it to be added as part of differential diagnosis of infections encountered 
among soldiers in combat and after natural disasters in a tropical region [14, 70]. In a 
study involving US troops stationed in Iraq and Afghanistan between 2007 and 2008, 
A. baumannii made up 63% of all bacteria isolated from soldiers’ wounds [70]. In another 
report, Acinetobacter isolated from military personnel were less susceptible to imipenem 
than those isolated from individuals not actively engaged in war (63/87%) [70].

The genetic diversity and resurgence of Acinetobacter in personnel exposed to 
several military operations over many decades appear to suggest the involvement of 
multiple sources, such as local cuisines, contamination of wounds in combat, spread 
in the environment and cross-infection between the field and treatment centres 
[14, 70, 71]. Acinetobacter infections have also had an unusually high prevalence 
during natural disasters. During the 2004 tsunami in Southeast Asia, Acinetobacter 
resistant to several antibiotics were recovered from wounds, blood and respiratory 
fluids among 17 patients who sustained severe soft tissue injuries and fractures [72]. 
A. baumannii was also the most frequently isolated healthcare-associated pathogen in 
an ICU in Turkey after the 1999 Marmara earthquake in that country, despite having 
been only rarely isolated there previously [73].

4. Clinical manifestations of A. baumannii infections

Acinetobacter baumannii is of clinical importance partly due to its ability to survive 
in a broad range of temperatures and environmental conditions. It is highly resistant 
to desiccation and can survive for months on fomites. This makes them easy to spread 
in hospital settings where they can cause nosocomial outbreaks and contribute to the 
spread of MDRAB. Tubing and other equipment involved in artificial ventilation can 
serve as a source of A. baumannii infection and result in lower respiratory tract infection.

They are also responsible for other HAIs, such as wound infections, pressure 
ulcers, burn infections, septicaemia, UTIs, secondary meningitis and infective 
endocarditis [28]. A. baumannii is associated with skin and soft tissue infections and 
has been reported in traumatic injuries and postsurgical wounds. Complications arise 
leading to difficulty in treatment when burns get infected with A. baumannii. In some 
cases, a systemic infection can arise when the bacteria enter the bloodstream, leading 
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to septicaemia. Prolonged use of catheters and antibiotic therapy have also been 
linked to A. baumannii infections.

Also, A. baumannii can develop resistance to many classes of antibiotics, such 
as β-lactam antibiotics, cephalosporins, aminoglycosides, fluoroquinolones and 
carbapenems. The increasing prevalence of CRAB and MDRAB has narrowed down 
therapeutic options making them a global concern. CRAB and MDRAB are associated 
with increased patient hospital stay and mortality [74]. Risk factors for high mortality 
include severity of infection, malignancy, older age, inappropriate use of antibiotics, 
renal failure, invasive procedures and prolonged stay in ICU [75, 76].

Only very few drugs, such as polymyxin B, colistin and tigecycline, are currently 
effective for MDRAB [32]. These drugs are expensive and are not readily available 
in resource-limited countries. Due to the high demand for colistin in the treatment 
of CRAB infections, colistin resistance has also been reported worldwide [33]. 
Resistance to polymyxin B and tigecycline has also been reported [34, 35].

5. Acinetobacter baumannii-associated infections

Gram-negative bacteria, such as Acinetobacter baumannii, Pseudomonas aeruginosa, 
Klebsiella pneumoniae and Escherichia coli, are common causes of many infections 
like pneumonia, bloodstream infections, wound and surgical site infections and 
meningitis in healthcare settings. A. baumannii is a common HAI and can infect 
various human anatomical sites. Clinical manifestations of A. baumannii infection are 
diverse, the most frequent ones being infections of the bloodstream and pneumonia 
associated with use of ventilators [77]. The severity and mortality rate of the infection 
and the patient outcome can depend on the virulence and antibiotic susceptibility of 
the infecting strain, such as MDRAB or CRAB, co-morbidities, length of hospital stay 
and other demographic characteristics [78].

5.1 Pneumonia

As A. baumannii can grow on a variety of environmental conditions, are tolerant to 
desiccants and can withstand many disinfectants and cleaning solutions, it is a com-
mon contaminant of hospital fomites. They are easily transferred from one patient 
to another or from a healthcare provider to a patient. Many of the hospital strains are 
resistant to many antibiotics due to constant exposure to antibiotics in the hospitals 
[79]. Hence, infections caused by these organisms are difficult to treat and are associ-
ated with longer periods of hospitalization. Acinetobacter infection is a major cause of 
pneumonia in patients in ICU who need assisted ventilation. A common feature of this 
pneumonia is delayed onset. In general, Acinetobacter pneumonia demonstrates other 
clinical manifestations that resemble those seen in pneumonia contracted in healthcare 
settings [24]. Pneumonia is a common and serious HAI, especially VAP, in patients in 
the ICU who are on artificial ventilation. Longer periods of antibiotic use, hospitaliza-
tion and time on mechanical ventilators can increase the risk of A. baumannii infection 
[80]. Contaminated equipment and poor personal hygiene are common causes of trans-
mission. In a prospective observational study conducted in nine countries in Europe 
across 27 ICUs, A. baumannii was established as one of the very common pathogens 
responsible for nosocomial pneumonia and it was actually the most prevalent isolate 
in Greece and Turkey [81]. Nosocomial pneumonia following Acinetobacter infection is 
linked with highly resistant isolates with mortality rates ranging between 35 and 70%.
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5.2 Community-acquired pneumonia

Acinetobacter has been shown to cause severe community-acquired pneumonia 
that is distinguished by a stormy illness, in which the onset is abrupt and progression 
is rapid with resultant respiratory failure and uncertain haemodynamic parameters 
[24–26]. About a third of patients may experience septic shock. This situation, which 
appears to be more common in Australia and Southeast Asia when compared to other 
regions, has increasingly fatal outcome [82].

5.3 Bloodstream infections

Although bloodstream infections caused by Acinetobacter are responsible for 
a lower percentage of nosocomial infections, they are still a major public health 
concern since studies have revealed high mortality, especially in CRAB strains [83]. 
A retrospective observational study of bacteraemia caused by Acinetobacter spp. was 
undertaken in a UK hospital. A. baumannii was the most frequently isolated species. 
Most cases of bacteraemia occurred in patients in ICU and were associated with 
CRAB and MDRAB and these were associated with higher mortality rates, irrespec-
tive of appropriate empirical antibiotic therapy [84]. Vascular catheters and the 
respiratory tract are the most common sources of bacteraemia due to Acinetobacter 
infection [85, 86]. The urinary tract and wounds contribute to bloodstream infec-
tions to a lesser extent. Among factors that may predispose to Acinetobacter blood-
stream infections are prolonged hospital or ICU stay, immunosuppression, trauma, 
burns, cancer, mechanical ventilation, previous surgery, previous use of broad-
spectrum antibiotics, immunosuppression, trauma, burns, malignancy and invasive 
procedures [85–89].

5.4 Trauma, wound and surgical site infections

In healthcare settings, many organisms can infect the skin and soft tissue includ-
ing A. baumannii. It has been associated with delay in wound healing, skin graft 
rejection and death from sepsis. Cases of skin and soft tissue infections caused by A. 
baumannii have also been recorded following a blast injury and chronic leg ulcer [90]. 
Fleming et al. in a wound infection mouse model demonstrated that iron deple-
tion plays a crucial role in the pathogenesis of A. baumannii wound infections [91]. 
Exogenous supplementation of iron to the wound site prevented the activation of 
virulence genes involved in iron acquisition.

Contamination of surgical and traumatic injuries by Acinetobacter may result 
in severe infection of the soft tissue that may ultimately lead to osteomyelitis [92]. 
Acinetobacter is not commonly implicated in both community- and hospital-acquired 
skin infections like cellulitis and folliculitis [19, 93, 94]. MDRAB is, however, becom-
ing more prevalent in injuries sustained during conflicts.

5.5 Endocarditis

Acinetobacter species have been implicated as a rare cause of infective endocar-
ditis in people with artificial heart valves [89, 95, 96]. Acinetobacter was respon-
sible for two cases of heart valve endocarditis due to nosocomial bacteraemia in a 
study that investigated 171 patients with prosthetic heart valve [97]. Acinetobacter 
endocarditis is typically characterized by acute onset with an aggressive course. 
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Mortality tends to be higher in the setting of native valve endocarditis than pros-
thetic valve endocarditis, likely because of the low index of suspicion leading to 
delayed treatment in such cases [96].

5.6 Meningitis

Nosocomial meningitis may sometimes result from Acinetobacter infection [98, 99]. 
Prior antibiotic therapy, neurosurgical procedures and intracranial hemorrhage are some 
risk factors for meningitis [100–102]. Outbreaks of nosocomial Acinetobacter meningitis 
were documented in the course of administering contaminated methotrexate via the 
intrathecal route [103]. Survivors of nosocomial meningitis may suffer severe sequalae 
[104]. Though Acinetobacter meningitis is not commonly encountered in the com-
munity, it does occur majorly in hitherto healthy individuals in the tropics and is often 
not resistant to drugs [105]. Common symptoms seen in Acinetobacter meningitis cases 
include fever and meningeal signs with seizures sometimes present. Acinetobacter central 
nervous system infections may present other clinical manifestations similar to those 
generally seen in meningitis.

5.7 Urinary tract infection

Acinetobacter can readily colonize the urinary tract, especially when there is an 
indwelling urinary catheter although the incidence of infection is low [83, 106]. A 
study in the United States of America reviewed 5000 urinary tract infections in medi-
cal ICU. Only 1.6% of the infections were attributed to Acinetobacter and 95% of these 
were linked to urinary catheters [83]. Urinary tract infection acquired in the commu-
nity may occur very sparingly [107, 108]. In the absence of other signs or symptoms of 
infection, isolation of Acinetobacter may be attributed to colonization.

5.8 Other infections

Acinetobacter colonization has been reported in wearers of contact lens, and eye 
infections such as corneal ulcers may occur [109, 110]. In a study of 750 cases of cor-
neal ulcers, Acinetobacter was the third leading cause, responsible for 7% of the cases 
[111]. The infections usually occurred after cataract or other eye surgeries.

Patients admitted to the ICU may develop nosocomial sinusitis due to 
Acinetobacter for which mechanical ventilation is a very important predisposing factor 
[112]. Acinetobacter sinusitis can progress to pneumonia since the infected sinuses 
serve as reservoirs for the organism, which can subsequently be disseminated to the 
lower respiratory tract [112].

6. Virulence properties

Acinetobacter baumannii is an opportunistic pathogen that has a high incidence 
among immunocompromised patients, especially those with a prolonged hospital 
stay. Virulence factors associated with the organism include an outer membrane 
protein A (OmpA), porin proteins, capsule formation, lipopolysaccharide (LPS) 
endotoxin, iron acquisition systems and biofilm formation [113]. OmpA is the 
most abundant surface protein on A. baumannii and contributes immensely to the 
pathogenic potential of the organism. It binds to receptors on the host cell surface, 
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Virulence factor Role in disease

Porin proteins, e.g., OmpA • Adherence and invasion

• Induction of apoptosis

• Serum resistance

• Biofilm formation

Polysaccharide capsule • Serum resistance

• Survival in tissue infection

• Evasion of host immune responses

• Biofilm formation

Lipopolysaccharide (LPS) • Serum resistance

• Survival in tissue infection

• Evasion of host immune responses

Outer membrane vesicle (OMV) • Delivery of virulence factors

• Horizontal transfer of antibiotic resistance gene

• Evasion of host immune responses

Outer membrane proteins (OMPs), e.g., metal (Fe, Zn, 
Mn) acquisition systems; protein secretion systems 
(Types II and IV); penicillin-binding proteins, etc.

• In vivo survival

• Killing of host cells

• Host colonization

• Biofilm formation

• Serum resistance

Table 1. 
Virulence factors in Acinetobacter baumannii and their role in pathogenesis.

thereby inducing apoptosis. It also mediates resistance to complement proteins and 
is involved in biofilm formation [114, 115]. These functions help the bacterium to 
grow under unfavorable conditions and survive both within and outside the host. 
Fimbriae, phospholipases C and D are other cell surface structures and proteins 
that contribute to the virulence property of A. baumannii. Fimbriae like OmpA are 
involved in adhesion to host cell surface and promote colonization. Phospholipase 
C is toxic to host epithelial cells, while phospholipase D mediates serum resistance, 
evasion of host epithelial cells and promotes disease pathogenesis [116]. The 
virulence factors identified for A. baumannii are presented in Table 1, adapted 
from [117].

7. Antibiotic resistance

Acinetobacter baumannii has intrinsic resistance to many antibiotics and also 
easily acquires resistant genes from other bacteria. Acquisition of antibiotic 
resistance is usually mediated via horizontal transfer of antibiotic genes from 
other organisms. Genome sequencing of some strains of A. baumannii revealed 
that resistant genes were acquired from species of Pseudomonas, Escherichia and 
Salmonella [24]. The major mechanisms of antibiotic resistance in A. baumannii 
are presented in Table 2.
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8. Treatment strategies

Acinetobacter baumannii is intrinsically resistant to many antibiotics and is capable 
of acquiring resistant genes via horizontal gene transfer. This makes the treatment of 
infections caused by A. baumannii challenging to treat. Carbapenems are generally 
considered as the antibiotics of choice for treating A. baumannii infections due to 
their efficacy and favorable safety profile. Polymyxin B, colistin and tigecycline are 
other antibiotics that can be used in cases of CRAB. Unfortunately, resistance to poly-
myxin B, colistin and tigecycline has also been reported. MDRAB has necessitated the 
search for other options including new drug discovery. Pan-drug-resistant A. bau-
mannii that is resistant to at least one agent in all classes of antibiotics has rarely been 
reported. The organism is usually sensitive to one or more antibiotics. Thus, efficient 
combination therapy with at least one agent from different classes of antibiotics is 
currently used in the treatment of A. baumannii infections [117].

9. Conclusion

In conclusion, A. baumannii has become established as a pathogen of global 
dimension that is prevalent in various environmental niches. As it has developed 
resistance to many antibiotics including those that were considered to be the last 
resort, treatment of infections caused by this organism has become a major challenge 

Antibiotic class Resistance mechanisms

β-Lactam • β-Lactamase production

• Carbapenemase production

• Loss of outer membrane porin proteins

• Efflux pump reduces antibiotic concentration inside the cell

• Altered expression of penicillin-binding proteins (PBPs)

Tetracyclines • Efflux pump reduces antibiotic concentration inside the cell

• Ribosomal protection

Glycylcylines • Efflux pump reduces antibiotic concentration inside the cell

Aminoglycosides • Enzymatic degradation

• 16 s rDNA methyltransferases

Quinolones • DNA gyrase

• Efflux pump reduces antibiotic concentration inside the cell

Chloramphenicol • Efflux pump reduces antibiotic concentration inside the cell

Trimethoprim / Sulfamethoxazole • Efflux pump reduces antibiotic concentration inside the cell

• Dihydropteroate synthase inhibitor

• Dihydropteroate reductase inhibitor

Macrolides • Efflux pump reduces antibiotic concentration inside the cell

• Polymyxins

Table 2. 
Major mechanisms of antibiotic resistance in Acinetobacter baumannii.
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for clinicians. Efforts in the research and development of new antibiotics and treat-
ment strategies are yet to yield novel results and hence the need to revisit traditional 
methods. Effective public health policies in both the community and hospital can help 
control A. baumannii infections. The saying that ‘prevention is better than cure’ still 
holds true, thus in addition to concerted efforts to develop new and alternative treat-
ment strategies, stringent infection prevention and control mechanisms along with 
continuous epidemiological surveillance should be instituted to curtail the transmis-
sion and spread of MDRAB.
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Resistance: Novel Therapeutic 
Options for Acinetobacter 
baumannii
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Abstract

Undoubtedly, Acinetobacter baumannii stands out as one of the most effective 
bacteria responsible for nosocomial infections within the healthcare system. Due 
to its multidrug-resistant nature and the frequency of outbreaks that it causes the 
treatment of infections caused by this bacterium is challenging, antimicrobial combi-
nation therapy has been utilized to treat multidrug resistance Gram-negatives when 
monotherapy is ineffective. In contrast to antibiotics or short peptides, which possess 
only the capacity to bind and regulate a specific target, antibodies exhibit supplemen-
tary properties attributed to their Fc region, including opsonophagocytic activity, the 
agglutination process, and activation of the complement system. The criticality of 
antibodies is exemplified in triggering immunity against A. baumannii, stimulating 
protective mechanisms, preventing bacterial attachment to epithelial cells, opsoniza-
tion, and complement-dependent bacterial destruction. Given antibodies’ significant 
role in humoral immunity, monoclonal antibodies (mAbs) may be generated to 
specifically bind to certain targets, thereby providing supplemental defense as a form 
of immunotherapy or passive immunization. Many encouraging tactics, ranging from 
phage therapy to immunotherapy, are being scrutinized for their efficacy in treating 
infectious diseases, thus shaping the future treatment landscape.

Keywords: antimicrobial peptides, bacteriophage therapy, drug repurposing, 
nanoparticles, MDR

1. Introduction

Bacterial infections are the leading cause of death worldwide. Although the discov-
ery of antibiotics successfully controlled bacterial infections, overuse and misuse of 
antimicrobial agents exacerbated the selection of multidrug-resistant (MDR) organ-
isms. Acinetobacter baumannii is a bacteria that increases infection and mortality in 
vulnerable patients due to its ability to escape from antibiotic treatments effectively.

The increasing prevalence of nosocomial A. baumannii infections can be largely 
attributed to the remarkable ability of A. baumannii to colonize and form biofilms. 
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Treatment options for these highly resistant pathogens are very limited. Because of 
this, clinicians are forced to resort to last-resort antibiotics, including colistin, which 
may induce nephrotoxicity, and select colistin-resistant A. baumannii.

To effectively treat and limit the spread of MDR A. baumannii (MDR-AB), a thor-
ough understanding of the bacterial virulence factors and host-pathogen interactions 
is crucial. Therefore, before dealing with the new methods of treating A. baumannii, 
there is a need for a brief explanation to clarify the interactions between the host and 
the pathogen.

2. Virulence factors

A. baumannii, a highly antibiotic-resistant pathogen, possesses several virulence 
factors contributing to its pathogenesis and high mortality rates. Several recent stud-
ies have investigated virulence factors associated with the pathogenesis of A. bauman-
nii and could thus serve as novel therapeutic targets.

These factors include the capsular polysaccharide (k-type), a major virulence fac-
tor [1]. The prevalent capsular types of A. baumannii include KL2, KL10, KL14, KL22, 
and KL52, with KL2 being associated with higher drug resistance and virulence [2].

Other virulence factors of A. baumannii include outer membrane proteins 
(Omps), lipopolysaccharide (LPS), capsular polysaccharide (CPS), phospholipase, 
nutrient-acquisition systems, efflux pumps, protein secretion systems, quorum 
sensing, and biofilm production (Table 1) [3]. Understanding these virulence fac-
tors is crucial for developing novel therapeutic targets and strategies to combat this 
multidrug-resistant pathogen [4, 5].

Virulence factor Functions Modulation

omps Induce cell apoptosis, complement resistance, 
biofilm formation, cell invasion, and OMV 
biogenesis.

Unknown

CPS Complement resistance and biofilm formation Up-regulated upon antibiotic 
or ROS exposure

OMVs Transferring OmpA and toxin delivery Up-regulated upon antibiotic 
exposure

LPS Membrane integrity, induce cell apoptosis, and 
antibiotic resistance

Loss during colistin resistance 
development

T6SS Interspecies competition Activate upon contact with 
competing bacteria

Micronutrient 
acquisition systems

Nutrient acquisition Up-regulated under nutrient-
deprived conditions

Type IV pili Twitching motility Up-regulated during growth in 
human serum

Bap Biofilm formation Up-regulated while growing 
under low iron conditions

Csu Pili Biofilm formation Antibiotic exposure

Table 1. 
A. baumannii components, functions, and regulation conditions of them.
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2.1 The mechanisms of A. Baumannii to promote self-survival

A. baumannii outer membrane proteins (Omps) play a versatile role in promot-
ing bacterial survival. Omps in A. baumannii facilitate bacterial acclimatization to 
antibiotic- and host-induced stresses, aiding in immune evasion, stress tolerance, and 
resistance to antibiotics and antibacterial [6]. The ability of A. baumannii to adhere to 
abiotic surfaces and form biofilms, facilitated by Omps, and helps the bacteria survive 
in harsh environmental conditions such as desiccation, nutrient deficiency, and anti-
biotic treatment [7]. Additionally, A. baumannii outer membrane vesicles (OMVs), 
which contain Omps, contribute to the delivery of virulence factors to host cells, 
enhancing bacterial survival, nutrient acquisition, biofilm formation, and patho-
genesis. A. baumannii strains that produce more abundant Omps, such as MDR-AB, 
exhibit more powerful cytotoxicity, stronger innate immune responses, and contain 
more virulence factors, potentially leading to worse outcomes [8].

LPS is the main component on the extracellular membrane of Gram-negative 
bacteria [9]. Mutations in the lipid A biosynthetic pathway can lead to changes in the 
structure of LPS in A. baumannii, resulting in colistin resistance. LPS-deficient A. 
baumannii strains show altered activation of the host innate immune inflammatory 
response, indicating the importance of LPS in interacting with host immune system. 
In addition, LPS-deficient A. baumannii can have alterations in their lipid A com-
position, such as the addition of phosphoethanolamine (pEtN) and galactosamine 
(GalN), which can affect the binding affinity of colistin. Loss of LPS in A. baumannii 
can lead to the upregulation of lipoproteins and the accumulation of the capsular 
polysaccharide poly-β-1,6-N-acetylglucosamine as compensatory mechanisms for 
membrane stabilization.

Capsular polysaccharides (CPS) in A. baumannii play a crucial role in bacterial 
virulence and survival [10]. The CPS structures in A. baumannii are diverse and can 
vary between strains [5]. These CPS structures often include rare sugars and branched 
oligosaccharide repeating units. The CPS biosynthesis gene encodes glycosyltransfer-
ases that are responsible for the synthesis of CPS structures. The presence of specific 
CPS structures, such as KL2, has been associated with antibiotic resistance and 
clinical outcomes in A. baumannii infections. Understanding the CPS structures and 
the genetics involved in their synthesis is important for developing targeted treatment 
strategies against A. baumannii infections [11].

Phospholipase functions of A. baumannii play a crucial role in promoting 
bacterial survival. Multiple studies have identified phospholipases as virulence 
factors that contribute to the pathogenicity of A. baumannii. The phospholipases are 
involved in the growth of phosphatidyl choline as a carbon source. These phospholi-
pases involve various processes, such as hemolytic and cytolytic activities [12]. The 
phospholipases enable A. baumannii to adapt to different host niches and environ-
ments, enhance resistance to antimicrobial peptides, and facilitate the invasion of 
host cells [13].

Nutrient acquisition systems are often crucial for pathogen growth and survival 
during infection and represent attractive therapeutic targets. The pathogen utilizes 
various mechanisms to acquire essential nutrients from the host, such as heme  
and zinc.

A. baumannii has metal homeostatic systems that regulate the levels of essential 
nutrient metals in bacteria, particularly iron and zinc, that are important for colo-
nizing different tissues and growth within vertebrates [14]. These systems, such as 
siderophores, heme uptake systems, and zinc uptake systems, enable the bacteria 
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to overcome host-imposed zinc limitation by aiding in zinc uptake into the cells. 
The hemO locus, including the heme-degrading enzyme and scavenger, is required 
for high-affinity heme acquisition from host hemoglobin and serum albumin [15]. 
Additionally, A. baumannii possesses a Zn uptake (Znu) system consisting of an 
inner membrane ABC transporter and an outer membrane TonB-dependent receptor, 
which allows the pathogen to overcome host-imposed Zn limitation [16]. The TonB-
dependent receptor HphR is an important component of the heme uptake system in 
A. baumannii and is involved in iron acquisition and cellular processes contributing to 
virulence [17].

Efflux pumps, such as the RND-type efflux pumps AdeABC and AdeIJK, contrib-
ute to resistance against antibiotics and biocides [18]. They are involved in extruding 
hazardous substances, including antibiotics, from within the bacterial cells [19]. 
The overexpression of these efflux pumps, particularly AdeABC, has been found to 
enhance the survival of A. baumannii when exposed to residual concentrations of 
biocides [20]. Additionally, efflux pump genes, such as adeABC, have been associated 
with tigecycline resistance in A. baumannii [21]. Efflux pumps have broad substrate 
specificity and are widely distributed among bacterial species, making them a major 
contributor to multidrug resistance in A. baumannii [22].

Secretion systems have recently been demonstrated to be involved in the patho-
genic process, and five types of secretion systems out of the currently known six 
from Gram-negative bacteria have been found in A. baumannii. They can promote 
the bacteria’s fitness and pathogenesis by releasing various effectors. Additionally, 
antibiotic resistance is found to be related to some types of secretion systems [23]. 
The type VI secretion system (T6SS) is one such system found in A. baumannii, which 
is involved in bacterial competition and the delivery of toxic effector proteins [24, 25]. 
The T6SS in A. baumannii is highly diverse, with significant diversity in the range 
of encoded T6SS VgrG and effector proteins. There are multiple VgrG genes in A. 
baumannii strains, with most strains encoding between two and four different VgrG 
proteins. T6SS structural components of A. baumannii are distinctive from other 
Gram-negative pathogens, as evidenced by the presence of the Acinetobacter genus-
specific protein AsaA. The T6SS in A. baumannii is involved in bacterial competition 
and secretion of T6SS effectors, such as Hcp is associated, which acts as a virulence 
factor, transporter of effectors, and chaperone [26]. The putative T6SS effectors in 
A. baumannii have diverse functions, including peptidoglycan hydrolases, lipases, 
nucleases, and nucleic acid deaminases [27].

Quorum sensing (QS) in A. baumannii plays a crucial role in bacterial survival and 
pathogenicity [28]. The QS system coordinates the behavior of individual bacteria 
in a population by mediating the synthesis, secretion, and binding of auto-inducer 
signals. The deletion of the auto-inducer synthase gene abaI in A. baumannii resulted 
in a decrease in biofilm formation and pathogenicity [28]. Additionally, the QS system 
regulates important virulence-related phenotypes, such as surface-associated motility 
and biofilm formation [29]. The antibacterial peptide octopromycin inhibited biofilm 
formation and surface movements in A. baumannii, demonstrating its anti-quorum 
sensing activity [30]. Furthermore, the abaI/abaR QS system was found to affect 
growth characteristics, morphology, biofilm formation, resistance, motility, and 
virulence in A. baumannii [31].

Targeting virulence factors can be an effective strategy for combating A. bau-
mannii and other multidrug-resistant bacteria. Additionally, the development of 
innovative strategies, such as using bacteriophages and antibiotics in combination, 
has shown increased efficacy in eradicating biofilms formed by antibiotic-resistant 
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A. baumannii strains. So, targeting virulence factors and biofilm formation can be an 
effective approach for designing drugs to combat multidrug-resistant bacteria.

3. Antimicrobial drug resistance and overcoming its problems

Antimicrobial drug resistance is one of the three major global threats to public 
health identified by the World Health Organization (WHO) in the twenty-first 
century [32]. A. baumannii is one of the main and most successful pathogens respon-
sible for hospital-acquired infections in the modern healthcare system, associated 
with high mortality rates [33]. According to the reports of the WHO, about 80% of 
MDR or extensively drug-resistant (XDR) microbes have occurred due to the misuse 
and overuse of antibiotics, and these infections are associated with severe side effects 
[34]. Due to the prevalence of infections and outbreaks caused by A. baumannii drug 
resistance, few antibiotics are effective for treating infections caused by this pathogen 
[35]. Due to the spread of MDR bacteria and other resistant pathogens, there are 
limited treatment and prevention options, the failure of most antibiotics necessitates 
the search for better treatment options, and the need for alternative treatment options 
to treat these microbial pathogens (Figure 1).

3.1 Combined treatment

Antibiotics, such as colistin, carbapenems, and tigecycline, have been widely used 
to treat A. baumannii [36]. However, the emergence of this bacterium’s multidrug-resis-
tant strains has limited these drugs’ effectiveness. Therefore, new treatment options 
like combination therapy are an urgent need. The idea behind combination therapy is 
to use two or more antibiotics to kill the bacteria, which works in different ways [37]. 
In fact, in this method, two antibiotics with other mechanisms of action are used, such 
as a β-lactam antibiotic and an aminoglycoside, or two antibiotics that have the same 
means of action but work on different targets, such as two different carbapenems [38].

Figure 1. 
Newer approaches to tackle of MDR A. baumannii.
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There are several notable advantages to using combination therapy to treat A. 
baumannii. One of these advantages is increasing the effectiveness of treatment [39]. 
Bacteria are attacked from different angles, making it more difficult for bacteria 
to develop resistance using multiple drugs. Another advantage is that combination 
therapy can reduce the risk of treatment failure [40]. Since A. baumannii is very resis-
tant to antibiotics, using one antibiotic may not be effective in treating the infection, 
using multiple antibiotics reduces the chance of treatment failure, using lower doses 
of each antibiotic can reduce the risk of side effects in patients.

For example, pairing β-lactam antibiotics with β-lactamase inhibitors has proven 
effective in combating resistant strains. Additionally, combining antibiotics with 
different mechanisms of action can target multiple bacterial pathways, increasing 
treatment efficacy [41].

Combination therapy, including colistin/imipenem, colistin/meropenem, colistin/
rifampicin, colistin/teicoplanin, colistin/sulbactam, colistin/tigecycline, and imipe-
nem/sulbactam has been widely studied [42].

Combination therapy has been explored as a potential treatment option for A. 
baumannii infections. Various combinations have been studied, including polymyx-
ins, rifampicin, fosfomycin, sulbactam, and avibactam. Polymyxin-based combina-
tions, such as with cell-wall acting agents, rifamycins, and fosfomycin, have been 
extensively studied [43, 44]. Berberine hydrochloride (BBH) has shown synergistic 
effects with antibiotics against MDR A. baumannii (MDR-AB), including tigecycline, 
sulbactam, meropenem, and ciprofloxacin [45]. High-dose sulbactam, combined 
with additional antibacterial agents, including colistin, has shown promise in treating 
MDR-AB or XDR A. baumannii (XDR-AB) infections [46]. Fosfomycin has also been 
explored as a potential component of combination therapy against carbapenem-
resistant A. baumannii (CR-AB) conditions [47, 48].

The combination of colistin and tigecycline is effective in the treatment of A. bau-
mannii infection that causes pneumonia by ventilator, and the combined therapy of 
colistin, meropenem, and ampicillin-sulbactam in A. baumannii infection in patients. 
It was effective in treating blood malignancy [49–51]. The combined treatment of 
colistin/rifampicin and ampicillin/sulbactam/carbapenem combination therapy is 
effective for the treatment of A. baumannii MDR bacteria, causing carbapenem-
resistant skin and soft tissue infections [52].

3.2 Repurposing

Repurposing existing drugs is also considered a strategy for treating MDR bacte-
rial infections. Repurposing drugs, drug repositioning, or therapeutic switching is 
like giving a second life to medication previously used for different purposes [53].

Instead of starting from scratch, drug repurposing allows researchers to tap into 
a vast library of already approved drugs, saving time and resources in drug develop-
ment [54]. Moreover, low risk of failure, shorter time frame cycles, high success 
rates, and less investment are the practicalities of drug repurposing. These drugs have 
undergone rigorous safety and efficacy testing, making them attractive candidates for 
new applications [55].

Drug repurposing has emerged as a promising approach to combating drug-
resistant A. baumannii infections. Several FDA-approved drugs have shown potential 
for repurposing in treating A. baumannii. Etoposide and genistein inhibit the synthesis 
of polyphosphates, a virulence factor in A. baumannii (Table 2) [56–58]. 5-fluoro-
uracil (5-FU), fluspirilene, and Bay 11–7082 were identified as drugs that resensitize 
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A. baumannii to azithromycin and colistin in combination [59, 60]. Erythromycin, 
levamisole, chloroquine, and propranolol inhibit quorum sensing and virulence 
factors in A. baumannii [61, 62]. Tyrothricin, typically active against Gram-positive 
bacteria, exhibited antimicrobial activity against drug-resistant A. baumannii [63, 64].

Apramycin, Niclosamide, Oxyclozanide, Rafoxanide, and Ciclopirox are antibac-
terial, antifungal, and anthelmintic agents that have a therapeutic effect on MDR-AB.

Apramycin is an aminoglycoside approved for veterinary use. Apramycin can 
potentially be used against highly drug-resistant pathogens [65]. Niclosamide is an 
anthelmintic drug that has been commercially available in some countries since the 
1960s. Niclosamide is usually administered orally and is well absorbed by the intesti-
nal mucosa. High doses of this drug are associated with serious side effects. This drug 
has recently been suggested to treat other diseases, such as cancer [66].

Niclosamide alone has no antibacterial activity against A. baumannii, but a syner-
gistic interaction between Niclosamide and colistin has been observed against CR-AB. 
This drug interacts with colistin-resistant strains negatively charged outer membrane, 
leading to a synergistic effect with colistin.

Oxyclozanide is used in veterinary medicine to treat fluke infections in ruminants. 
Oxyclozanide enhances the effect of colistin on colistin-sensitive and resistant isolates 
of A. baumannii, P. aeruginosa, and K. pneumoniae. This effect may be due to disrupt-
ing of the bacterial cell envelope [67].

Compound Activity-alone or in 
combination with

Approved use or known as

Central Nervous 
System

Citalopram Polymyxin B Antidepressant

Fluspirilene Colistin Antipsychotic

Infectiology Apramycin Alone Antibacterial

Niclosamide Colistin Anti-helminthic

Oxyclozanide Alone Anti-helminthic

Rafoxanide Alone Anti-helminthic

Ivermectin Alone Anti-parasitic

Zidovudine Alone Antiretroviral

Ciclopirox Alone Antifungal

Metabolism Ebselen Alone Anti-inflammatory

Bay 11–7082 Colistin Anti-inflammatory

Natural Compound Resveratrol Colistin Stilbene

Oncology Mitomycin C Alone Anti-tumor

Tamoxifen Alone Breast cancer

5-Fluorouracil 
(5-FU)

Zidovudine Antineoplastic (Colon 
Cancer)

Mitotane Polymyxin B Antineoplastic

Gallium Alone Antineoplastic

Toremifene Alone Breast cancer

Table 2. 
Relevant repurposing reports for MDR-AB.
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Rafoxanide at a suitable dose had histidine kinase-antagonistic activities, which 
disrupted the abilities of MDR bacterial and fungal cells to adapt to stress condi-
tions [68].

Ciclopirox, an antifungal drug, has bacteriostatic activity against E. coli, K. pneu-
monia, and A. baumannii of MDR strains [69]. The ciclopirox mechanism of action is 
the effect on the galactose and LPS salvage pathways [70].

Mitomycin C, tamoxifen, 5-FU, mitotane, and gallium include anti-tumor and 
antineoplastic drug agents that have a therapeutic effect on MDR-AB. The anticancer 
drug Mitomycin C can kill A. baumannii exponential-phase, stationary-phase, and 
biofilm cells [71].

The tamoxifen metabolites were active against MDR Gram-negative bacilli and 
might be potential antimicrobial agents to treat infections by these pathogens [72]. 
Colistin combination therapy with selective estrogen receptor modulators (SERM) as 
tamoxifen, raloxifene, and toremifen also exhibited good activity against polymyxin-
resistant P. aeruginosa, K. pneumonia, and A. baumannii [73].

5-FU, another anticancer drug, despite the overall safety of 5-FU, is toxic in some 
cases, with toxicities including gastrointestinal (e.g., diarrhea, nausea, vomiting, 
mucositis/stomatitis, anorexia), hematological (e.g., neutropenia, thrombocytopenia, 
anemia), and dermal (e.g., hand-foot syndrome) symptoms [74]. The combination 
of 5-FU with azithromycin was effective against CR-AB; this combination, possibly 
reducing 5-FU toxicity, has also been found to inhibit the growth of bacterial patho-
gens and reduce the production of virulence factors [66].

Mitotane, an antineoplastic agent approved for cancer treatment, acts with 
polymyxin B on carbapenem- or polymyxin-resistant GNB in vitro. These efflux 
pump inhibitors alone did not affect the bacteria, but their activity was restored when 
combined with an antibiotic [70].

Gallium’s antibacterial activity dates back many years, but this drug was originally 
used as an anticancer agent. Due to its chemical similarity to iron, gallium inhibits the 
reactions or redox pathways of iron and the growth of bacteria [75]. Therefore, gal-
lium compounds show broad-spectrum antibacterial activity and inhibit the growth 
of important bacterial pathogens such as A. baumannii, P. aeruginosa, S. aureus, K. 
pneumoniae, and E. coli [76].

3.3 New antibiotics

Acinetobacter is one of the ESKAPE pathogens known for their ability to escape 
commonly used antibacterial treatments. With the rise of antibiotic resistance and 
the limited efficacy of current therapeutic options, exploring novel antibiotics offers 
hope in combating A. baumannii infections. New antibiotics have been developed and 
tested for treating MDR bacterial strains. These include cephalosporins and car-
bapenems in combination with new β-lactamase inhibitors, tetracycline derivatives, 
fourth-generation fluoroquinolones, new combinations of β-lactam and β-lactamase 
inhibitors, siderophore cephalosporins, and new aminoglycosides that have been 
approved or are in clinical development [77, 78].

Novel siderophore cephalosporins antibiotics, such as cefiderocol (CFDC) [79] 
and GT-1 (LCB10–0200), have shown promise for the treatment of A. baumannii 
infections. CFDC demonstrates strong activity against MDR-AB isolates with lower 
minimum inhibitory concentration (MIC) values than other Gram-negative agents 
[80]. GT-1, combined with a β-lactamase inhibitor GT-055, has shown efficacy against 
many multidrug-resistant pathogens, including A. baumannii [81]. These novel 
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siderophore cephalosporins utilize a “trojan-horse approach” to evade resistance 
mechanisms in Gram-negative bacteria [82]. However, available clinical data for 
cefiderocol are conflicting, leaving infectious disease specialists uncertain about its 
optimal use in clinical practice.

New tetracycline antibiotics, such as eravacycline and TP-6076, have shown 
promise for treating Acinetobacter infections. Eravacycline has demonstrated higher 
potency than tigecycline and has been effective against XDR-AB in vitro [83]. It has 
also been found to have a low propensity to induce Clostridioides difficile infection 
(CDI) [84]. TP-6076, a fully synthetic fluorocycline, has shown greater activity than 
other tetracycline-class antimicrobials against CR-AB isolates [85]. These novel tetra-
cyclines can be valuable additions to the limited armamentarium of drugs targeting 
Acinetobacter [86].

Non-β-lactam β-lactamase inhibitors antibiotics have shown promise for the 
treatment of Acinetobacter infections. The etx2514/sulbactam combination has 
demonstrated efficacy against MDR-AB isolates, including those producing class D 
β-lactamases [87]. The zidebactam/cefepime combination has shown in vitro activity 
against CR-AB [88]. Wck 4234/meropenem combination has exhibited broad-spec-
trum activity against MDR Enterobacteriaceae, including NDM, KPC, OXA, CTX-M, 
SHV, and TEM enzyme-producing isolates [89]. Ln-1-255/meropenem-imipenem 
combination has demonstrated decreased resistance rates against CR-AB isolates [90]. 
However, non-β-lactam β-lactamase inhibitors for treating Acinetobacter infections 
are still ongoing research and development. Further, clinical data is needed to sup-
port the efficacy of these inhibitors, and gaps still exist in the treatment of infections 
caused by MDR Acinetobacter spp.

Novel β-lactam antibiotics, such as AIC-499 and FSI-1671, combined with sulbac-
tam have shown promise for treating Acinetobacter infections. AIC-499 is a member 
of the diazabicyclooctane class of β-lactamase inhibitors with broad-spectrum 
activity against Ambler class A, C, and D serine β-lactamases [87]. Sulbactam, a 
first-generation β-lactamase inhibitor, has limited action against Acinetobacter spp. 
due to susceptibility to cleavage by β-lactamases [91]. However, when combined 
with durlobactam, the activity of sulbactam is effectively restored against MDR 
Acinetobacter strains [92]. FSI-1671, in combination with sulbactam, has also shown 
enhanced antimicrobial activity against A. baumannii clinical strains in China, with 
cefoperazone-sulbactam as the most potent compound.

Novel polymyxin B-derived molecules, such as SPR741 and FADDI-287, have 
shown potential for treating A. baumannii. SPR741 has been found to potentiate 
several large scaffold antibiotics in Gram-negative pathogens by interacting pre-
dominantly with the outer membrane (OM) [93]. FADDI-287, on the other hand, has 
been shown to induce significant perturbation in glycerophospholipid metabolism 
and histidine degradation pathways, leading to synergistic bacterial killing in both 
polymyxin-susceptible and resistant A. baumannii [94]. These findings suggest that 
these novel polymyxin B-derived molecules can overcome resistance mechanisms and 
enhance the efficacy of antibiotics against A. baumannii.

A new aminoglycoside called apramycin (EBL-1003) has promising potential 
for treating A. baumannii infections. It has proven to have wide antibacterial action 
against A. baumannii strains resistant to various drugs, including standard-of-care 
aminoglycosides [95, 96]. Because of its distinct chemical makeup, apramycin can 
circumvent resistance mechanisms frequently present in clinical isolates that produce 
carbapenemase [97]. Apramycin is quickly bactericidal against A. baumannii accord-
ing to in vitro experiments [98]. In a mouse lung infection model, apramycin was also 
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discovered to have a high likelihood of target attainment and robust in vivo activity 
[99]. According to these findings, apramycin may be a potent therapeutic alternative 
for treating CR-AB lung infections linked to high mortality rates and few therapeutic 
options.

3.4 Bacteriophage

A. baumannii infections may be treated using bacteriophage therapy, particu-
larly when there is MDR. Bacteriophages are viruses that can target and eradicate 
particular types of bacteria. The effectiveness and safety of phage therapy against 
A. baumannii infections have been demonstrated in several studies [91, 100, 101]. 
Other Gram-negative and Gram-positive bacteria, such as S. aureus, P. aeruginosa, K. 
pneumoniae, Enterococcus, and Salmonella, have been demonstrated to be sensitive to 
phage therapy. The effectiveness of phages can be assessed by evaluating their host 
range, adsorption rate, and growth curve from various sources, such as sewage or 
wastewater [102]. Bacteriophages, particularly lytic ones, have shown promise as 
anti-A. baumannii therapeutics [103]. Both options are using phages in monophage 
therapy, phage cocktails, or in conjunction with antibiotics [104]. Bacteriophages 
can be administered parenterally, orally, topically, or by inhalation [105]. Endolysins 
and depolymerases, two phage-derived enzymes, have also been investigated for use 
against A. baumannii [106]. Antimicrobial therapy can use specific lytic bacterio-
phages or enzymes generated from phages to treat infections brought on by strains of 
A. baumannii that are incredibly drug-resistant.

Bacteriophages have multiple mechanisms of action against Acinetobacter. Some 
phages produce depolymerase, such as the tail spike proteins of phages Fri1, AS12, 
BS46, and AP22, which specifically recognize and digest the capsular polysaccharide 
(CPS) of A. baumannii. Other phages can cause mutations in genes that alter the 
architecture of the bacterial envelope, leading to phage resistance but also increased 
sensitivity to antibiotics, such as colistin [107]. Additionally, phages can degrade 
biofilms formed by A. baumannii, as demonstrated by the bacteriophage AB3 and its 
endolysin LysAB3 [106]. Further, phage therapy can target specific mechanisms of 
antimicrobial resistance, such as efflux pumps, by using efflux pump inhibitors or 
phage steering [108]. So, phage therapy, including phage cocktails and combination 
therapy with antibiotics, as well as phage-derived enzymes, such as endolysins and 
depolymerase, shows promise in combating MDR-AB [109].

But, bacteriophage therapy for Acinetobacter infections has limitations that must 
be addressed. Firstly, there needs to be more reliable safety and efficacy data for phage 
therapy due to the heterogeneity in previously published studies [110]. Secondly, the 
systemic effects of phage therapy need to be better understood [111]. Thirdly, the 
optimal application protocol for phage therapy, including the route of administra-
tion, frequency of administration, treatment duration, and phage titer, is still [112]. 
Additionally, the concurrent ecological and evolutionary interplay between phages 
and host bacteria requires further research to utilize the potential of bacteriophage 
therapy [103].

3.5 Antimicrobial peptides

Antimicrobial peptides (AMPs) have been demonstrated to prevent the MDR 
bacteria A. baumannii from growing. AMPs with a strong antibacterial action against 
A. baumannii strains include PapMA-3, MSI-78, h-Lf1–11, magainin-2, and LL-37.  
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These peptides exhibit potential as antibacterial agents for treating bacteria 
that are resistant to antibiotics and have a broad spectrum of antimicrobial 
action [113].

Multiple mechanisms explain how AMPs work against Acinetobacter. The bacte-
rial membrane may be damaged by AMPs, which will cause cell lysis [114, 115]. 
Additionally, they can infiltrate bacterial cells and engage with internal elements 
[116]. The mode of action of AMPs can be identified using experimental biophysi-
cal methods with model membranes and bacterial cells [117]. AMPs can cause the 
Acinetobacter membrane to become permeable [113]. The membrane’s interaction 
with AMPs and lipids may result in soft supramolecular configurations, which can 
thin and lyse the membrane [118].

A hybrid peptide called PapMA-3 showed low cytotoxicity and strong bacterial 
selectivity against carbapenem-resistant bacteria [119]. A. baumannii was also sig-
nificantly resistant to the antibacterial effects of MSI-78, h-Lf1–11, magainin-2, and 
LL-37 [120, 121]. The anti-A. baumannii potency of Melittin, Histatin-8, Omega76, 
AM-CATH36, Hymenochirin, (this peptide showed moderate activity against Gram-
negative bacteria), and Mastoparan was the highest [113]. In animal models of A. 
baumannii-induced pneumonia, the AMP derivatives dN4 and dC4 have shown 
therapeutic effectiveness [119–122]. Furthermore, it has been demonstrated that 
larger doses of dN4 and dC4 can suppress and/or remove Acinetobacter biofilms [119].

A. baumannii, the cyclic peptide ZY4, exhibited little potential to induce resis-
tance and outstanding efficacy against A. baumannii, including MDR strains [123]. 
According to these results, the antimicrobial peptides PapMA-3, MSI-78, h-Lf1–11, 
magainin-2, LL-37, Melittin, Histatin-8, Omega76, AM-CATH36, Hymenochirin, 
Mastoparan, dN4, and dC4 are efficient in treating Acinetobacter infections.

For the treatment of Acinetobacter infections, AMPs have limitations. Their 
toxicity and stability in vivo are two drawbacks that restrict their use [124]. Another 
drawback is their inherent limitations as peptides, such as stability, cytotoxicity, and 
bioavailability [125]. Natural AMPs are only useful for topical applications due to 
their pharmacological characteristics [126]. However, efforts are being made to get 
around these restrictions by creating novel AMPs and peptidomimetics by clever 
chemical changes [127]. Despite these drawbacks, AMPs hold potential as alternative 
therapies for focusing on bacterial infections, such as Acinetobacter, in both extracel-
lular and intracellular contexts [113].

3.6 Monoclonal antibodies

Monoclonal antibodies (MAbs) are synthetic proteins, replicating the immune 
system’s defense against pathogens like bacteria and cancer cells. These antibodies 
target molecules on the pathogen’s surface known as antigens. The distinguishing 
quality of MAbs is their specificity, which enables them to recognize and bind to a 
certain target with extreme accuracy [128].

Heavy chains and light chains, two different protein chains, make up mAbs. These 
chains come together to form a Y-shaped structure. The antibody’s variable region, 
found at the end of each Y-shaped arm and binds to the particular antigen [129]. On 
the other hand, the antibody’s constant region controls its effector actions, such as 
triggering the immune system or obstructing the pathogen’s activity [130, 131].

MAbs can use different pathways to exert their therapeutic effects. The process 
of neutralization, in which antibodies bind to the pathogen and stop it from infect-
ing host cells, is a typical one. In order to enlist immune cells in the fight against the 
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disease, antibodies can potentially trigger antibody-dependent cellular cytotoxicity 
(ADCC). Furthermore, MAbs can influence the immune system’s response, enhanc-
ing the body’s ability to eliminate the infection.

MAbs have shown promise as novel therapeutics for Acinetobacter infections. 
These antibodies targeting outer membrane protein A (OmpA) of A. baumannii have 
improved opsonophagocytic killing of the bacteria [132]. Another MAb targeting the 
capsule of A. baumannii has been found to enhance macrophage opsonophagocytosis 
and reduce pro-inflammatory cytokines, leading to improved survival in mouse 
models [133]. A second MAb, developed through hybridoma technology, has also 
been shown to enhance macrophage opsonophagocytosis and improve survival in 
murine models of A. baumannii infection alone and combination with antibiotics 
[134]. Furthermore, MAbs have the advantage of being a narrow spectrum, target-
ing only the pathogenic species and potentially avoiding microbiome disruption. 
Additionally, a human MAb targeting a DNABII epitope has demonstrated efficacy in 
disrupting biofilms formed by Gram-positive and Gram-negative bacteria, including 
A. baumannii [135]. These findings suggest that MAbs have the potential to be effec-
tive therapeutic options for Acinetobacter infections, either alone or in combination 
with antibiotics.

Modulation of pro- and anti-inflammatory cytokines, such as IL-1, IL-6, TNF, and 
IL-10, was necessary for MAb treatment to be effective [136]. The FDA has approved 
three antibacterial MAb medicines, and numerous others are undergoing clinical 
studies [137].

Treating A. baumannii infections has led to the development of the MAbs C8 and 
65. In deadly bacteremic sepsis and aspiration pneumonia models of XDR-AB infec-
tion, MAb C8 improves opsonophagocytosis by focusing on the capsular carbohydrate 
on the bacterial surface [134]. On the other hand, MAb 65 is extremely powerful and 
effective while expanding the coverage of immunotherapeutic strains. Combined 
with antibiotics, such as colistin, it improves macrophage opsonophagocytosis and 
results [135]. These MAbs have demonstrated the ability to decrease cytokine pro-
duction, blood bacterial density, and sepsis biomarkers, showing their therapeutic 
potential [132, 133]. Antibacterial MAb treatment works by regulating pro- and anti-
inflammatory cytokines and improving germ clearance by opsonophagocytosis.

AR401-mAb is a monoclonal antibody developed for the treatment of A. bauman-
nii infections. It is highly effective against a broad range of clinical isolates and has 
been shown to improve outcomes when combined with antibiotics [134]. AR401- 
MAb is synergistic with colistin, a commonly used antibiotic, further enhancing its 
protective effects [138]. These findings suggest that using MAbs, such as AR-401, 
in treating A. baumannii infections may effectively improve outcomes and reduce 
bacterial burden.

Another study produced MAbs against the outer membrane protein A (OmpA) of 
A. baumannii, with one MAb, 1G1-E7, showing high reactivity and opsonophagocytic 
killing activity [132].

3.7 Nanoparticles

Nanoparticles are exceedingly small particles, usually measuring between 1 and 
100 nanometers. Various substances, including metals, metal oxides, lipids, and poly-
mers, can be used to create them. Nanoparticles differ from their bulk counterparts 
in multiple ways due to their small size and frequently show improved reactivity and 
physical features.
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Due to their unique characteristics, nanoparticles hold considerable potential 
for infection control. The ability of nanoparticles to carry antimicrobial drugs or to 
naturally have antimicrobial features makes them useful in fighting drug-resistant 
bacteria. They also interact with bacterial cells well due to their large surface area-to-
volume ratio, strengthening their antimicrobial actions.

The bacterial cell membrane can be damaged by nanoparticle interaction, which 
results in cell death. They can pierce bacterial membranes, resulting in structural 
damage and cellular component release. This condition impairs the bacteria’s capac-
ity to continue performing essential tasks and ultimately results in their death. 
Acinetobacter is typically treated with nanoparticles by various mechanisms, includ-
ing membrane damage, ROS production, efflux pump inhibition, and disruption 
of bacterial growth and biofilm formation. Copper sulfide nanoparticles, gallate-
polyvinylpyrrolidone-capped hybrid silver nanoparticles, metal nanoparticles (such 
as silver, copper, gold, and aluminum), and zinc oxide nanoparticles are the specific 
types of nanoparticles utilized in treating Acinetobacter. These nanoparticles can 
potentially be potent therapeutic agents since they have demonstrated antibacterial 
activity against drug-resistant strains of Acinetobacter.

Nanoparticles, especially silver nanoparticles (AgNPs) and copper sulfide 
nanoparticles (cN16E-CuS), have shown promise in treating A. baumannii infections.

Silver nanoparticles (AgNPs) prevent the growth of drug-resistant strains by 
damaging bacterial membranes and producing reactive oxygen species (ROS). 
Biologically synthesized AgNPs also show efflux pump inhibitory activity, contribut-
ing to their antibacterial effect against MDR-AB. In addition, silver nanoparticles 
can induce apoptosis, inhibit the synthesis of new DNA in bacteria, and contribute 
to their antibacterial products. The antimicrobial activity of AgNPs is concentration-
dependent and effective against extracellular and intracellular A. baumannii. 
Therefore, silver nanoparticles (AgNPs) have shown potential in treating A. bau-
mannii infection. AgNPs showed good inhibitory activity against MDR-AB isolates, 
both alone and in combination with certain antibiotics. The combination of AgNPs 
with colistin, meropenem, or tigecycline significantly increased the sensitivity of 
MDR-AB to these antibiotics. In addition, silver nanoparticles inhibited the growth 
of A. baumannii and showed anti-biofilm activity, especially against weak biofilm 
producers. AgNPs have been found to interfere with the development of A. bauman-
nii and disrupt biofilm formation, leading to a decrease in the expression of viru-
lence and biofilm genes. Biogenic silver nanoparticles (Bio-AgNPs) synthesized by 
Fusarium oxysporum have also demonstrated antibacterial activity against CR-AB. 
Combined with polymyxin B, they showed synergistic effects, reducing the viable A. 
baumannii cells.

Another study reported using cationic antimicrobial lipid-stabilized copper sul-
fide nanoparticles (cN16E-CuS) for treating CR-AB. cN16E-CuS exhibited excellent 
antimicrobial activity against A. baumannii, producing excess reactive oxygen species 
and damaging bacterial membranes [139]. These findings suggest that nanoparticles, 
such as AgNPs and cN16E-CuS, can be used as alternative treatments for A. bauman-
nii infections.

3.8 Gene editing

The DNA of creatures, including bacteria, can be changed using groundbreaking 
gene editing. It entails precise genetic manipulations such as adding, deleting, or 
changing particular genes. By concentrating on and interrupting the genes important 
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for antibiotic resistance and other virulence factors, this method holds enormous 
potential for fighting bacterial infections.

Several gene editing tools have been developed to target bacterial pathogens, 
including A. baumannii. These tools include zinc finger nucleases (ZFNs) [140], 
transcription activator-like effector nucleases (TALENs) [141], and clustered regu-
larly interspaced short palindromic repeats (CRISPR) [142] systems. Each tool offers 
unique advantages and can be tailored to target specific genes or regions within the 
bacterial genome.

CRISPR/Cas systems have shown potential as gene-editing tools for treating A. 
baumannii infections [143]. Genetic manipulation methods for studying A. baumannii 
pathogenesis and drug-resistance mechanisms are time-consuming and inefficient 
[144]. However, a detailed protocol for genetic manipulation in A. baumannii, 
including gene deletion, insertion, and point mutation, has been provided [145]. This 
protocol can aid in developing more innovative approaches to diagnosing and treating 
A. baumannii infections [146]. CRISPR/Cas systems can provide useful information 
about the functions of genes in A. baumannii and help identify potential targets for 
antimicrobials [140].

The Cas9 enzyme, which functions as molecular scissors, and a tiny RNA molecule 
known as a guide RNA, which points the Cas9 enzyme to the precise target spot in the 
bacterial genome, make up the CRISPR-Cas9 system.

Researchers have successfully applied the CRISPR-Cas9 system to target and edit 
the genes in A. baumannii. By designing appropriate guide RNA molecules, specific 
genes involved in antibiotic resistance or biofilm formation can be disrupted or 
modified, rendering the bacteria susceptible to existing antibiotics or impeding their 
ability to form biofilms.

CRISPR-Cas9 has been used for genetic manipulation in A. baumannii to study 
pathogenesis and drug-resistance mechanisms [145], which allowed for investigating 
drug-resistant mechanisms [147]. Additionally, a method for deleting drug-resistant 
genes in A. baumannii using CRISPR-Cas9 has been developed, providing a novel 
approach for preventing the spread of drug-resistant genes and treating drug-resis-
tant bacteria [148].

3.9 Other

LpxC inhibitors have shown potential for the treatment of MDR-AB infec-
tions. Inhibiting LpxC, an enzyme involved in lipid biosynthesis, can reduce the 
toxicity of lipopolysaccharide (LPS) and enhance the efficacy of antibiotics [149, 
150]. Compounds, such as LpxC-2 and LpxC-4, are synergistic with iron chelators 
(2,2′-bipyridyl and deferiprone) and gallium nitrate, significantly reducing bacterial 
counts.

The lipid A production is inhibited by LpxC inhibitors, such PF-5081090, which 
also increase cell permeability and improve resistance to a range of antibiotics such 
as rifampin, vancomycin, azithromycin, imipenem, and amikacin [72]. Additionally, 
LpxC inhibitors can prevent the activation of the Toll-like receptor 4 (TLR4) by A. 
baumannii LPS, which increases the opsonophagocytic death of the bacterium and 
decreases inflammation [150]. According to these results, LpxC inhibitors might be a 
different type of treatment for A. baumannii infections resistant to many drugs [151].

RX-P873, a novel antibiotic from the Pyrrolocytosine series, has shown high 
binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. 
It has demonstrated in vitro activity against MDR Gram-negative and Gram-positive 
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strains of bacteria, including A. baumannii. In a study, RX-P873 was found to be 
highly active against A. baumannii isolates, with a MIC90 value of 1 μg/ml, which was 
two-fold more active than colistin and four-fold more active than tigecycline [152]. 
Additionally, a case report described the successful treatment of XDR-AB peritoneal 
dialysis-associated peritonitis with combination antibiotics, including intraperitoneal 
polymyxin B, without the need for catheter removal or switch to hemodialysis [153]. 
A study on RX-P873’s activity against extracellular and intracellular forms of infection 
by A. baumannii, and other bacteria found that RX-P873 may be a useful alternative 
for disorders involving intracellular bacteria, especially Gram-negative species [154]. 
Therefore, RX-P873 shows potential as a treatment for Acinetobacter infections.

4. Conclusion

Novel therapeutic strategies for antimicrobial therapy of Acinetobacter baumannii 
include combination therapy, drug repurposing, novel antibiotics, bacteriophage 
therapy, antimicrobial peptides (AMPs), human monoclonal antibodies (Hu-mAbs), 
nanoparticles, and gene editing. These strategies aim to overcome drug resistance and 
improve the efficacy of treatment against extensively drug-resistant Acinetobacter 
baumannii.
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Abstract

The book chapter titled “Host–Pathogen Interactions in Acinetobacter baumannii 
Infections: Mechanisms of Immune Evasion and Potential Therapeutic Targets” provides 
an in-depth exploration of the complex interplay between A. baumannii, a notorious 
multidrug-resistant pathogen, and the host immune system. The chapter will focus 
on elucidating the mechanisms employed by A. baumannii to evade and subvert the 
immune response, leading to persistent and challenging infections. It will highlight 
key aspects of the host immune system, including innate and adaptive immunity, 
pattern-recognition receptors, and immune cell responses, in the context of A. bauman-
nii infections. Additionally, the chapter discusses the virulence factors and strategies 
employed by A. baumannii to establish infection, such as biofilm formation and quorum 
sensing. Importantly, the chapter will explore potential therapeutic targets for combat-
ing A. baumannii infections, including novel antimicrobial agents, immunotherapies, 
and host-directed therapies. The comprehensive analysis of host–pathogen interactions 
and identification of therapeutic strategies presented in this chapter contribute to our 
understanding of A. baumannii infections and pave the way for future research direc-
tions and healthcare interventions in combating this formidable pathogen.

Keywords: A. baumannii, defense, host–pathogen interactions, immune evasion, 
therapeutic targets

1. Introduction

1.1 Background and significance of A. baumannii infections

A. baumannii has gained notoriety as an emerging nosocomial pathogen, character-
ized by its rapid development of drug resistance and its affinity for adhering to abiotic 
surfaces, including medical equipment [1]. This unique ability contributes to the wide-
spread dissemination of the bacterium and presents a formidable challenge in control-
ling A. baumannii infections, particularly ventilator-associated pneumonia in clinical 
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settings [2]. A comprehensive understanding of the intricate host–pathogen interactions 
during A. baumannii infections is needed to combat this elusive pathogen effectively.

The chapter delves into the array of virulence factors employed by A. bauman-
nii that are recognized by host innate pattern-recognition receptors. Activation of 
downstream inflammasomes triggers inflammatory responses, and innate immune 
effectors are recruited to counter A. baumannii infection. This detailed analysis 
reveals the tug-of-war between the pathogen’s virulence factors and the host’s immune 
surveillance, highlighting a complex dance determining the course of the disease.

A. baumannii strategically regulates the expression of various virulence factors to 
counteract host immune attacks [1, 2]. The chapter illuminates these evasion strate-
gies, providing insights into how the bacterium manipulates the immune landscape. 
Furthermore, the discussion extends to potential therapeutic targets to combat A. 
baumannii infections. Novel antimicrobial agents, immunotherapies, and host-
directed therapies are evaluated for their potential to disrupt the delicate balance of 
host–pathogen interactions.

The comprehensive analysis presented in this chapter significantly contributes to our 
understanding of A. baumannii infections and paves the way for future research avenues 
and healthcare interventions. By unraveling the intricate mechanisms of immune eva-
sion and identifying potential therapeutic targets, this chapter empowers the scientific 
community to combat the challenges posed by A. baumannii and devise strategies that 
promise to improve patient outcomes and address this urgent global health concern.

1.2 Objectives and scope of the book chapter

The primary objective of the book chapter is to provide a comprehensive exploration 
of the intricate interplay between the multidrug-resistant pathogen A. baumannii and 
the host immune system. The chapter aims to elucidate the mechanisms underlying A. 
baumannii’s ability to evade and subvert the host immune response, thereby establishing 
persistent and challenging infections. By delving into the complex interactions between 
the pathogen and the immune system, the chapter contributes to a deeper understanding 
of A. baumannii infections.

The scope of the chapter encompasses various facets of host–pathogen interac-
tions, focusing on innate and adaptive immunity. It covers key components such as 
pattern-recognition receptors, immune cell responses, and the role of virulence fac-
tors in evading immune surveillance. Additionally, the chapter explores the virulence 
strategies employed by A. baumannii, including biofilm formation and quorum 
sensing. Importantly, the chapter goes beyond elucidating the immune evasion 
mechanisms and examines potential therapeutic targets for combating A. baumannii 
infections. In addition, it includes a detailed discussion of novel antimicrobial agents, 
immunotherapies, and host-directed therapies. Overall, the chapter aims to provide a 
comprehensive analysis that contributes to our understanding of A. baumannii infec-
tions and paves the way for future research directions and healthcare interventions.

2. Overview of A. baumannii

2.1 Taxonomy and classification

A. baumannii belongs to the domain bacteria, phylum Pseudomonadota, class 
Gammaproteobacteria, order Pseudomonadales, and family Moraxellaceae within the 
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genus Acinetobacter [1]. The genus includes various species, among which the A. 
baumannii complex is of particular clinical relevance. This complex comprises A. bau-
mannii, Acinetobacter nosocomialis, A. pitii, and Acinetobacter calcoaceticus [2]. Among 
these, A. baumannii is the most clinically significant species within this complex, 
responsible for various hospital-acquired infections [1].

The A. calcoaceticus-A. baumannii complex (ACB complex) is a group of closely 
related bacterial species within the genus Acinetobacter. This complex comprises 
several species that share genetic similarities and often pose challenges for accurate 
identification due to their phenotypic similarities [2–4].

A. calcoaceticus (Genomic Species 1) is an environmental species with limited 
clinical significance. It is part of the ACB complex and is genetically related to other 
species within the complex. While it is often associated with environmental sources 
such as soil and water, its role in clinical infections is not as well-defined [3, 4].

A. baumannii (Genomic Species 2) is the most clinically important species 
within the ACB complex. It is a gram-negative bacterium responsible for various 
infections, particularly in healthcare settings. A. baumannii is associated with 
multidrug resistance, making it challenging to treat. It is a major cause of noso-
comial outbreaks and has been extensively studied due to its impact on patient 
health [1, 2].

Acinetobacter pittii (Genomic Species 3) is another member of the ACB complex 
and is closely related to A. baumannii. It shares genetic similarities with other species 
in the complex, making accurate identification difficult using conventional methods. 
It has been isolated from clinical specimens and is associated with healthcare-associ-
ated infections [3, 4].

A. nosocomialis (Genomic Species 13TU) is part of the ACB complex and is closely 
related to other species within the complex. It shares genetic traits with A. baumannii 
and A. pittii, making it challenging to distinguish phenotypically. Like other spe-
cies in the complex, A. nosocomialis has been isolated from clinical specimens and is 
associated with nosocomial infections [2, 3].

Although not originally included in the ACB complex, A. seifertii has been 
proposed for inclusion within the complex. It was previously called Acinetobacter 
genomic species “close to 13TU.” This species has been isolated from clinical speci-
mens and contributes to the complexity of Acinetobacter species identification [3, 4].

Acinetobacter lactucae (Synonym of A. dijkshoorniae) formerly known as 
Acinetobacter NB14, is closely related to A. pittii and A. nosocomialis. It has been 
identified as a high-priority pathogen, especially in intensive care units. A. lactucae is 
associated with clinical infections, and its inclusion within the ACB complex adds to 
the challenges of accurate identification [3, 4].

A. baumannii is a short, almost round, rod-shaped (coccobacillus) Gram-negative 
bacterium. It lacks flagella for locomotion but exhibits twitching or swarming motil-
ity, possibly due to type IV pili or exopolysaccharide activity. While other species 
of the Acinetobacter genus are often found in soil [1, 2], A. baumannii is primarily 
isolated from hospital environments [1], making it an important nosocomial patho-
gen. It can be an opportunistic pathogen, particularly affecting individuals with 
compromised immune systems [1–3].

The taxonomy of the Acinetobacter genus has evolved, leading to the recognition of 
distinct species within the A. calcoaceticus-A. baumannii complex [3]. Initial taxo-
nomic studies in the mid-1980s identified A. baumannii as a novel species, separate 
from other Acinetobacter species [3, 4]. Further refinements in taxonomy included 
the proposal of new species, such as A. pittii “Genomic Species 3” and A. nosocomialis 
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“Genomic Species 13TU” [1, 4]. The bacterium’s ability to adapt and thrive in diverse 
environments underscores its clinical significance and challenges in infection control.

2.2 Clinical relevance and epidemiology

A. baumannii is a prominent pathogenic bacterium associated with various 
healthcare-associated infections, posing significant challenges to medical commu-
nities worldwide [1, 2]. Its clinical significance is underscored by its ability to cause 
a wide range of infections, its propensity for antibiotic resistance, and its capacity 
for persistence in hospital environments [5]. It commonly colonizes respiratory 
secretions, wounds, urine, and various medical equipment within hospital environ-
ments [5]. The risk of acquiring an A. baumannii infection is heightened in indi-
viduals with prior antibiotic exposure, intensive care unit (ICU) admissions, central 
venous catheter usage, and mechanical ventilation or hemodialysis [6]. Infections 
often target organ systems with high fluid content, such as the respiratory tract, 
cerebrospinal fluid, peritoneal fluid, and urinary tract [3]. Notably, outbreaks of 
Acinetobacter infections, particularly pneumonia, have been reported in healthcare 
settings [1, 7, 8].

The epidemiology of A. baumannii presents a significant public health concern, 
particularly within healthcare settings. This ubiquitous pathogen is capable of causing 
both community and healthcare-associated infections (HAIs), with the latter being 
the more common form [9]. A. baumannii has gained attention due to its extensive 
antimicrobial resistance and ability to initiate large, often multi-facility nosocomial 
outbreaks [5]. These outbreaks are facilitated by its tolerance to desiccation and its 
multidrug resistance, allowing it to persist in hospital environments [10].

The epidemiology of A. baumannii infections is complex, with the coexistence of 
both epidemic and endemic diseases. Epidemic infections can lead to outbreaks, while 
endemic infections are often fueled by the selective pressure of antimicrobials [11]. 
Notably, severe A. baumannii infections, such as bacteremia or pneumonia in inten-
sive care unit patients undergoing intubation, are not associated with higher attrib-
utable mortality rates or increased hospital stays [12]. The pathogen mainly causes 
pulmonary, urinary tract, bloodstream, or surgical wound infections, with invasive 
procedures and broad-spectrum antimicrobial use being significant risk factors [4, 5]. 
Despite its clinical importance, knowledge about A. baumannii is less developed than 
other pathogens, and accurate identification remains challenging [5]. Nevertheless, 
the organism’s ability to accumulate antimicrobial resistance mechanisms, resistance 
to desiccation, and propensity to cause outbreaks make it a noteworthy and challeng-
ing pathogen in healthcare settings.

2.3 Virulence factors and pathogenicity

Virulence factors are crucial determinants that contribute to A. baumannii’s ability 
to establish infections, evade host defenses, and cause disease. Several virulence 
factors have been identified, shedding light on this bacterium’s pathogenesis and 
virulence mechanisms.

One notable virulence factor is the presence of efflux pumps, which contribute to 
antibiotic resistance and facilitate the extrusion of antibiotics, limiting their effec-
tiveness [13]. Additionally, β-lactamases and aminoglycoside-modifying enzymes 
significantly confer antibiotic resistance, further enhancing the bacterium’s ability to 
survive and cause infections [14].
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Biofilm formation is another important virulence factor that enables A. baumannii 
to adhere to surfaces, including medical devices and equipment, contributing to its 
persistence in healthcare environments [10, 15]. The Bap protein and the csu locus 
are associated with biofilm production and pathogenicity, allowing A. baumannii to 
colonize and establish infections on medical surfaces [10].

Furthermore, iron acquisition systems are critical virulence factors that facilitate 
the acquisition of iron, an essential nutrient for bacterial growth, from the host 
environment [16]. Iron is crucial for bacterial survival and proliferation, and A. 
baumannii has developed mechanisms to scavenge iron from the host to support its 
growth during infection [17].

The outer membrane protein OmpA, phospholipases, membrane polysaccharide 
components, penicillin-binding proteins, and outer membrane vesicles are additional 
virulence factors identified in A. baumannii and contribute to its pathogenesis [18]. 
These factors play roles in host immune responses, bacterial adherence, and evasion 
of host defenses.

The aforementioned virulence factors confer A. baumannii as a formidable 
opportunistic pathogen known for its ability to cause severe nosocomial infections, 
particularly in intensive care units (ICUs) [19–21]. Its emergence as a public health 
threat is underscored by its escalating antibiotic resistance and its ability to cause 
various clinical manifestations, including pneumonia, septicemia, and meningitis [3].

A critical facet of A. baumannii’s pathogenicity is its ability to trigger a robust 
immune response upon infection. Toll-like Receptor 4 (TLR4) serves as a key patho-
gen recognition receptor, inducing the production of inflammatory cytokines, such 
as IL-6 and TNF-α, upon A. baumannii infection [22]. Activating the inflammasome 
pathway leads to pyroptosis and the release of pro-inflammatory cytokines, contrib-
uting to the host’s defense mechanisms against the infection [23].

A recent study has identified that A. baumannii secretes a bioactive lipid that 
triggers inflammatory signaling and cell death [22], further highlighting its capacity 
to induce immune responses. Specific virulence factors, such as phospholipases and 
outer membrane proteins, also contribute to its ability to adhere to host cells and 
evade immune recognition [24].

The epidemiology of A. baumannii infections suggests that it can cause outbreaks 
in healthcare settings, particularly ICUs. Cross-contamination between patients and 
the environment plays a significant role in its transmission [3]. This fact emphasizes 
the importance of infection control measures to prevent its spread and reduce hospi-
tal-acquired infections [3].

The pathogenicity of A. baumannii is multifaceted, encompassing antibiotic 
resistance, immune activation, biofilm formation, and virulence factor secretion. 
Its ability to trigger immune responses while evading host defenses contributes to its 
clinical impact and challenges in treatment.

3. Host immune responses to A. baumannii

3.1 Innate immune responses

3.1.1 Recognition and activation of innate immune cells

The host’s innate immune responses are pivotal in the initial recognition and 
defense against A. baumannii infection. Innate immune responses are orchestrated 
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by a complex interplay between pattern-recognition receptors (PRRs) and various 
immune effectors [25]. Understanding these interactions is critical for developing 
novel therapeutic strategies, including vaccines and immunotherapeutics, to combat 
A. baumannii infections.

Recognition of A. baumannii by PRRs, such as Toll-like receptors (TLRs), initiates 
a cascade of events leading to the production of inflammatory cytokines and che-
mokines [26]. These signaling molecules recruit innate immune effectors, including 
neutrophils and macrophages, to the site of infection. Neutrophils, in particular, play 
a crucial role in the control of A. baumannii infections [27]. They are rapidly recruited 
to the site of infection and contribute to bacterial clearance through phagocytosis and 
the release of antimicrobial peptides and reactive oxygen species.

However, A. baumannii has evolved mechanisms to evade immune responses and 
establish infections. Its ability to develop antibiotic resistance further complicates 
treatment strategies, highlighting the need for alternative approaches such as immu-
nomodulation [28].

3.1.2 Inflammatory cytokine production

The host’s innate immune responses play a critical role in recognizing and 
responding to A. baumannii infection, producing inflammatory cytokines and 
chemokines that orchestrate the immune defense against the pathogen [26].

The host’s PRRs recognize pathogen-associated molecular patterns (PAMPs) on 
the bacterium’s surface. This recognition triggers a cascade of events that lead to the 
activation of downstream signaling pathways, ultimately producing pro-inflamma-
tory cytokines and chemokines [27].

Inflammatory cytokines, such as interleukin-1 (IL-1), tumor necrosis factor-alpha 
(TNF-α), and interleukin-6 (IL-6), are key mediators of the immune response against 
A. baumannii infection [28]. These cytokines play pivotal roles in promoting inflam-
mation, recruiting immune cells to the site of infection, and enhancing immune cell 
activation. For instance, neutrophils, essential players in controlling A. baumannii 
infection, are rapidly recruited to the site of infection in response to cytokine signals 
[29]. Neutrophils contribute to bacterial clearance through phagocytosis and the 
release of antimicrobial peptides and reactive oxygen species [30].

However, A. baumannii has evolved mechanisms to evade immune responses, 
including modulating the expression of virulence factors to counteract host immune 
attacks [31]. This tug-of-war between the bacterium and the host’s immune system 
underscores the complexity of the immune response against A. baumannii infection.

3.1.3 Phagocytosis and intracellular killing

Phagocytosis, the process by which immune cells engulf and internalize patho-
gens, is pivotal in the initial defense against A. baumannii. Neutrophils, macrophages, 
and other professional phagocytes are essential effectors in host defense against 
this bacterium [26]. Neutrophils, in particular, are rapid responders recruited to the 
site of infection and are crucial for controlling A. baumannii infections [26]. Upon 
encountering A. baumannii, neutrophils undergo activation, leading to flattening and 
the extension of pseudopods, which initiate phagocytosis [32]. This process involves 
recognizing bacterial components through pattern-recognition receptors, such as 
TLRs, on the surface of neutrophils. These interactions trigger bactericidal mecha-
nisms, including oxidative bursts and the production of cytokines and chemokines, 
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amplifying the immune response against the pathogen [33]. Furthermore, neutrophils 
have been shown to release neutrophil extracellular traps (NETs), web-like structures 
composed of DNA, histones, and antimicrobial proteins, as part of their defense 
against A. baumannii [32].

In addition to phagocytosis, intracellular killing mechanisms are critical for 
neutralizing A. baumannii within immune cells. Once phagocytosed, immune cells 
destroy the engulfed bacteria through various means. Professional phagocytes can 
generate reactive oxygen species (ROS) through oxidative burst, which is toxic to 
internalized pathogens [33]. These ROS contribute to the bactericidal activity of 
immune cells, aiding in the elimination of A. baumannii [33]. Moreover, the produc-
tion of antimicrobial peptides and enzymes within phagolysosomes further enhances 
the intracellular killing of A. baumannii [33].

While neutrophils and other immune cells play a crucial role in phagocytosis 
and intracellular killing, the ability of A. baumannii to survive within host cells and 
manipulate immune responses poses challenges in combating infections caused by 
this pathogen.

3.2 Adaptive immune responses

3.2.1 T cell-mediated responses

T cell-mediated responses, including CD4+ helper T cells and CD8+ cytotoxic T cells, 
are essential components of the adaptive immune system’s defense against A. baumannii. 
These T cells recognize specific antigens presented by antigen-presenting cells (APCs) 
and respond by proliferating and differentiating into armed effector T cells. CD4+ T 
cells help other immune cells, such as B cells and macrophages, enhance the immune 
response. CD8+ T cells target and eliminate A. baumannii-infected host cells [26].

Despite the importance of T cell-mediated responses, understanding the host 
immune interaction with A. baumannii still needs to be completed. Developing 
effective vaccines and immunotherapies to combat A. baumannii infections requires 
a deeper comprehension of the host immune mechanisms, identifying key virulence 
factors targeted by the immune system, and the modulation of T cell responses to 
enhance their efficacy against this pathogen. The ongoing efforts to elucidate the 
immune response to A. baumannii will contribute to developing innovative strategies 
to mitigate its impact on global health.

3.2.2 B cell-mediated responses

The role of B cell-mediated responses in combating A. baumannii infections is 
paramount. B cells, a crucial component of the adaptive immune system, contrib-
ute to the defense against pathogens by producing antibodies and participating in 
immune memory.

B cells play a central role in recognizing specific antigens presented by A. bauman-
nii [33]. Upon encountering these antigens, B cells become activated and undergo 
clonal expansion, producing antibodies specifically tailored to bind to the pathogen. 
These antibodies can neutralize A. baumannii by preventing its interaction with host 
cells and opsonizing the bacterium for phagocytosis by innate immune cells [34].

The antibodies produced by B cells can initiate various effector mechanisms that 
contribute to the clearance of A. baumannii infections. These mechanisms include 
complement activation, which enhances opsonization and lysis of the pathogen, and 
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antibody-dependent cellular cytotoxicity (ADCC), where immune cells such as neu-
trophils and macrophages recognize and eliminate antibody-bound A. baumannii [34].

One of the key functions of B cells is to establish immunological memory. Memory 
B cells are long-lived and can rapidly respond to re-infection with A. baumannii. Upon 
re-exposure to the pathogen, memory B cells can quickly differentiate into antibody-
secreting plasma cells, leading to a faster and more robust immune response. This 
memory response is essential for preventing recurrent infections and providing 
long-term protection [34].

Despite the critical role of B cell-mediated responses, challenges remain in fully 
understanding their specific interactions with A. baumannii antigens and elucidat-
ing the antigenic targets that elicit protective B cell responses and characterizing the 
antibody repertoire generated during A. baumannii infection will contribute to the 
development of effective vaccines and immunotherapies. Additionally, the impact 
of A. baumannii’s ability to adapt and regulate virulence factor expression on B cell 
responses requires further investigation.

3.2.3 Antibody production and opsonization

Antibodies, also known as immunoglobulins (Ig), are produced by B lymphocytes 
in response to the presence of antigens, such as A. baumannii components. Upon 
exposure to A. baumannii, B cells recognize specific antigens, leading to their activa-
tion and subsequent differentiation into plasma cells. These plasma cells secrete 
antibodies tailored to target A. baumannii antigens, facilitating their neutralization 
and removal from the body [35, 36]. The production of antibodies, particularly IgG, is 
a key feature of the adaptive immune response against A. baumannii infections.

Opsonization is a crucial process by which antibodies bind to pathogens, marking 
them for recognition and engulfment by immune cells such as phagocytes. Antibodies 
attached to A. baumannii enhance the efficiency of phagocytosis by facilitating the 
interaction between the pathogen and immune cells. This opsonic effect improves 
the clearance of A. baumannii from the host’s bloodstream and infected tissues. 
Opsonization is particularly important in countering A. baumannii’s ability to evade 
the host immune response through mechanisms such as capsule formation and outer 
membrane protein variation [34, 35].

Immunization strategies involving A. baumannii antigens, such as outer mem-
brane vesicles (OMVs) or capsular polysaccharides, have shown promise in inducing 
robust antibody responses [35]. Immunization with A. baumannii OMVs has been 
demonstrated to elicit high levels of IgG antibodies, which are associated with opso-
nization and improved antibiotic sensitivity of the pathogen [35]. These antibodies 
can enhance the susceptibility of A. baumannii to antibiotics, potentially enhancing 
the effectiveness of antibiotic treatments [35].

4. Mechanisms of immune evasion by A. baumannii

4.1 Capsule and outer membrane proteins

The capsule of A. baumannii is a protective polysaccharide layer that envelops 
the bacterium, enabling it to evade recognition by host immune cells. This structure 
hampers opsonization, a process in which antibodies or complement proteins coat the 
pathogen, marking it for phagocytosis by immune cells. By masking surface antigens 
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and inhibiting complement deposition, the capsule shields A. baumannii from 
immune detection and subsequent destruction [37].

A. baumannii employs outer membrane proteins (OMPs) as versatile tools to 
modulate interactions with the host immune system. These OMPs are pivotal in 
mediating adhesion, invasion, and immune evasion. Through antigenic variation 
and phase variation, A. baumannii can alter the expression of specific OMPs, evading 
immune surveillance and memory. Additionally, some OMPs have been shown to 
interact with host receptors, thereby dampening immune responses and promoting 
bacterial survival [31].

4.2 Efflux pumps and antibiotic resistance

Efflux pumps are integral membrane proteins that transport many molecules, 
including antibiotics, out of bacterial cells. A. baumannii employs efflux pumps to 
expel antibiotics from within the bacterial cell, thereby reducing intracellular drug 
concentrations and rendering antibiotics less effective. Efflux pumps contribute to 
multidrug resistance (MDR) in A. baumannii, enabling the bacterium to survive 
exposure to various antibiotics, including aminoglycosides, fluoroquinolones, and 
beta-lactams [13, 27].

Several classes of efflux pumps are associated with A. baumannii’s antibiotic 
resistance. Notably, the major facilitator superfamily (MFS), resistance-nodulation 
cell division (RND) family, small multidrug resistance (SMR) family, and multidrug 
and toxic compound extrusion (MATE) family of efflux pumps are implicated in the 
bacterium’s ability to expel antibiotics and evade host immune responses [13, 27]. 
These pumps have three main components: the outer membrane channel, the peri-
plasmic lipoprotein, and the inner membrane transporter.

Efflux pumps reduce antibiotic susceptibility by preventing antibiotics from accu-
mulating within A. baumannii cells. This phenomenon leads to elevated minimum 
inhibitory concentrations (MICs) of antibiotics required to inhibit bacterial growth. 
Consequently, the bacterium becomes more resistant to antibiotic treatments, limit-
ing the effectiveness of conventional therapeutic approaches [13, 27].

4.3 Biofilm formation

Biofilms are complex communities of bacterial cells encased within a self-
produced extracellular matrix. This matrix, primarily composed of polysaccharides, 
proteins, and DNA, protects bacteria from external threats, including host immune 
cells and antibiotics. A. baumannii’s ability to form biofilms allows it to attach to biotic 
and abiotic surfaces, making medical devices and equipment potential reservoirs for 
infection [10, 15, 38].

Biofilm formation enables A. baumannii to evade the host immune response 
through multiple mechanisms. The biofilm matrix acts as a physical barrier that 
hinders the penetration of immune cells and antibodies, thereby reducing the efficacy 
of the immune system’s defense mechanisms. Additionally, the altered physiology of 
bacterial cells within the biofilm contributes to decreased susceptibility to immune 
clearance. Immune cells, such as neutrophils and macrophages, struggle to effectively 
target and eliminate bacteria embedded within the biofilm structure [10, 15, 38].

A. baumannii biofilms are frequently associated with chronic infections, particu-
larly those involving medical devices like catheters and ventilators. These infections 
are challenging to treat due to the inherent resistance of biofilm-embedded bacteria to 
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antibiotics. The biofilm matrix provides a protective environment that shields bacteria 
from the effects of antibiotics and prevents their effective eradication. As a result, 
chronic infections caused by A. baumannii biofilms can persist despite antibiotic treat-
ment, leading to prolonged patient suffering and increased healthcare costs [15, 38].

4.4 Modification of surface structures and antigenic variation

A. baumannii employs various strategies to modify its surface structures, effec-
tively masking its presence from the host immune system. One of the key modifica-
tions is the alteration of lipopolysaccharides (LPS) and OMPs, which are major targets 
for host immune recognition. By modifying these surface molecules, A. baumannii 
can evade detection by immune cells and antibodies, reducing the effectiveness of the 
immune response. Additionally, A. baumannii may shed OMVs containing modified 
surface components, further contributing to immune evasion [31, 39].

Antigenic variation is a sophisticated strategy employed by A. baumannii to 
continually alter its surface antigens, making it difficult for the host immune system 
to recognize and mount an effective response. A. baumannii possesses a diverse reper-
toire of surface antigens, such as pili and fimbriae, which can undergo rapid changes 
through genetic recombination and mutation. This dynamic antigenic variation 
hinders the host’s ability to generate a robust and lasting immune response, allowing 
A. baumannii to evade immune surveillance and persist within the host [31, 37, 39].

Modifying surface structures and antigenic variation collectively contribute to A. 
baumannii’s ability to escape immune recognition and clearance. These mechanisms 
limit the host’s ability to develop a strong and sustained immune response against the 
bacterium. As a result, A. baumannii can persist within the host, leading to chronic 
infections that are challenging to treat with conventional antibiotics. This persistence 
is particularly problematic in healthcare settings, where A. baumannii can cause 
ventilator-associated pneumonia and other hospital-acquired infections [31, 37, 39].

4.5 Suppression of immune signaling pathways

A. baumannii utilizes several mechanisms to dampen host immune signaling 
pathways, impairing the immune response and promoting its survival within the host 
environment. One key strategy involves interference with PRRs, crucial in initiat-
ing immune responses upon pathogen detection. By inhibiting PRR signaling, A. 
baumannii can thwart the activation of immune cascades, reducing the recruitment 
of immune effectors and impeding the production of inflammatory cytokines and 
chemokines necessary for an effective immune response [24, 26].

Neutrophils are essential components of the innate immune system and play a 
critical role in combatting bacterial infections. A. baumannii employs strategies to 
counteract neutrophil responses, impairing their recruitment and effector functions. 
Studies have shown that A. baumannii can interfere with neutrophil recruitment to 
the site of infection, leading to delayed reactions and reduced bactericidal activity. 
Furthermore, the bacterium can modulate cytokine and chemokine production, 
hindering the optimal activation of neutrophils and other immune cells required for 
effective bacterial clearance [24, 26, 33].

A. baumannii employs a multifaceted approach to evade host immune responses, 
including suppressing key signaling pathways involved in immune activation. This 
evasion strategy impairs the initial recognition of the pathogen by the host and 
dampens the subsequent immune cascade required for efficient bacterial clearance. 
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By targeting these immune signaling pathways, A. baumannii can establish chronic 
infections and evade host defenses, contributing to its persistence and clinical signifi-
cance as a nosocomial pathogen [24, 26].

5. Impact of host: pathogen interactions on disease outcome

5.1 Factors influencing disease severity and prognosis

The severity of A. baumannii infections has a direct impact on patient prognosis. 
Studies have shown that higher Acute Physiology and Chronic Health Evaluation 
(APACHE) II scores indicate that patients with more severe disorders are at increased 
risk of mortality. Patients with underlying severe comorbidities, such as hematologic 
malignancies, are particularly vulnerable to poor outcomes in the presence of A. 
baumannii infections [40–42].

Appropriate antimicrobial therapy is a critical determinant of patient outcomes 
in A. baumannii infections. Studies have demonstrated that timely and effective 
antimicrobial treatment reduces mortality rates, particularly in severely ill patients. 
However, the impact of antimicrobial therapy may vary based on the severity of 
infection, underlying conditions, and other risk factors [40, 41].

Several factors contribute to the severity and prognosis of A. baumannii infections. 
These include the presence of neutropenia, which weakens the immune response, and 
the use of invasive procedures, which can introduce and spread diseases. Additionally, 
the prior use of specific antibiotics, such as carbapenems, has been identified as a risk 
factor for poor outcomes. Mechanical ventilation and initial immunosuppression are also 
associated with increased mortality rates in A. baumannii bloodstream infections [41].

MDR is a significant concern in A. baumannii infections, potentially limiting treat-
ment options and contributing to poorer outcomes. While MDR may not always be a 
direct risk factor for mortality, it can impact the choice of appropriate antimicrobial 
therapy, potentially leading to treatment failure and increased mortality rates [42].

5.2 Host genetic susceptibility

Host genetic susceptibility refers to inherited gene variations that can affect an 
individual’s susceptibility to infections and their ability to mount an effective immune 
response. The genetic diversity among individuals can impact the interaction between 
A. baumannii and the host’s immune system. Some genetic variations may enhance 
the host’s ability to recognize and combat the pathogen, while others may compromise 
the immune response and increase susceptibility to infection.

Host genetic factors play a role in shaping both innate and adaptive immune 
responses to A. baumannii infections. Variations in genes encoding immune receptors, 
cytokines, and other immune-related molecules can affect the intensity and effective-
ness of the immune response. For example, genetic variations in TLRs or cytokines 
may influence the recognition of A. baumannii and subsequent activation of immune 
signaling pathways. These genetic differences can impact the production of pro-
inflammatory cytokines, chemokines, and other immune mediators, which affect the 
recruitment and activation of immune cells [39, 43].

A. baumannii employs various virulence factors to establish infection and evade 
host immune responses. The host’s genetic background can influence these virulence 
factors’ effectiveness. For instance, host cell surface receptors or signaling molecule 
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variations may affect the pathogen’s ability to adhere to and invade host cells. 
Additionally, genetic variations in the host may impact the immune system’s recogni-
tion of specific virulence factors, influencing the overall immune response to the 
infection [39, 43].

6. Potential therapeutic targets for A. baumannii infections

6.1 Antibiotic resistance mechanisms and novel antimicrobial strategies

The increasing prevalence of MDR, extensive drug-resistant (XDR), and even 
pan-drug-resistant (PDR) strains of A. baumannii has raised concerns about limited 
treatment options and the need for novel antimicrobial strategies [44, 45].

The development of antibiotic resistance in A. baumannii is a complex process 
driven by various genetic and physiological factors. The resistance mechanisms 
primarily involve regulating antibiotic transportation through bacterial membranes, 
alteration of the antibiotic target site, and enzymatic modifications that neutralize 
antibiotics.

The rise of MDR, XDR, and PDR A. baumannii strains can be attributed to 
extensive antibiotic abuse and poor stewardship in healthcare settings. Long hospital-
ization stays, catheters, mechanical ventilation, and compromised immune systems 
further contribute to the emergence of resistant strains [44]. In recent years, there 
has been a growing awareness of the need for appropriate antibiotic use, infection 
prevention, and surveillance strategies to curb the spread of antibiotic resistance.

Advances in next-generation sequencing techniques have revolutionized the 
diagnosis of severe A. baumannii infections. These techniques allow for the rapid 
identification of specific resistance genes, enabling timely diagnosis and the design 
of personalized therapeutic regimens based on the pathogen’s resistance profile [44]. 
Tailoring treatment to the identified resistance mechanisms enhances the likelihood 
of successful outcomes and reduces the risk of treatment failure.

Researchers are exploring novel antimicrobial strategies to combat A. baumannii 
infections, especially those caused by MDR and XDR strains. One such approach 
involves the development of alternative antibiotics or antimicrobial agents that target 
different bacterial pathways, reducing the likelihood of cross-resistance [45]. Efforts 
are also underway to investigate combination therapies that synergistically enhance 
the efficacy of existing antibiotics, potentially overcoming resistance mechanisms.

6.2 Targeting virulence factors and host: pathogen interactions

A. baumannii deploys a variety of virulence factors to establish infections and 
evade host defenses. Targeting these virulence mechanisms presents a potential 
strategy to disrupt the pathogenicity of A. baumannii.

Understanding the interactions between A. baumannii and the host immune sys-
tem is essential for developing effective therapeutic interventions. A. baumannii has 
evolved mechanisms to evade host immune responses and establish persistent infec-
tions. By disrupting these interactions, researchers aim to enhance the host’s ability to 
clear the infection and improve treatment outcomes [45, 46].

Researchers are investigating various approaches to target virulence factors and 
host–pathogen interactions in A. baumannii infections. These strategies include the 
development of new antimicrobial agents that inhibit essential bacterial functions 
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and therapies that specifically disrupt virulence mechanisms without killing the 
bacterium. For example, inhibiting OmpA, a key virulence factor, could weaken the 
bacterium’s ability to form biofilms and evade immune responses, making it more 
susceptible to clearance by the host [46].

6.3 Immunotherapeutic approaches

The emergence of MDR and XDR A. baumannii strains has led to limited treat-
ment options, with traditional antibiotics becoming increasingly ineffective. This 
resistance is attributed to the mechanisms mentioned earlier. Consequently, alterna-
tive strategies, including immunotherapeutic approaches, are being explored to 
address the growing threat of A. baumannii infections.

Immunization trials are being considered as a promising avenue for combatting 
A. baumannii infections. Researchers are focusing on developing vaccines that target 
specific antigens or epitopes associated with the pathogen. Several antigens and 
peptides have been proposed for active and passive immunizations [47].

Monoclonal antibody (MAb) therapy has emerged as a promising immunothera-
peutic strategy against A. baumannii infections. MAbs are designed to recognize and 
neutralize bacterial targets specifically. Researchers have developed MAbs that target 
different components of A. baumannii, such as the bacterial capsule, to enhance 
opsonophagocytosis and clearance by immune cells [48]. These MAbs have demon-
strated efficacy in murine models, significantly improving survival rates and reduc-
ing bacterial loads [48]. Furthermore, combining monoclonal antibody therapy with 
traditional antibiotics, such as colistin, has shown synergistic effects and improved 
protection [48].

While immunotherapeutic approaches, including monoclonal antibody therapy 
and vaccine development, hold promise for addressing A. baumannii infections, 
challenges remain. Designing vaccines that provide broad protection against vari-
ous strains and do not affect the host microbiota or proteome is complex [47]. 
Additionally, the clinical translation of immunotherapeutic strategies requires rigor-
ous preclinical testing and validation.

7. Conclusion

This book chapter has provided a comprehensive overview of host–pathogen 
interactions in A. baumannii infections, uncovering immune evasion mechanisms 
and potential therapeutic targets. While challenges persist, the remarkable progress in 
understanding these interactions offers hope for innovative treatments and strategies 
to combat A. baumannii infections and improve patient outcomes.

As we conclude this exploration, several implications for future research and thera-
peutic interventions emerge. Firstly, the need for a deeper understanding of the host 
immune response and the molecular mechanisms of A. baumannii’s immune evasion 
strategies remains paramount. Identifying specific virulence factors and the regulatory 
networks that govern their expression could provide new targets for intervention.

Advancing research should also focus on unraveling the dynamics of multidrug 
resistance in A. baumannii and developing innovative strategies to circumvent resis-
tance mechanisms. The application of cutting-edge technologies, such as genomics 
and proteomics, holds promise in identifying novel therapeutic targets and potential 
biomarkers for early detection and prognosis.
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research findings into effective therapeutic interventions. Integrating computational 
modeling and artificial intelligence could expedite drug discovery and enhance our 
understanding of complex host–pathogen interactions.
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Abstract

Acinetobacter baumannii is a Priority 1 pathogen under the WHO list for research 
and discovery of new antibiotics. The epidemiology of the pathogen suggests its 
relevance as an important “healthcare-associated” pathogen—with the most common 
clinical syndrome being ventilator-associated pneumonia. Rising rates of carbape-
nem resistance in this pathogen have necessitated re-purposing of old drugs, use 
of high-dose regimens, and newer antimicrobial options. Combination therapy for 
carbapenem-resistant isolates, especially in sicker patients, is now advocated. Here, 
we describe the traditional treatment options and selection of drugs in multidrug- 
resistant infections, along with a brief review of the evidence followed by emerging 
treatment options.

Keywords: Acinetobacter baumannii infections, multidrug-resistant Acinetobacter,  
gram negative bacterial infections, antimicrobial therapy,  
carbapenem resistant Acinetobacter baumanii

1. Introduction

Acinetobacter baumannii has established itself as an important pathogen over 
the years, especially in the critical care settings. Often, it has been a pathogen of 
“intensive care unit (ICU) outbreaks” and a major pathogen for ventilator-associated 
pneumonia. The varied resistance mechanisms and its potential for environmental 
persistence have ensured its position as Priority 1 pathogen in the World Health 
Organization (WHO) list [1]. This necessitates a deeper understanding of the avail-
able treatment options, selection of drugs in combination therapy, and emerging 
treatment options so that we can offer the best chance of survival in the critically ill.

2. Empiric therapy for A. baumannii infections

Choosing an empirical cover that includes A. baumannii infections depends on 
various factors, such as the local epidemiology and risk factors in patients, such as 
mechanical ventilation or long-term hospitalization. An appropriate empiric cover 
can slash down mortality rates, especially in critical care [2–4]. Addition of antibiotics 
that cover for carbapenem-resistant Acinetobacter baumannii (CRAB) in areas, where 
there is a higher incidence is recommended [5].
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2.1 Epidemiology and local antibiogram

The incidence of A. baumannii infection outbreaks can be related to the carbape-
nem resistance rates of the area. Recent data from a global study on A. baumannii has 
shown around 65% resistance rates to meropenem among clinical isolates [6]. The 
distribution of CRAB and multidrug-resistant (MDR) Acinetobacter varies between 
regions in the world, with lower rates in the United States and Central Europe to 
higher rates in Asia and Africa [7–9]. Within the European subcontinent, the inci-
dence varies as Central Asian and European surveillance of antimicrobial resistance 
(CAESAR) and European Center for Disease Prevention and Control (ECDC) surveil-
lance report more than 50% of invasive isolates of A. baumannii to be carbapenem 
resistant from Southern and Eastern Europe [10, 11].

A delay in initiation of appropriate antimicrobial therapy can affect the clinical 
outcome in patients with A. baumannii infections, which can be tackled with the help 
of a hospital-based antibiogram [12–14]. An antibiogram based on overall susceptibil-
ity patterns distributed over location and time can suitably guide a clinician in the 
timely choice of empiric antibiotic [15].

2.2 Risk factors for infection

In high endemic areas of CRAB, certain risk factors can prompt empirical coverage 
for the same. The most common risk factors include critically ill, prolonged mechani-
cal ventilation, length of hospital or ICU stay, long-term care facility inmates, and 
previously colonized patients [16–18]. The predilection for colonization in healthcare 
settings can be explained by the ability of the bacteria to survive in dry surfaces and 
biofilm production on medical devices, particularly endotracheal tubes. Other risk 
factors, including malignancy, previous antibiotic use, and re-intubation, among 
which prior use of antimicrobials, including third-generation cephalosporins and 
fluoroquinolones, are strong predictors [2, 18].

Multidrug-resistant organism (MDRO) screening or surveillance culture reports 
are seldom performed in regions with higher prevalence and reported to have lower 
sensitivity with limited sites of sampling [19]. Treatment or decolonization for MDR 
Gram-negative organisms based on surveillance sampling is disapproved by many 
organizations and is only implicated as an infection control measure [20, 21].

Even though nosocomial infection is the dominant picture among Acinetobacter 
infections, community-acquired infections rarely occur more often in tropical cli-
mates, presenting commonly as pneumonia [22–24]. Fulminant infections associated 
with a high mortality of 64% have also been reported in the Asia-Pacific region [25]. 
These strains are infrequently resistant to antibiotics but will not be covered by the 
usual community-acquired pneumonia (CAP) cover, such as ceftriaxone [23, 26].

2.3 Site of infection

Acinetobacter infections can occur in any organ system, with the majority in respira-
tory tracts causing ventilator-associated pneumonia (VAP) or hospital-acquired pneu-
monia (HAP). The incidence of VAP varies with the endemicity in a region, comprising 
an overall incidence rate of 3–7% of VAP/HAP globally, this increases to a maximum 
of 36% in Asian countries [27–29]. Secondary infections associated with COVID-19 
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pneumonia are also being reported worldwide [30–32]. Bacteremia and urinary tract 
infection (UTI) follows, associated with indwelling catheters and immunocompromised 
conditions [29]. In post-neurosurgical patients with or without intraventricular cathe-
ters, A. baumannii can cause meningitis, leading to a 70% overall mortality [33, 34]. Skin 
and soft tissue infections of injuries associated with war and natural disasters reportedly 
caused by pan-drug isolates and can complicate orthopedic infections [35–37].

2.4 Resistance patterns

Most strains have intrinsic beta-lactamases, providing resistance to penicillin 
and older generations of cephalosporins. Extended-spectrum beta-lactamases are 
predominant in many regions, influencing carbapenem over-use, and subsequently 
breeding multidrug-resistant isolates.

Carbapenem resistance in CRAB is driven chiefly by carbapenemases of classes B 
(metallo-beta-lactamases) and D (oxacillinases) for which non-beta-lactam choices, 
such as polymyxins and tetracycline are recommended. Resistance to tigecycline is 
less compared to minocycline, with most CRAB isolates remaining susceptible and 
hence can be a good companion drug. Aminoglycoside and fluoroquinolone resistance 
are common and involve efflux pumps or target modification, conferring high level of 
resistance to these agents.

Hetero resistance is when subpopulations within a susceptible isolate are resistant but 
determined as sensitive by standard antimicrobial susceptibility testing (AST) methods, 
which can lead to clinical failure. This is often seen in cases with previous therapy using 
colistin and that can possibly be prevented by combination therapy [38–40].

2.5 Choice of empiric therapy

Based on above conditions, an assessment for the need for anti-Acinetobacter 
cover should be determined as the appropriate and timely initiation of antimi-
crobial therapy in serious infections is crucial. Also, inappropriate or inadequate 
empirical antimicrobial choice can lead to increased length of stay, as well as hos-
pital costs [12, 41]. In ICU settings with lower prevalence of CRAB, carbapenems 
are the drugs of choice. Ertapenem should be avoided as it only has weak action 
against Acinetobacter spp. Combination therapy can be considered in critically 
ill based on local susceptibility patterns. For mild infections, particularly UTI, 
monotherapy with cephalosporins or aminoglycosides is a good option with close 
monitoring of the patient [42].

When there is a higher suspicion of carbapenem resistance, polymyxin-based 
combination therapy is recommended as empirical therapy. The companion drugs 
being tetracyclines (tigecycline or minocycline) or sulbactam. Sulbactam in combina-
tion with ampicillin and most recently durlobactam has risen as the drug of choice 
for CRAB infections, but caution is advised for empiric indications due to mounting 
resistance [5, 43]. The pulmonary endothelial lining fluid (ELF) concentrations are 
lower for tigecycline with usual dosing for CRAB and are associated with a higher 
chance for resistance development, hence monotherapy should be avoided [5, 18, 44].

If a second episode of suspected infection occurs when the patient is on an antibi-
otic for a different infection, it is suggested to choose a different class of antibiotic due 
to a higher chance of resistance to the ongoing antibiotic [45].



Acinetobacter baumannii – The Rise of a Resistant Pathogen

80

3. Targeted therapy for A. baumannii infections

De-escalation or targeting the therapy based on microbiological culture is the rec-
ommended step to be taken when culture reports are available as this move can bring 
in reduction of drug toxicity, unnecessary cost, and prevent antibiotic-associated 
diarrhea or Clostridium difficile infections.

3.1 Colonizers vs. pathogenic A. baumannii

Acinetobacter baumannii is acquired through the hospital environment from sur-
faces and hands of healthcare workers. It commonly colonizes the respiratory tract, 
skin, and any indwelling catheters of a patient. Hence, sampling can often detect 
such colonizing organisms, which need to be differentiated from infection. The task 
becomes more perplexing yet key in immunocompromised or severely ill [46]. This 
is more relevant in CRAB isolates as differentiating plays a decisive role on need for 
expensive and restricted antimicrobial agents for treatment.

Clinical, radiological, and laboratory parameters can aid in differentiating coloni-
zation from infection. When isolated from sterile sites, such as blood culture or cere-
brospinal fluid culture, treatment is mandatory. Treatment includes both the removal 
of indwelling catheter if present and appropriate antimicrobial. Antibiotics are not 
recommended when the culture is positive from a non-sterile site from a patient with 
no signs of infection. Parameters that help in diagnosing infection by A. baumannii 
are admission to ICU, number of days of hospitalization, absolute neutrophil count 
(ANC), and C-reactive protein (CRP) according to two prospective cohort studies 
[47, 48]. Clinical-pulmonary infection score (CPIS) score developed for diagnosing 
VAP using fever, endotracheal tube (ET) secretions, leukocytosis, PaO2/FiO2, chest 
radiographic picture, and isolation of pathogenic bacteria in culture is ideally used for 
determining the need for bronchoalveolar lavage (BAL) but can also confirm the pres-
ence of pneumonia and relevance of culture.

3.2 Non-carbapenem-resistant A. baumannii

3.2.1 Beta lactams

Most clinical isolates have intrinsic beta-lactamase production that lyses peni-
cillin and first-generation cephalosporins. If susceptible to penicillin, these agents 
are the drugs of choice for Acinetobacter infections, including third-generation 
cephalosporins. In the presence of extended-spectrum Beta-lactamase (ESBLs) 
and Acinetobacter-derived cephalosporins (ADCs), carbapenems become the 
agent of choice, with ertapenem having a weak activity against Acinetobacter spp 
[49]. These agents are ideal for its bactericidal action and good pharmacotherapeu-
tic properties.

3.2.2 Beta-lactamase inhibitors

All beta-lactamase inhibitors, such as clavulanate and tazobactam, have intrinsic 
activity against Acinetobacter, but sulbactam has the better activity among them [50]. 
For sensitive isolates with MIC <4 mg/L, sulbactam at a lower dose of 4 grams per day 
is sufficient to be infused in 350 ml normal saline over 4 hours. Most commonly, this 
is available as the formulation of ampicillin sulbactam or cefoperazone sulbactam. 
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There is a rising MIC trend for sulbactam that impedes its use as empiric therapy or 
monotherapy for severe infections [43].

3.2.3 Aminoglycosides

Amikacin and tobramycin are the most active agents in the group. These agents 
have low lung and CSF penetration with high toxicity profiles. With higher chances of 
bacteriological failures and dosing concerns in critically ill, aminoglycosides are not 
recommended as monotherapy except for urinary tract infections, where they reach 
in very high concentrations [51, 52]. Amikacin and gentamicin can be administered 
intrathecally or intraventricular for CRAB meningitis or ventriculitis.

3.2.4 Quinolones

Susceptibility to these agents is lower, and thus is less commonly used in the treat-
ment of these infections. Due to its good pharmacotherapeutic properties and oral 
bioavailability, quinolones are a good option if susceptible. Resistance to these agents 
arises along with other antimicrobials with multiple mechanisms mainly arising with 
mutations in gyrA and parC genes.

3.3 Carbapenem-resistant A. baumannii

Most A. baumannii infections are caused by carbapenem-resistant strains in noso-
comial settings due to the capacity of the organism to acquire resistance genes and its 
resilience in the hospital environment. Mortality associated with MDR A. baumanii 
strains is higher than in susceptible organisms [53].

3.3.1 Sulbactam

A penicillanic acid derivative that has intrinsic activity against Acinetobacter by 
saturating PBPs 1, 2, and 3, especially with higher doses [54]. The beta-lactamases 
produced by CRAB can lyse sulbactam, which is observed in vitro and reflected 
in the international surveillance systems, such as The Clinical and Laboratory 
Standards Institute (CLSI) [55]. But this was not observed in clinical trials, where 
sulbactam activity is intact even for MIC>16 mg/L, when given as 9 gram/day dosing 
over 4 hours infusion [56]. At this dose, sulbactam overcomes resistance by Oxa-23 
beta-lactamases and has shown effectiveness more with meropenem [42, 57, 58]. At 
lower MICs of sulbactam, lower doses of 1 g sulbactam every fourth to sixth hourly 
should be enough. Ampicillin sulbactam is the commonest formulation available for 
sulbactam with 2:1 ratio of ampicillin to sulbactam that is recommended by Infectious 
diseases society of America (IDSA) and European Society of Clinical Microbiology 
and Infectious Diseases (ESCMID) guidelines [59, 60]. For mild invasive CRAB infec-
tions, monotherapy with ampicillin sulbactam is the treatment of choice and is given 
as 27 g per day dosing over 4 hours [59].

When compared to colistin, previously, the first choice for CRAB infections, 
sulbactam has better kinetics and lesser nephrotoxicity, thus showing improved clini-
cal outcomes in research [61–63]. This brought sulbactam to the limelight, even with 
conflicting issues on standardized susceptibility testing for CRAB isolates and studies 
showing lower mortality with colistin therapy [64]. High doses of sulbactam can be 
associated with hepatotoxicity, and it is suggested to monitor LFT while on therapy. 
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The resistance to sulbactam arises through reduced expression of PBP 2 and increased 
TEM-1 expression [65, 66]. Hence, it warrants monitoring for resistance development 
and the use of combination therapy for severe and complicated infections.

3.3.2 Polymyxins

Polymyxins are polypeptide cationic antibiotics comprised of polymyxin B and E 
(colistin). Colistin is the most widely used form worldwide, which is available in its 
prodrug form as colistimethate (CMS). Polymyxins were once considered the main 
backbone for CRAB infections but were replaced by sulbactam in the recent IDSA 
and ESCMID guidance documents. Current recommendations by IDSA recommend 
polymyxin B as the preferred form except in UTI and to be given in combination with 
other agents according to susceptibility patterns [59]. Due to a high risk of nephrotox-
icity with colistin [63] and the poor ELF concentrations in critically ill, polymyxin B 
is the preferred choice except in UTI, where colistin achieves better concentrations.

Dosing of polymyxin B is body weight based with a loading dose and given when 
MIC is less than 2 mg/L for CRAB isolates. A loading dose of colistin, which is needed 
to achieve target plasma concentration, has been shown to increase mortality when 
administered to critically ill patients with CRAB infections [67, 68]. Resistance 
develops by modification of LPS, the target site of polymyxin action, through plasmid 
acquired resistance genes. Intrathecal colistin and polymyxin B can be administered 
for CRAB meningitis or ventriculitis with systemic antimicrobial. The dosing varies 
for both polymyxins ranging from 20,000 IU to 250,000 IU per day for polymyxin B 
to 5–20 mg per day for colistin [34, 69, 70].

3.3.3 Tetracyclines

Minocycline and tigecycline are active against CRAB even when other tetracy-
clines are found resistant, with tigecycline having a more than 90% susceptibility 
among CRAB isolates based on a countrywide surveillance in Europe [43]. Due to its 
bactericidal nature and unclear pharmacokinetics, both are suggested to be given in 
combination therapy for CRAB treatment. Minocycline is available both orally and 
parentally, whereas tigecycline is available only as IV formulation.

The breakpoint for tigecycline in CRAB is not recommended by CLSI or EUCAST 
and a (food and drug administration) FDA approved clinical breakpoint of 2 mg/l 
for Enterobacterales is adopted. With MIC <2 mg/l, combination therapy has shown 
benefit, even though earlier studies have shown higher all-cause mortality in the criti-
cally ill [71–74]. These studies have focused mostly on bacteremia and pneumonia, 
where tigecycline concentrations are very low, that is. plasma and ELF concentra-
tions, respectively. A higher dose of tigecycline with 200 mg of loading dose followed 
by 100 mg twice daily doses depicts a better outcome in MDR GNB infections [75, 76] 
and is recommended. The PK parameters for minocycline were achieved better for 
CRAB pneumonia with higher doses of 200 mg twice daily [77].

3.4 Monotherapy vs. combination therapy

The rationale for combination therapy is built on the concept of various in vitro 
synergism, pharmacotherapeutic advantage of overcoming the poor pharmacody-
namics of individual agents, unfavorable clinical outcomes of invasive CRAB infec-
tions, and the higher possibility in prevention of emerging resistance [78, 79].
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Several studies demonstrate better clinical cure with combination therapies, most 
often containing colistin and others have shown higher microbiological cure rates. 
A Bayesian analysis that included 23 studies compared colistin monotherapy with 
combination regimens, which depicted sulbactam to have the highest survival benefit 
among critically ill [71].

3.4.1 Colistin with meropenem

This was an advocated as a common modality earlier based on in vitro experiments 
indicating synergy and reduced bacterial growth with the combination [80]. But 
disproved clinically, by two randomized control trials in ICU patients that showed no 
difference between the clinical cure rate or 28–day mortality rates between colistin 
monotherapy and colistin with meropenem combination [81, 82]. The in vitro ben-
efits could not be translated clinically with these studies as colistin levels in ELF are 
lower, especially in the critically ill, and the isolates in these studies had a high level of 
carbapenem resistance [79].

3.4.2 Three-drug combination

With the addition of ampicillin sulbactam to the above combination, the results 
show significant improvement in terms of 30-day mortality also, with one of the 
recent study reporting on a likely suppression of resistance emergence among 
COVID-19 patients with CRAB infections [83, 84]. Another triple therapy consisting 
of colistin, tigecycline, and sulbactam showed the highest clinical cure rate among 
various treatment options for MDR and extremely drug-resistant (XDR) A. bauman-
nii infections [64]. Thus, triple therapy is a suggested approach for extremely resis-
tant CRAB than other dual combinations [78, 79].

3.4.3 Polymyxin-based combination therapy

The main researched combinations included colistin combinations with either 
sulbactam, tigecycline, fosfomycin, or rifampicin, which have mixed evidence in terms 
of clinical cure and microbiological cure. A meta-analysis on 29 studies consisting of 
over 2000 patients revealed a higher microbiological cure for the sulbactam—colistin 
combination when compared to colistin with tigecycline or colistin alone [64]. In vitro 
synergy testing by checkerboard method and time-kill analysis indicates the highest 
synergy between minocycline and colistin [85, 86]. Whereas, colistin with tigecycline 
showed an antagonism, but such inhibition is absent in clinical trials, where it has shown 
better microbiological cure rates but not improved mortality benefits [72, 87, 88].

Combinations with rifampicin and fosfomycin have a good microbiological 
response even within 72 hours of therapy, but there is no evidence of significant dif-
ference in mortality from monotherapy [89, 90]. The combination of rifampicin and 
tigecycline with colistin, respectively, has a good anti-biofilm action that can be used 
effectively for antibiotic lock therapy [91, 92]. Notably, most studies on polymyxin 
combinations included colistin and nephrotoxicity was an associated adverse drug 
event (ADE), and this ADE could have been easily avoided with the use of polymyxin 
B, an active form of colistin, which not only has a lower risk of nephrotoxicity but also 
has better steady-state concentrations in plasma. Only few studies based on poly-
myxin B have been conducted and a combination with this agent is preferred with 
reduced mortality among critically ill [59, 60, 93, 94].
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3.4.4 Sulbactam combination therapies

Sulbactam combinations are the mainstay for moderate to severe invasive CRAB 
infections, as stated by the latest IDSA AMR guidance document and endorsed by the 
ESCMID 2022 guidelines. Combination of high-dose sulbactam with tigecycline and 
quinolone has shown the best clinical outcome, but the numbers are less compared to 
colistin-based regimens [95, 96]. There is a need for focus on research of such combi-
nation therapy for the better understanding of dosing and efficacy in critically ill.

3.4.5 Other combinations

Strong synergy exists between cefiderocol and meropenem as shown by an in vitro 
study but has not been clinically evaluated [97]. Combination of colistin with glycopep-
tides has been studied, but combination with vancomycin has shown high nephrotoxic-
ity [98, 99]. Such combinations do not have enough supporting data and is to be avoided.

However, failure with combination therapy has been shown in patients with sepsis. 
A metanalysis on drug-resistant A. baumannii showed only three studies to depict a 
superiority of combination vs. monotherapy from a total of 12 studies. The concern 
with combination therapy arises with the associated increased cost and toxicity from 
multiple antimicrobial agents used. The risk of C. difficile can also increase when 
inciting antibiotics are given for treatment [78]. Thus, de-escalation to susceptible 
agents based on culture reports when available is advised in mild cases of invasive 
CRAB infections [5, 59].

3.5 Role of inhaled antimicrobials

Aminoglycosides and colistin are often nebulized for patients with MDR gram-
negative bacterial (GNB) VAP or tracheobronchitis. The role of nebulized antibiotics 
is controversial, with IDSA against its administration with or without IV antimicro-
bials. Studies using high dose (5 million units twice daily) colistin with vibrating 
nebulizer along with intravenous (IV) antimicrobial agent have shown benefits [100]. 
For tracheobronchitis and when susceptible in non-resolving cases of CRAB pneumo-
nia, nebulization can be attempted as an adjunctive therapy (Figure 1).

3.6 Duration of therapy

There is a lack of consensus for specific duration for MDR infections and in 
particular CRAB. Studies on patients with MDR infections with VAP and BSI have 
used a range of 7–22 days of therapy [101–103]. RCT and prospective studies on VAP 
have shown no difference in mortality with shorter courses of 3–8 days [104–106]. But 
few studies show an occurrence of relapses in few patients following short courses for 
gram-negative pathogens are of concern according to some [106, 107].

Duration of empiric therapy for CRAB, where cultures are negative or limited 
resources for diagnostics, should be based on site and severity of infection and 
discontinued if an alternative diagnosis is confirmed. For carbapenem-sensitive 
AB infection therapy, duration is based on site and severity of infection and longer 
duration of therapy required for meningitis and joint infections. Whereas, a longer 
duration is suggested for severe CRAB infections with a minimum of 14 days of 
therapy and even longer, up to 4 to 8 weeks in the presence of complicated infections, 
such as post-neurosurgical meningitis/ventriculitis or joint infections. In meningitis 
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or ventriculitis, the duration of intraventricular antimicrobial will depend on three 
negative CSF samples according to the IDSA recommendations [108].

4. Novel treatment strategies

4.1 Newer antimicrobial agents

Antimicrobial options are limited for treatment of CRAB, with resistance develop-
ing rapidly in the organism. Newer options are sought to overcome the glitches in 
the treatment options that are available currently such as toxicity, pharmacokinetic 
issues, emergence of resistance, and availability.

4.1.1 Cefiderocol

A siderophore cephalosporin with a wide range of beta-lactamase resistance, and 
hence suggested for CRE, CRPA, and CRAB. The FDA approved its use in compli-
cated UTI, including pyelonephritis and hospital-acquired pneumonia. In spite of 
the promising in vitro actions of the drug, two large studies found no significant 
difference in mortality compared to colistin-based therapies for CRAB [109–111] and 
higher mortality rates with monotherapy [112]. Also, the Italian study discovered 
four out of eight isolates from microbiologically failed cases to be cefiderocol resistant 
[109]. This led the IDSA to suggest cefiderocol as a last resort and only to be given as 
combination therapy for CRAB infections [59].

4.1.2 Durlobactam: Sulbactam

This is the most recently FDA-approved agent for treatment of CRAB pneumonia 
[113]. Durlobactam is a next generation diazabicyclooctanone (DBO) beta-lactamase 

Figure 1. 
Algorithm for treatment of invasive CRAB infections based on IDSA/ESCMID guidelines. *Ampicillin sulbactam 
is the current fixed drug combination that is available widely.
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inhibitor that is resistant to lyses by Class A, C, and D oxacillinases. Combined with 
sulbactam, it potentiates the action of sulbactam against CRAB up to 32-fold of MIC 
[55]. A phase three trials on CRAB pneumonia patients on either sulbactam durlobac-
tam or colistin with a combination agent showed non-inferiority in terms of 28-day 
mortality and lower adverse events [114].

4.1.3 Eravacycline

A novel synthetic fluorocycline, such as tigecycline, displays good in vitro action 
against MDR pathogens, including GNB and GPC microorganisms. It has a lower MIC in 
CRAB than tigecycline or minocycline with reliable in vitro activity against oxacillinases 
and colistin-resistant isolates [115]. Nevertheless, the clinical trials on UTI and IAI show 
non-inferiority of the drug when compared to inactive agents, such as carbapenems and 
quinolones [116–118]. The proportion of CRAB infections in these studies is very low, 
and thus, we will need more research on its in vivo action on CRAB.

Omadacycline and plazomicin are some other new agents that are active on CRAB 
isolates. A newer tetracycline, Omadacycline, has a spectrum of activity similar to 
minocycline and has action against CRAB isolates [119, 120]. Whereas, plazomicin 
is a next generation aminoglycoside with extended spectrum, including CRAB. This 
drug is approved by FDA for the treatment of carbapenem-resistant Enterobacterales 
but has shown promising activity against CRAB, including in combination with other 
drugs [121, 122].

4.2 Other therapeutic options

Bacteriophage, antimicrobial peptides (AMP), immunotherapy, monoclonal 
antibodies, and endolysin are some of the potential non-antimicrobial agents that are 
being extensively researched [123]. Phage-related therapy is unique in the sense that 
it is highly specific to the targeted pathogens and have lesser toxicity. But the clinical 
efficacy associated with such therapies are yet to be demonstrated. Phage SH-Ab15519 
and Acinetobacter phage Βϕ-R2096 are novel Acinetobacter phages, which are 
considered safe based on genomic studies [124, 125]. Phage-antibiotic combinations 
based on a phenomenon termed phage-antibiotic synergy has been exhibited in A. 
baumannii on colistin MIC [126] and also depicted in human trial [127]. AMP formed 
from other living organisms as part of their innate immune mechanisms can be used 
against infections as an adjunctive therapy. This has an advantage of lower chances of 
resistance development [128].

5. Conclusion

Acinetobacter baumannii remains a “high priority” pathogen and of great clinical 
significance, especially in the critically ill ICU patient. With a significant propor-
tion of the isolates demonstrating resistance to traditional “drugs of choice,” such as 
carbapenems, we have moved on to repurposed older drugs—polymyxins and high-
dose Sulbactam—as primary drugs for treating serious infections. Tetracyclines—old 
tigecycline, minocycline at “double dose” and new (Eravacycline and Omadacycline) 
have been the next plausible treatment options. We also fall back upon combination 
therapy with older drugs/with or without the newer options for pan-drug-resistant 
isolates. Drugs, such as cefiderocol and sulbactam-durlobactam, hold promise for 
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the future. However, the identification or differentiation of a patient colonized with 
Acinetobacter baumannii versus true invasive infection/disease constitutes the most 
important treatment decision.
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Appendices and nomenclature

ADC Acinetobacter-derived cephalosporinases
ADE adverse drug event
ANC absolute neutrophil count
AMR antimicrobial resistance
BSI infection
CAESAR Central Asian and European surveillance of antimicrobial resistance
CPIS clinical-pulmonary infection score
CRAB carbapenem-resistant Acinetobacter baumannii
CRE carbapenem-resistant enterobacterales
CRP C-reactive protein
CRPA carbapenem-resistant pseudomonas aeruginosa
CSF cerebrospinal fluid
CLSI The clinical and laboratory standards institute
ECDC European centre for disease prevention and control
ELF endothelial lung fluid
ESBL extended spectrum Beta-lactamase
ESCMID European society of clinical microbiology and infectious diseases
ET endotracheal secretions
EUCAST European society of clinical microbiology and infectious diseases
FDA food and drug administration
FiO2 fraction of inspired oxygen
HAP hospital-acquired pneumonia
ICU intensive care unit
IDSA infectious diseases society of America
IV intravenous
LFT liver function test
LPS lipopolysaccharide
MDR multidrug resistant
MDRO multidrug-resistant organism
MIC minimum inhibitory concentration
PaO2 partial pressure of oxygen in arterial blood
PBP penicillin-binding protein
PK pharmacokinetic
RCT randomized controlled trial
TEM Class A beta-lactamase first isolated from a patient called Temoneira
UTI urinary tract infection
VAP ventilator-associated pneumonia
XDR extremely drug resistant
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Abstract

Urinary tract infections (UTIs) are the main etiological agent of Gram-negative 
bacteria. UTI and pneumonia are the main causes of sepsis in older people. With the 
advance of medicine, the increase in life expectancy, more frequent prescription of 
immunosuppressive therapies, and indiscriminate use of antibiotics, multidrug-resis-
tant (MDR) pathogens have become a global public health problem. Among them, the 
rise of MDR Acinetobacter baumannii infections is observed in hospitals, especially 
in patients accommodated in intensive care units (ICU) and/or in the use of medical 
devices, such as urinary catheters. Treating UTIs caused by carbapenem-resistant 
Acinetobacter baumannii became a challenge, given the few therapeutic options and 
low penetration of polymyxin B into the renal parenchyma.

Keywords: urinary tract infection, Acinetobacter baumannii, multidrug-resistant, 
antibiotics, treatment

1. Introduction

Urinary tract infection (UTI) is one of the most common infections in humans. 
The Gram-negative bacteria represent the main etiological group in community and 
nosocomial cases [1, 2].

Nowadays, Acinetobacter baumannii — a coccobacillus Gram-negative — is an 
important pathogen to hospitals worldwide, becoming a public health problem when 
multidrug-resistant (MDR) [3]. Its ability to overlap resistance mechanisms culmi-
nated in the appearance of strains resistant to all available antibiotics in the industry 
[4]. Most infections are healthcare-associated and linked to invasive devices such as 
urinary catheters [5].

The World Health Organization (WHO) listed carbapenem-resistant strains as 
one of the priority agents for developing new antibiotics [6]. This chapter aims to 
bring options for treating UTI caused by MDR A. baumannii, given that the urinary 
concentration of drugs restricts the choice of the therapeutic regimen [7, 8].
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2. Epidemiology

MDR strains have become frequent causes of nosocomial infections since 
the 1980s. In a study from 2007 that involved 100 hospitals worldwide, 34% of 
Acinetobacter isolates were resistant to ceftazidime and 41% to ciprofloxacin. From 
1999 to that year, the carbapenem resistance increased from 10 to 54% [9].

In a recent study conducted by Seifer et al., between 2016 and 2018, the global 
resistance to meropenem reached 67%, while the overall resistance to colistin was 7%. 
The highest percentage of carbapenem resistance of over 90% was reported in the 
Mediterranean region, imposing serious burdens on healthcare systems [10].

Di Venanzio et al. analyzed Acinetobacter isolates identified in the BJC Healthcare 
System from January 2007 to August 2017. The study showed that, among the over 
19,000 cases, 17.1% came from the urinary tract [11]. But only 2% of UTIs are caused 
by this pathogen. However, A. baumannii is the main agent causing UTIs associated 
with using catheters in ICUs. More than 50% of the isolated strains from urine come 
from catheterized patients [12].

There are some risk factors for developing infections caused by MDR A. bauman-
nii (Table 1) [13–16].

3. Clinical presentation

The signs and symptoms vary according to the affected segment of the urinary 
tract. The main manifestations of acute cystitis include dysuria, pollakiuria, supra-
pubic pain, urinary urgency, and even hematuria. In older patients, the identification 
could be more difficult due to a higher frequency of nonspecific symptoms. Those 
patients can present delirium, change in level of consciousness, prostration, and 
inappetence [17].

Fever and other systemic symptoms (nausea, vomiting, and nonmechanical back 
pain) suggest a complicated UTI or upper urinary tract involvement. Hypotension, 

Risk factors

ICU hospitalization (previous or current)

Recent surgical procedures

Previous colonization by Methicillin-Resistant Staphylococcus aureus (MRSA)

Invasive devices such as central venous and urinary catheters

Hemodialysis

Malignant neoplasms

Previous administration of beta-lactams (mainly carbapenems) and fluoroquinolones

Infusion of neurobiological or chemotherapeutic agents

Bed restriction

Burns

Preterm birth

Table 1. 
Risk factors involving infections caused by MDR A. baumannii.
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tachycardia, tachypnea, and oliguria suggest a more severe infection, such as sepsis 
and septic shock [18].

The anamnesis may assess, beyond the medical history, the use (current or prior) 
of invasive devices, particularly urinary catheterization, recent hospitalization (espe-
cially in ICU and emergency departments), and recent use of antibiotics [19].

It is fundamental to differentiate a context of infection from colonization, which 
will lead to different approaches [20, 21].

4. Diagnosis

In addition to the clinical evaluation, it is recommended to request complementary 
exams. In front of a suspicion of a not complicated UTI, it is important to perform a 
urinalysis and urine culture. Patients with preserved consciousness and urinary conti-
nence may spontaneously collect a midstream urine specimen after proper hygiene of 
the genitourinary region [22].

In patients with systemic symptoms, especially the elderly, diabetic, with an 
immunosuppressive condition, blood cultures and imaging exams (ultrasound or 
computed tomography) must be performed to screen for pyelonephritis or complica-
tions, such as kidney abscess (Figure 1) [23].

5. Treatment

In a first medical evaluation, in front of a urinary tract infection, the physician will 
not know the etiological agent, even if the patient has risk factors for MDR pathogens, 
and an empiric treatment would be initiated. In these cases, broad-spectrum antibiot-
ics are recommended with coverage for Gram-negative bacilli. Prior — and particu-
larly current — cultures can guide the chosen scheme. If the patient uses a urinary 
catheter, it is part of the treatment to remove or exchange it for a new one [24, 25].

After identifying a strain of A. baumannii in the cultures, the treatment must be 
based on the sensitivity profile of the antibiogram (Figure 2).

The therapeutic scheme is divided into first-line, second-line, and synergistic 
agents (not recommended monotherapy) [26].

Figure 1. 
Perinephric abscess compromising the mid pole of right kidney, with thickening of Gerota’s fascia. Case courtesy of 
Ian Bickle, Radiopaedia.org, rID: 29853.
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  5.1 First-line agents 

 When susceptible to the antibiogram, a first-line antibiotic must be chosen. The 
main options are listed below with the indicated dosage for a patient with normal 
renal function (  Table 2  ) [ 27 – 32 ].  

   5.2 Second-line agents 

 When it is diagnosed as a resistant infection to all the first-line agents, one of the 
options below must be considered (  Table 3  ) [ 33 – 36 ].  

  Figure 2.
  An example of an antibiogram with a MDR pathogen. Ak = amikacin; AMP = ampicillin; C = chloramphenicol; 
Cl = colistin; CIP = ciprofloxacin; E = erythromycin; EX = enrofloxacin; GEN = gentamicin; S = streptomycin; 
Te = tetracycline.          

    Antibiotic Dosage  

  Ciprofloxacin 750 mg orally bid or 400 mg every 8 hours 

 Levofloxacin 750 mg orally or intravenously qd 

 Trimethoprim-
sulfamethoxazole

1 tablet (160 + 800 mg) bid 

 Ampicillin-sulbactam Carbapenem-susceptible infections: 3 g intravenously every 6 hours  
carbapenem-resistant conditions: 3 g intravenously every 4 hours  
Severe conditions: 9 g intravenously every 8 hours (or 27 g at continuous 
infusion) 

 Ceftazidime 2 g intravenously every 8 hours 

 Cefepime 2 g intravenously every 8 hours 

 Tazobactam-piperacillin 4.5 g intravenously every 6 or 8 hours 
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5.3 Combined therapy

Some antibiotics, even with adequate sensitivity on antibiogram, could be ineffec-
tive as monotherapy. Although aminoglycosides are a good option for treating mild 
cases of UTI, their isolated administration is not recommended for moderate and 
severe infections (Table 4) [32, 37, 38].

5.4 Other considerations

To treat cystitis without systemic manifestations, some experts recommend the oral 
administration of fosfomycin. However, its effectiveness could be better. A. baumannii 
is intrinsically resistant in vitro studies. No protocols define the duration of treatment, 
and there is no standardized methodology to determine susceptibility [39, 40].

Doxycycline, minocycline, and tigecycline usually do not present enough serum or 
urinary concentrations to treat UTI properly [41–43].

Antibiotic Dosage

Meropenem Cystitis: 1 g intravenously every 8 hours
Pyelonephritis or complicated infections: 2 g intravenously every 8 hours

Imipenem Cystitis: 500 mg intravenously every 6 hours
Pyelonephritis or complicated infections: 500 mg to 1 g every 6 or 8 hours

Gentamicin Cystitis: 5 mg/kg intravenously qd

Amikacin Cystitis: 15 mg/kg intravenously qd

Table 2. 
First-line antibiotics used in the treatment of MDR A. baumannii.

Antibiotic Dosage

Colistin 
(polymyxin E)

Loading dosage of 9 million units of colistimethate sodium. Daily maintenance dosage of 
9 to 11 million units, divided into three or three infusions.

Cefiderocol 2 g every 8 hours - this medication was approved by the Food and Drug Administration 
(FDA) for complicated UTIs in 2019. It is only available in some countries.

Table 3. 
Second-line antibiotics used in the treatment of MDR A. baumannii.

Antibiotic Dosage

Polymyxin 
B

Zavascki et al. demonstrated in a study that only 1% of the unaltered drug was found in the 
urine. Therefore, colistin is preferred for the treatment of UTIs. When colistin is unavailable, 
the recommended loading dose of polymyxin B is 20.000 units/kg, followed by a maintenance 
dose of 15.000 units/kg bid.

Gentamicin Pyelonephritis or complicated infections: 7 mg/kg intravenously for the first dose, followed by 
2–3 mg/kg/day divided into two or three doses.

Amikacin Pyelonephritis or complicated infections: 20 mg/kg intravenously for the first dose, followed by 
15 mg/kg/day, in a single dose or divided into two doses.

Table 4. 
Antibiotics used as part of combined therapy in the treatment of MDR A. baumannii.
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Novel antibiotics should not be used because they have limited in vitro activity 
against Acinetobacter strains [44, 45].

6. Conclusion

The incidence of MDR Acinetobacter has increased in recent decades with higher 
resistance to carbapenems and colistin. To treat these infections became a challenge 
and a public health problem. When analyzing the management of UTI-caused MDR 
A. baumannii, the options become scarce because of the low urinary concentration 
of some drugs. Novel agents until now are ineffective, owing to an observed in vitro 
intrinsic resistance. Therefore, developing new antibiotics, and even vaccines, is nec-
essary and is in the sights of scholars as part of the WHO’s goals for the near future.
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Appendices and nomenclature

bid two times a day;
qd once time a day;
ICU intensive care unit
MDR multidrug-resistant
MRSA methicillin-resistant Staphylococcus aureus
UTI urinary tract infection
WHO world health organization
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baumannii
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Abstract

Nosocomial infections caused by carbapenem-resistant Acinetobacter baumannii 
(CRAB) have become a global concern. The extensive antibiotic resistance of CRAB 
has significantly limited treatment options, while its prevalence in hospital outbreaks 
has amplified infection rates. This scenario has led to a resurgence of interest in 
polymyxins, an older class of antibiotics previously overlooked due to perceived 
toxicity. Polymyxins, cationic polypeptide antibiotics, now represent a last-resort 
treatment option. Despite their historical use, modern assessment methods have only 
recently been applied to evaluate polymyxins. Two polymyxins are available for clini-
cal use: polymyxin B and colistin (polymyxin E). Notably, the administration of these 
drugs is hindered by toxicities, primarily nephrotoxicity and neurotoxicity, alongside 
less common adverse effects such as injection pain, hypersensitivity reactions, and 
bronchospasms.

Keywords: Acinetobacter baumannii, polymyxin, toxicity, nephrotoxicity, neurotoxicity

1. Introduction

Antimicrobial resistance (AMR) has escalated into a global healthcare crisis, 
rendering many pathogens resistant to current treatments [1]. A comprehensive 
analysis estimated 1.27 million deaths attributable to bacterial AMR in 2019 [2], and 
projections indicate that 2050 annual AMR-related deaths could reach ten million [3].

Over the past three decades, Acinetobacter baumannii has emerged as a formidable 
healthcare challenge, particularly due to multidrug-resistant (MDR) strains, resistant 
even to carbapenems [4, 5]. MDR rates for A. baumannii surpass those of other noso-
comial pathogens [6]. A. baumannii, a Gram-negative non-fermentative coccobacillus 
of the Moraxellacecae family, thrives in healthcare settings owing to its antibiotic 
resistance and desiccation tolerance [7].

Managing A. baumannii infections is complex due to its diverse resistance mecha-
nisms, with carbapenem resistance (CR) being particularly concerning. The World 
Health Organization (WHO) classifies carbapenem-resistant A. baumannii (CRAB) 
as a critical priority, given its threat to human health [8]. During the SARS-CoV-2 
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pandemic, CRAB infections further complicated patient outcomes, with high resistance 
rates (91.2%) observed [9].

A significant subset of CRAB isolates is extensively drug-resistant (XDR; i.e., non- 
susceptible to ≥1 agent in all but ≤2 classes) or pan drug-resistant (PDR; i.e.,  
non-susceptible to all antimicrobial agents have been reported worldwide) [10–12], 
compounding the challenge. Limited effective antibiotic options against CRAB pose a 
substantial health challenge. Polymyxins, though previously overshadowed, regained 
prominence in the late 1990s due to their activity against carbapenem-resistant (CR) 
infections [13]. However, new-generation antimicrobials, particularly β-lactam/β-
lactamase inhibitors, have largely replaced polymyxins in CR Gram-negative bacterial 
infections. Conversely, polymyxins are vital for tackling resistant pathogens [13–15], 
especially where new agents are unavailable [16]. Nonetheless, they come with 
adverse effects, including allergic reactions, neurotoxicity, and nephrotoxicity [17].

2. Polymyxins

2.1 History of discovery

Polymyxins are cationic polypeptide antibiotics derived from Bacillus polymyxa, 
pivotal in treating carbapenem-resistant Gram-negative bacteria. The initial anti-
bacterial activity was reported in 1947 [18, 19], leading to the isolation of antibiotics 
named polymyxin [20] and aerosporin [18, 21]. Despite the structural similarity, they 
were classified as belonging to the same class [22–25]. Polymyxin B and polymyxin 
E (colistin) differ in a single amino acid (D-Phe replaces D-Leu) [26, 27] and are the 
clinical variants among over 15 known polymyxins [13–15, 28, 29]. These peptides 
share a cyclic ring structure with hydrophilic and hydrophobic components, enabling 
them to disrupt cell membranes [13, 29, 30].

2.2 Structure

Polymyxins’ structure resembles antimicrobial peptides deployed by eukaryotes 
against pathogens. They are natural non-ribosomal cyclic lipopeptides weighing 
around 1.2 kDa (Figure 1) and consist of a cyclic ring of amino acids with a tripeptide 
chain, which binds to the lipid part of the molecule. The decapeptide core of poly-
myxins contains an intramolecular loop of starch-linked heptapeptides between the 
amino group on the side chain of the aminobutyric acid (Dab) residue at position four 
and the carboxyl group on the C-terminal threonine residue. They also have several 
other distinctive structural features, including five non-proteogenic Dab residues 
positively charged at physiological pH, conserved hydrophobic residues at positions 6 
and 7, and an N-terminal acyl group [31]. The cationic peptide ring of these antibiot-
ics is the same between the two polymyxins, except for a single amino acid: a D-Leu 
from colistin is relocated by D-Phe to polymyxin B [14, 26, 27, 29–32]. However, the 
pharmacokinetics of polymyxin B and colistin differ notably due to the different 
pharmaceutical forms in which they are administered—active and prodrug form, 
respectively [33]. Its mechanisms of action occur through the rupture of the external 
and cytoplasmic membranes of the bacteria, causing loss of the contents of the cell’s 
interior [34]. Polymyxin B comprises at least four components and polymyxin B1 
to B4, which differ only in the portion containing fatty acids, polymyxin B1 and B2 
being in greater proportion [35].
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2.3 Mechanism of action

Polymyxins exert rapid bactericidal effects by interacting with lipopolysaccharides 
(LPS) in the bacterial outer membrane, inducing disruptions that compromise 
membrane integrity. LPS, a critical component of the bacterial outer membrane, 
encompasses the O antigen, polysaccharide core, and lipid A. The positive charge of 
the polymyxin ring facilitates its binding to the outer membrane’s lipid A, leading to 
the displacement of stabilizing Mg2 and Ca2 ions, which is crucial for LPS integrity 
[35]. The fatty acid side chains also engage with LPS, enabling the secure insertion 
of polymyxin into the outer membrane. This interaction triggers a series of detri-
mental effects, including changes in outer membrane permeability, leakage of cell 
contents, and eventual bacterial cell death [29, 36]. Beyond inducing cytoplasmic 
leakage, this binding may neutralize the biological properties of endotoxins [14, 29]. 
Multiple hypotheses and models exist to explain the various mechanisms underlying 
polymyxin’s bactericidal activity [13, 14, 29]. The principal pathways through which 
polymyxins exhibit their activity are shown in Figure 2.

2.4 Polymyxin resistance

The resistance of microorganisms to polymyxin remains incompletely understood, 
potentially arising from mutation or adaptation mechanisms [37, 38]. In most Gram-
negative bacteria, the PhoP/Q and PmrA/B regulatory systems are pivotal in mediat-
ing polymyxin resistance. These systems oversee mechanisms that induce chemical 
modifications in the structure of bacterial lipopolysaccharides (LPS) (Figure 3). 
In response to low levels of antimicrobial peptides, Mg+2 and Ca+2 ions, as well as 
other inducers such as low pH, excessive Fe+3, excessive Al+3, and phagosomes, 
these systems modulate resistance by altering the cationic charge of the cell wall. 
Cumulatively, these modifications reduce the negative charge of the bacterial outer 
membrane, resulting in a diminished affinity of polymyxin for the bacterial cell 
surface [29].

Modifying lipid A within the lipopolysaccharide (LPS) molecule, catalyzed by the 
gene products of pmrCAB and arnBCADTEF, is a fundamental mechanism underly-
ing bacterial resistance to polymyxin antibiotics. These gene products play a pivotal 

Figure 1. 
Cyclic lipopeptide structure of polymyxin B (1). Colistin (polymyxin E) features a substitution of one (D-Leu) 
with one (D-Phe) (2).
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role in altering the surface charge and permeability of the bacterial outer membrane 
(OM) [39–41].

In A. baumannii, resistance development is primarily associated with changes in 
the LPS biosynthesis pathway. Currently, two mechanisms of polymyxin resistance 

Figure 2. 
Mechanisms of antibacterial activity of polymyxins in gram-negative bacteria. Disruption of the outer 
membrane, vesicle-vesicle contact, inhibition of respiratory enzyme NDH-2, and hydroxyl radical formation. 
CoQ1, coenzyme Q1.

Figure 3. 
Mechanism of polymyxin resistance changes in LPS. The PhoQP two-component system triggers pmrD expression. 
PmrD activates PmrA, cptA pmr, and the am operon. Working alongside EptB, CptA brings about modifications 
in the core polysaccharide of LPS. The pmr and am products facilitate the substitution of lipid a phosphates by 
Petn and L-ara4N, respectively. These collective alterations influence the charge of the outer membrane, resulting 
in polymyxin repulsion.
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have been identified in A. baumannii. The initial mechanism involves the modifica-
tion of lipid A via phosphoethanolamine and/or galactosamine, orchestrated by the 
PmrAB two-component system. Mutations at single nucleotide levels or elevated 
expression of pmrA (response regulatory protein) or PmrB (histidine kinase sensor) 
trigger the upregulation of pmrC, subsequently activating the production of phos-
phoethanolamine transferase (PEtN). This enzyme alters lipid A structure [42–46]. 
Other genes influencing LPS biosynthesis and lipid A configuration have also been 
documented. Additionally, the involvement of efflux pumps in colistin resistance 
cannot be dismissed [47, 48].

Another A. baumannii polymyxin resistance mechanism involves the complete loss 
of LPS from the outer membrane, which stems from mutations or inactivation due to 
the insertion of the ISAba11 insertion sequence into the lpxA, lpxC, and lpxD genes. 
These genes encode enzymes accountable for the initial stages of polymyxin LPS 
biosynthesis [43, 44, 49].

Mutations within the gene responsible for glycosyltransferase, a component 
involved in LPS biosynthesis, have also been linked to polymyxin resistance [50, 51].  
According to current literature, both resistance mechanisms negate polymyxin-
triggered bacterial death by obstructing the interaction of polymyxins with OM. 
The mechanisms are governed by the pmrCAB operon (for lipid A modification with 
PEtN), naxD (for galactosamine modification), or the lpx biosynthetic cluster (for 
LPS loss) [42, 44–46].

The outer membrane lipoprotein VacJ is an integral part of the Vps-VacJ ABC 
transporter system, responsible for maintaining the presence of phospholipids and 
LPS within the outer membrane [52]. Mutations within the vacJ and pldA genes could 
contribute to A. baumannii’s colistin resistance due to their role in preserving the 
asymmetrical lipid distribution in the outer membrane [53]. In 2016, the discovery of 
the plasmid-borne mcr-1 gene marked the first instance of a colistin-resistant gene 
with horizontal transmission capability [54]. Unlike its predecessors, this gene can be 
disseminated via plasmids, expanding the reach of colistin resistance [55]. In subse-
quent years, the mcr-4.3 gene variant, carried by a plasmid, has also been identified 
[56–58]. Understanding the intricacies of polymyxin resistance mechanisms has 
become imperative for maintaining the effectiveness of this antibiotic until novel 
therapeutic alternatives are available. Nevertheless, assessing susceptibility to 
polymyxins remains a contentious issue as numerous laboratories do not employ the 
microdilution technique recommended for this evaluation [59].

2.5 Heteroresistence

Heteroresistance refers to the emergence of resistance to a specific antibiotic 
within a population initially sensitive to that antibiotic based on in vitro susceptibil-
ity test cutoff points [60]. Some studies describe this phenomenon without specify-
ing the antibiotic concentration range. In contrast, others identify heteroresistance 
when subpopulations of an isolate grow at concentrations exceeding minimum 
inhibitory concentration (MIC) values found in susceptibility tests yet still within 
the susceptibility range [61, 62]. This variability in definitions, detection methods, 
and prevalence complicates understanding of heteroresistance’s clinical significance 
[63]. This phenotype might represent a natural progression of antibiotic resistance, 
allowing bacteria to grow in the presence of antibiotics following resistance acquisi-
tion by most of the microbial population [63]. In 2006, Li et al. [61] first reported 
heteroresistance to colistin in multidrug-resistant A. baumannii isolates, defining it 
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as the emergence of resistance within a subpopulation of an otherwise susceptible 
(MIC ≤2 mg/L) group. Since then, this phenomenon has been widely observed, 
with prevalence ranging from 1.84–100% [64–66]. A related study showed higher 
heteroresistance in patients previously treated with colistin, suggesting prior colis-
tin therapy might induce heteroresistance [64]. Additionally, the synergistic activ-
ity of colistin has been compromised when tested in antimicrobial combinations 
against heteroresistant carbapenem-resistant A. baumannii strains [67]. Findings 
regarding resistance stability within surviving subpopulations under nonselective 
conditions have varied across studies, implying a potential species-specific influ-
ence [60, 61, 64, 68]. Under colistin exposure, a subset of cells becomes colistin-
dependent for optimal growth, indicating an adaptive response to colistin pressure 
and an intermediate stage between susceptibility or heteroresistance and full-blown 
colistin resistance [69, 70]. Hong et al. [60] found isolates displaying a heteroresis-
tant phenotype at low antibiotic concentrations, distinct from the typical heterore-
sistant colistin isolates emerging at high colistin concentrations. The mechanisms 
of heteroresistance to colistin in A. baumannii are consistent with those previously 
described for colistin resistance, involving LpxACD, PmrCAB, and efflux pumps 
[60, 65, 68, 71, 72].

Detecting heteroresistant strains necessitates using the population profile analysis 
(PAP) method, the gold standard for identifying heteroresistance. In clinical practice, 
the introduction of the mini-PAP method, particularly for colistin with MIC >2 mg/L, 
has been recommended [73]. However, the fact that conventional susceptibility test-
ing categorizes heteroresistant isolates as susceptible to colistin poses a notable con-
cern [65]. Heteroresistance can sometimes be indicated by colonies within the growth 
inhibition zone, as seen with Etest® strips or disc diffusion assays. Nevertheless, 
standard dilution methods used for MIC determination fail to detect heteroresistance, 
potentially leading to suboptimal patient dosages. This suboptimal treatment might 
inadvertently select the resistant population, contributing to therapeutic failures 
[26, 74]. Inappropriate colistin use also holds significant potential for rapid resistance 
development and therapeutic inefficacy [75]. Under selection pressure, a subpopula-
tion of resistant cells within a heteroresistant population can become predominant, 
yielding an entirely resistant population [68].

2.6 Clinical use

In clinical practice, polymyxins are employed as either polymyxin B or colistin. 
Despite their structural similarity, these drugs differ in their administered forms and 
exhibit distinct clinical pharmacokinetics (PK) [30]. Polymyxin B is directly admin-
istered in its active form as polymyxin B sulfate salt. In contrast, colistin is adminis-
tered as an inactive prodrug called colistin metasulfate or colistimethate (CMS). Once 
metabolized, CMS is converted into the active ingredient colistin base. CMS is less 
toxic than colistin, and its conversion to colistin occurs gradually, coupled with rapid 
renal elimination.

Consequently, only about 20–25% of the administered CMS is effectively trans-
formed into colistin [76–78]. Polymyxin B administration leads to quicker attainment 
of target concentrations [79]. Although polymyxin B and colistin exhibit comparable 
in vitro antimicrobial activity [30], differences in their plasma concentration profiles 
following therapy initiation will likely significantly impact their pharmacodynamic 
responses in patients.
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3. Polymyxin toxicity

The 1990s saw the emergence of multidrug-resistant bacteria, including those 
resistant to β-lactams, aminoglycosides, and quinolones, causing nosocomial infec-
tions, particularly in intensive care units [80–83]. This scenario increased interest 
in polymyxins and spurred several reviews [84, 85]. These drugs’ most significant 
adverse effects include nephrotoxicity, particularly acute renal failure, and neuro-
toxicity. The latter is thought to result from the high binding affinity of polymyxins 
to brain and renal tissues [86]. Additional effects encompass allergies leading to skin 
lesions resembling urticaria, pain at the injection site (with intramuscular administra-
tion), thrombophlebitis (with intravenous injection), fever, and eosinophilia [87, 88].

3.1 Nephrotoxicity

Nephrotoxicity ranks as the foremost adverse event often linked to the use of 
 polymyxins. Thus, comprehending the mechanisms and risk factors for its develop-
ment has been a focal point of research [89, 90]. Clinical manifestations of polymyxin-
associated nephrotoxicity include direct toxicity to renal tubules leading to tubular 
necrosis, oxidative damage, decreased glomerular filtration rate, reduced creatinine 
clearance, and elevated serum urea and creatinine levels [80, 91]. Risk factors for 
kidney damage among polymyxin users encompass high doses, concurrent use of 
other nephrotoxic drugs, vasoactive medication requirements, and a higher body mass 
index [92–95]. The substantial concern with nephrotoxicity lies in its dose-dependent 
nature. In other words, the choice of therapy can influence the extent of drug-induced 
toxicity, potentially exacerbating the clinical condition of patients [96]. Dose-
dependent nephrotoxicity is the most frequently reported adverse event with intra-
venous polymyxin use, affecting between 30 and 60% of patients [78, 85, 97–101]. 
However, it is often reversible [102]. While most studies have examined colistin, fewer 
studies have focused on polymyxin B. Due to the slower conversion of CMS to colistin, 
reaching therapeutic serum levels may be delayed, necessitating higher initial CMS 
doses to achieve effective treatment early on. However, this strategy is constrained 
by the potential for nephrotoxicity. Polymyxin B, administered directly in its active 
form, reaches the desired plasma concentration more promptly [30]. Recent literature 
suggests greater nephrotoxicity with colistin compared to polymyxin [103]. However, 
these findings require careful evaluation due to many factors influencing nephro-
toxicity development, especially during the initial stages. Additionally, the potential 
nephrotoxicity of low polymyxin B doses may have been underestimated. Several 
studies have explored the efficacy of polymyxin B and colistin against A. baumannii, 
providing data on nephrotoxicity incidence and mortality (Table 1).

Acute kidney injury (AKI) is a prevalent clinical complication observed primar-
ily in critical and hospitalized patients, characterized by the release of measurable 
proteins in both plasma and urine. This condition is rooted in the sudden decline of 
renal function, classified into risk, damage, failure, loss, and AKI stages [137, 138]. 
Critically ill patients suffering from AKI often face elevated mortality rates. This 
acute injury can progress to chronic kidney disease, defined by kidney damage and a 
glomerular filtration rate below 60 mL/min/1.73m2 over 3 months. Therefore, discon-
tinuing polymyxin therapy is imperative whenever signs of renal failure are detected. 
Supportive care, including monitoring fluid intake, output, and electrolytes, becomes 
necessary when renal dysfunction is associated with polymyxin use [85].
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N° of patients/
therapy

GNB (n) Definition of nephrotoxicity Nephrotoxicity 
(%)

Mortality 
rate (%)

Ref.

60/COL AB (39)
PA (21)

CrL of 1.5 mg/dL or urea level 
of 50 mg/dL

27 (NRF)
58 (ABCL)

37 [104]

21/IVCOL AB (21) SCr value of 12 mg/dL, 
reduction in the calculated 
CLCr of 50% relative to the 
matter at antibiotic therapy 
initiation, or a decline in RF 
that resulted in the need for 

RRT

24 61.9 [105]

60/PB AB (46)
PA (2)

AB + PA (2)
NI (10)

Double the SCr for a value 
≥2 mg/dL

14 20
57 (DRF)

15 
(NDRF)

[106]

26/COL PA (20)
AB (6)

ND 14.4 33.3 [107]

16/IVCOL, 
AEROPB + AA

AB (16)
PA (12)

Doubling of SCr 6 21 (EOT)
48 (AD)

[108]

19/IVCOL PA (12)
AB (5)

CrV at the beginning of 
COLtreatment was compared 
with the maximum value of 
creatinine during therapy as 

well as with the CrV at the end 
of treatment using a non-

parametric test (Wilcoxon)

0 41.2 [109]

55/COL AB (36)
PA (19)

SCr value of 12 mg/dL, 
reduction in the calculated 
CLCr of 50% relative to the 
matter at antibiotic therapy 
initiation, or a decline in RF 
that resulted in the need for 

RRT

0 27 [110]

43/COL PA (35)
AB (8)

Acute RF was defined as 
a rise of 2 mg / dL in the 

SrCr level of patients with 
previously normal renal 

function

62.5 27.9 [111]

51/COL AB (28)
PA (23)

Normal renal function was 
defined as a SCr level of 1.3 mg/

dl or lower.

8 24 [112]

37/IVPB, 
PBVN, both 
(IPB/PBVN), 
DOXI

AB (37) Increase in SCr of 0.5 mg/dL, 
or increase ≥50% in SCr or 

reduction of ClCr ≥50%

21/6 27 [113]

45/IVPB PA (20)
AB (19)

PA + AB (2)
NI (4)

Acute increase in SCr level by 
>0.5 mg/dL over 24 h

4 52 (IH) [114]

16/PB PA (8)
AB (5)
KP (3)
EC (1)

Increase in SCr of 0.5 mg/dL or 
a 50% reduction in CLCr

55 63 [98]



123

Understanding the Harmful Impact of Polymyxins on Acinetobacter baumannii
DOI: http://dx.doi.org/10.5772/intechopen.1003649

N° of patients/
therapy

GNB (n) Definition of nephrotoxicity Nephrotoxicity 
(%)

Mortality 
rate (%)

Ref.

82/COL, PB AB (82) Doubling of SCr (any time 
during treatment compared 
with the start of therapy) or 
increase by 1 mg/dL if initial 

SCr was 1.4 mg/dL

26 (COl group)
27 (PB group)

56 (COL 
group)
61 (PB 
group)

[115]

114/IVPB PA (95)
AB (13)
KP (1)

PA + AB (2)
NI (3)

Baseline SCr < 1.5 mg/dL 
when SCr levels increased to 
1.8 mg/dL (AKI) or baseline 

SCr 1.5 mg/dL when SCr levels 
increased to >50%, or there was 

a need for dialysis

22 AKI/NS 61.4
92 (DAKI)

53 
(NDAKI)

[116]

276/PB PA (126)
AB (86)
NI (64)

MRI: 50% but <100% (increase 
in creatinine concentration 

during therapy); MORI: 
100% (increase in creatinine 

concentration but with no need 
for hemodialysis); SRI: need for 

hemodialysis during therapy

15.7 (MRI)
38.3 (MOSRI)

60.5 (IH) [99]

80/PB (NPD 
or CD)

KP (49)
AB (21)
PA (14)
EC (4)

ECO (1)

Defined by RIFLE criteria 40 (1 week after 
the last dose)

15 vs. 20 
(EOT)

30 vs. 38 
(EOH)

[116]

173/COL, PB AB (107)
PA (46)

Defined by RIFLE criteria 60 (COL group)
41.8 (PB group)

ND [92]

32/IVPB AB (26)
PA (1)

ECO (1)
SE (1)
Mu (3)

Defined by RIFLE criteria 18.7 28.1
(EOT)

[117]

225/IVCOL,
PB

PA (103)
AB (74)
KP (52)

ECO (11)
Other (17)

Prevalence of nephrotoxicity 
within 30 days in 

colistimethate group compared 
with PB group Comparison of 
nephrotoxicity prevalence in 

matched patients

21.4 (COL 
group)

21.4 (PB group)

55.3 (COL 
group)

21.1 (PB 
group)

[93]

104/PB AB (34)
KP (25)
PA (11)
Mu (34)

Defined by RIFLE criteria 14.4 47 [118]

132/COL, PB AB (43)
PA (22)
KP (12)
DI (18)
NI (37)

Classified according to AKIN 
criteria

20.8 (AKI/PB 
group)

38.9 (AKI/COL 
group)

47 [119]

36/PB A spp. (12)
KP (8)
PA (6)

ECO (6)
E spp. (5)
Other (9)

Increase of 100% of SCr level 
from baseline

21.4 44.5 [120]
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N° of patients/
therapy

GNB (n) Definition of nephrotoxicity Nephrotoxicity 
(%)

Mortality 
rate (%)

Ref.

410/PB AB (150) PA 
(45)

KP (42) ECO 
(5)

EA (5)
NI or NR 

(162)

Defined by RIFLE criteria 12.7 42 [121]

151/ PB KP (92)
AB (32)
PA (17)

Other (10)

AKI: increase in  
SCr 1.5 times the value 
at PB initiation or the 

initiation of RRT by day 7 of 
PB treatment, defined by  

RIFLE criteria

35.8 AKI NS [122]

192/ IVPB KP (92)
AB (53)

Defined  
by  RIFLE  

criteria

45.8 NS [123]

491/IVCOL,
PB

AB (180)
KP (55)
PA (51)
EA (9)

ECO (5)
NI (190)

Incidence of AKI by RIFLE 
criteria

38.3 (COL 
group)

12.7 (PB group)

NS [124]

291/PB, NVPT, 
in vitro VCT

AB (228)
PA (61)
KP (14)

Other (7)

Defined by RIFLE criteria 98 of 291 23 [125]

112/IVCOL, 
PB

KP (31)
AB (22)
PA (19)
ECO (5)
NI (35)

A two-fold increase in SCr or 
a 50% decrease in estimated 

CLCr

26.8 NS [103]

84/IVPB, 
PBM, PB/
CARB, CEFO/
SUL

AB (81) MRI: decrease in baseline CLCr 
of 50% or doubling of baseline 

SCr in patients with normal 
renal function, or an increase of 
baseline SCr of 50% or decrease 

of CLCr of 20% in patients 
with abnormal baseline anal 

function

7.1 (RI) 48.8 (IH) [126]

222/PB AB (67)
E (50)

PA (15)
Other (4)
NI (86)

Defined by RIFLE criteria 46.3 60.3 [127]

273/PB KP (108)
PA (74)
AB (77)

ECO (22)
Other (9)

Defined by RIFLE criteria 32 47 (ODD)
17 (TDD)

[128]
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N° of patients/
therapy

GNB (n) Definition of nephrotoxicity Nephrotoxicity 
(%)

Mortality 
rate (%)

Ref.

183/IVCOL or 
ICOL, IVCOL/
ICOL

Acinetobacter 
calcoaceticus-
Acinetobacter 

baumannii 
(Acb) complex 

(183)

Increase in SCr of ≥0.3 mg/
dL in 2 days or ≥ 50% in 7 days 
after COL treatment without 

other defined causes

13.3 19.1 [129]

250/COL + 
MERO

AB (197)
AB+KP (1)

NS (52)

Classified according to AKI 
criteria

30.8 41.6 [130]

39/IVCOL PA (34)
AB (5)
EC (1)

Based on the ROC curve, the 
cutoff value of the colistin 
trough concentration that 

would predict nephrotoxicity 
was 2.02 mg/mL

47.6 33.3 [131]

87/COL AB (73)
NS (14)

Increase in the SCr level by at 
least 50% from the baseline 

after≥48 h

27.6 NS [132]

50/COL Defined by RIFLE criteria 54 (MIC 
≤0.5 μg/mL

NS [133]

25/IVCOL AB (25) Increase in SCr to ≥1.5- fold 
from baseline, decrease in the 
estimated CLCr to <75% from 
baseline, or requirement for 

RRT

20 40 (IH) [134]

163/COL A spp. (118)
PA (32)
KP (7)

E spp. (6)

Followed by KDIGO 
classification: creatinine 

elevation of ≥0.3 mg/dL in 
48 h or ≥ 1.5 times baseline 

creatinine in an interval of up 
to 7 days

46 17.8 [135]

101/COL AB (101) Defined by RIFLE criteria 52.6 (LD group)
20.5 (WLD 

group)

51.3 [136]

COL, colistin; PB, polymyxin; PBM, polymyxin B monotherapy; IVCOL, intravenously colistin; ICOL, inhaled colistin; 
AEROPB, aerosolized polymyxin B; IVPB, intravenously polymyxin B; TDD, twice daily dosing; NRF, normal renal 
function; ABCL, abnormal baseline creatinine levels; PBVN, polymyxin B via nebulization; NPD, new protocol design; 
CD, conventional dosing; NVPT, nonvalidated polymyxin therapy; VPCT, validated polymyxin combination 
therapy; CARB, carbapenems; CEFO, cefoperazone; SUL, sulbactam; DOXI, doxycycline; MERO, meropenem; 
AB, Acinetobacter baumannii; PA, Pseudomonas aeruginosa; KP, Klebsiella pneumoniae; EC, Enterobacter 
cloacae; ECO, Escherichia coli; E spp., Enterobacter spp.; EA, Enterobacter aerogenes; A spp., Acinetobacter spp.; 
E, Enterobacteriaceae; DI, dual infection; SCr, serum creatinine; CLCr, creatinine clearance; CrL, Creatinine 
level; CrV, Creatinine values; NI, none identified; MRI, mild renal impairment; NR, not request; NS, not stated; 
NRF, normal renal function; ABCL, abnormal baseline creatinine levels; DRF, Developed renal failure; NDRF, not 
developed renal falure; Mu, multiple; AERO, aerosolized; RI, Renal impairment; RF, renal failure; AD, at discharge; 
AA, antimicrobial agente; ND, not determined; EOT, end of treatment; IH, In-hospital; RIFLE, Risk, Injury, Failure, 
Loss of kidney function and End-stage kidney disease; EOH, End of hospitalization; AKI, acute kidney injury; AKIN, 
acute kidney injury network; ODD, Once daily dosing; TDD, twice daily dosing; DI, dual infection; MORI, moderate 
and severe renal impairment; DAKI, developed Aki; NDAKI, not developed AKI; RRT, renal replacement therapy; 
KDIGO, kidney disease improving global outcomes; LD, loading dose; WLD, without loading amount.

Table 1. 
Studies report nephrotoxicity during polymyxin therapy against Acinetobacter baumannii.
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3.2 Neurotoxicity

Neurotoxicity constitutes another undesirable consequence of polymyxin 
administration. Neurotoxicity related to polymyxins affects 7–27% of patients, with 
most cases involving concurrent renal failure [139, 140]. Symptoms of neurotoxicity 
encompass weakness, peripheral and facial paresthesia, ataxia, ophthalmoplegia, nys-
tagmus, difficulty swallowing, and eyelid ptosis [88, 139–144]. Severe manifestations 
include muscle blockade leading to respiratory failure, often requiring ventilatory 
support for 10 to 48 hours [140, 141]. Typically, these symptoms decrease upon taper-
ing or discontinuation of the drug. The administration of colistin triggers the activa-
tion of pro-inflammatory mediators within neuronal cells [145]. Research indicates 
that neurotoxicity entails a complex interplay of apoptotic and inflammatory path-
ways. Studies involving colistin treatment (15 mg/kg/day for 7 days) revealed signifi-
cant mitochondrial dysfunction in central and peripheral nervous tissues [146, 147]. 
Similarly, exposure to colistin (200 μM/24 h) induced apoptosis in around 50% of 
neuronal N2a cells in mice [145]. Further exploration using Western blotting and 
immunohistochemistry demonstrated that colistin-induced apoptosis in N2a neuro-
nal cells hinges on generating reactive oxygen species (ROS) and the mitochondrial 
pathway [145, 148, 149]. Interestingly, co-administration of neuroprotective agents, 
such as curcumin and minocycline demonstrated, in vivo efficacy against polymyxin-
induced neurotoxicity [145, 149].

3.3 Skin hyperpigmentation

Although nephrotoxicity ranks as polymyxin B’s most significant adverse 
 reaction, another substantial side effect is skin hyperpigmentation. Polymyxin 
B induces this condition, which impacts psychological well-being and results 
in significant esthetic harm [150–158]. Cutaneous hyperpigmentation has been 
observed as a reaction to polymyxin B, affecting adults and pediatric and neonatal 
patients [151, 153–155]. According to cohort studies, the incidence of cutaneous 
hyperpigmentation attributed to this drug ranges from 8–15% [151, 152]. Cutaneous 
hyperpigmentation involves biochemical and immunological mechanisms, primar-
ily associated with histaminergic receptors that stimulate melanogenesis, ultimately 
leading to melanin deposition in the dermis [150]. Typically, skin darkening 
manifests between the third and seventh days following the commencement of 
intravenous polymyxin B treatment. This phenomenon does not show significant 
disparities concerning light exposure or infection sites across patients [152]. 
Hyperpigmentation is often concentrated on the face and neck regions with higher 
melanocyte density, while the rest of the body remains unaffected during treatment 
[152, 154, 155, 159].

In some cases, discontinuing polymyxin B treatment reveals hyperpigmentation 
that can persist for months [150]. During the COVID-19 pandemic, polymyxin B 
treatment was administered to physicians with COVID-19 and secondary multidrug-
resistant bacterial infections, resulting in hyperpigmentation on the head and 
neck [160]. This pigmentary disorder may be associated with AKI in critically ill 
COVID-19 patients [160]. Excessive accumulation of polymyxin B might contribute 
to aberrant hyperpigmentation in neonates and infants with immature renal function 
[153, 158].
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4. Conclusions

In summary, this chapter presents a comprehensive review of the toxicity 
of  polymyxins, which serve as the last resort for treating infections caused by 
carbapenem-resistant A. baumannii. The chapter begins by highlighting the current 
significance of A. baumannii as a challenging pathogen in healthcare settings, given 
its formidable ability to develop resistance through diverse mechanisms. Accordingly, 
it ranks as a high-priority microorganism for research and developing new antimicro-
bials. Despite their notable toxicity, polymyxins were re-introduced in the late 1990s 
due to escalating carbapenem resistance and limited alternative options. The chapter 
delves into the discovery and isolation of polymyxins, focusing on polymyxin B and 
polymyxin E (colistin) as the two varieties in clinical use. Their distinctive structural 
features enable interactions with cell membrane LPS, leading to membrane disrup-
tion through the cationic peptide ring’s hydrophilic nature and the fatty acyl chain’s 
hydrophobic characteristics. The emergence of polymyxin resistance is addressed, 
focusing on its occurrence through mutation or adaptation in Gram-negative bacteria. 
In A. baumannii, the resistance mechanism involves genes influencing LPS biosynthe-
sis and lipid A structure.

Additionally, efflux pumps and the mcr-1 gene contribute to colistin resistance. 
The phenomenon of heteroresistance to colistin in A. baumannii is explored, empha-
sizing its reliance on the population profile analysis method for detection. This 
method, recognized as the gold standard, has revealed the presence of heteroresis-
tance and its association with the previously discussed resistance mechanisms. Lastly, 
the clinical use of polymyxin B and colistin is outlined alongside their toxic effects. 
Nephrotoxicity is a prominent adverse event tied to polymyxin use, characterized by 
direct renal tubule toxicity and dose-dependent, often reversible effects. Most studies 
focus on colistin. One of its clinical complications is acute kidney injury (AKI). 
Neurotoxicity emerges as another unwanted effect, causing symptoms that generally 
wane with drug reduction or discontinuation. Severe cases might involve muscle 
blockade leading to respiratory failure. Furthermore, skin hyperpigmentation, a 
recognized reaction to polymyxin B, affects patients of varying ages through complex 
biochemical and immunological mechanisms.
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Abstract

Acinetobacter baumannii is an important bacterial pathogen associated with 
healthcare-associated infections (HAIs), especially in critically ill patients admitted 
to Intensive Care Units (ICU). Its ability to acquire antibiotic resistance determinants 
has propelled its clinical relevance. The rise in Acinetobacter infections and hospital 
outbreaks have been extensively described worldwide and are usually caused by 
carbapenem-resistant isolates. To compound the problem, Carbapenem-resistant A. 
baumannii (CRAb) isolates are also resistant to a wide range of other antibiotics, rep-
resenting a serious threat to public health. Since 2017, A. baumannii has been listed as 
a critical priority pathogen that poses a great threat to human health, according to the 
World Health Organization (WHO). The carbapenem-resistant rates in A. baumannii 
are notorious around the world. However, Latin America has one of the highest in 
the world. Carbapenem resistance in A. baumannii is due mainly to the presence of 
horizontally acquired OXA-type carbapenem resistance genes, including blaOXA-23, in 
most regions. Thus, this review aims to summarize the distribution of CRAb and its 
major carbapenem resistance mechanisms in Latin America.

Keywords: Acinetobacter baumannii, carbapenems, antimicrobial resistance, 
carbapenemases, oxacillinases

1. Introduction

Acinetobacter baumannii is Gram-negative, nonfermenting, aerobic coccobacilli, 
catalase-positive, oxidase-negative, and non-motile [1, 2]. It has also been considered 
the most serious among the ‘ESKAPE’ (Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa, and Enterobacter spe-
cies), a group of six pathogens with multidrug resistance and virulence factors [3].

In the Acinetobacter genus, A.baumannii is a more relevant species grouped as 
the Acinetobacter calcoaceticus–Acinetobacter baumannii (ACB) complex [4]. Clinical 
samples frequently recover this microorganism. It has been responsible for many 
nosocomial infection outbreaks in Intensive Care Units (ICU) [5]. A. baumannii 
can also be associated with community-acquired infections such as pneumonia and 
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bacteremia. However, these community infections are less common and have been 
associated with comorbidities (e.g., alcoholism, smoking, diabetes mellitus, chronic 
obstructive pulmonary disease, and renal disease) [6, 7].

A. baumannii has been recognized as causing severe healthcare-associated infections 
(HAIs) [6]. This Gram-negative pathogen has been associated with pneumonia, endocar-
ditis, bacteremia, wound infections, urinary tract infections, and meningitis in hospital 
settings. However, ventilator-associated pneumonia and bloodstream infections are the 
most important infections, accompanied by the highest mortality rates [3, 5, 6, 8]. Risk 
factors associated with colonization or infection include intensive care unit admission, 
invasive medical procedures, prolonged hospitalization, antimicrobial agent exposure, 
prior hospitalization, and local colonization pressure on susceptible patients [8].

The ability to resist the vast majority of available antimicrobial agents is an 
important determinant in clinical outcomes of A. baumannii infections and spread in 
the hospital setting [7, 9, 10]. Multidrug-resistant isolates of A. baumannii have been 
reported increasingly during the last decade [11, 12]. Previous studies indicated that 
the estimated global incidence of A. baumannii infections is approximately 1,000,000 
cases annually, of which 50% are resistant to multiple antibiotics, including carbapen-
ems [13, 14]. Carbapenem-resistant A. baumannii (CRAb) isolates have been increas-
ingly observed worldwide, constituting a serious threat to public health [12], especially 
in Latin America [15], being significantly associated with increased mortality.

2. Carbapenem-resistance A. baumannii

Antimicrobial resistance (AMR) has emerged as one of the global healthcare 
threats of the twenty-first century [16]. Projections estimated 10 million deaths per 
year attributable to bacterial AMR by 2050 [17, 18]. A. baumannii strains can develop 
resistance to all the antibiotics available, and outbreaks caused by multidrug-resistant 
(MDR), extensively drug-resistant (XDR) and even pan-drug-resistant (PDR) strains 
have been reported around the world [19].

Different global health authorities, including the European Centre for Disease 
Prevention and Control (ECDC), Infectious Diseases Society of America (IDSA), and 
Center for Disease Control and Prevention (CDC) have appointed MDR A. baumannii 
a critical threat to global health [20–23]. 2017, the World Health Organization (WHO) 
listed CRAb as a crucial priority due to its high AMR rates [24]. The rise of CRAb 
strains as an opportunistic pathogen poses a significant threat to global health.

2.1 Carbapenems

Carbapenems, such as the most popular imipenem and meropenem, play a 
 critically important role as a therapeutic option for serious infections caused by MDR 
A. baumannii [8] due to their effective activity and their safety [25, 26]. This β-lactam 
subclass demonstrates a wider range of antimicrobial activity than penicillins, cepha-
losporins, or β-lactam/ β-lactamase inhibitor combinations [27].

Generally, they have excellent bactericidal activity and stability toward a range of 
β-lactamases, except the emerging carbapenemases [8, 28, 29]. Carbapenems (except 
ertapenem that is inactive against Pseudomonas and A. baumannii) displayed activity 
against both Gram-negatives (except Stenotrophomonas maltophilia) and Gram-
positive bacteria (except methicillin-resistant S. aureus, E. faecium and Enterococcus 
fecalis apart from imipenem) [30].
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Like other β-lactams, carbapenems are bactericidal agents that bind to the penicil-
lin-binding proteins (PBPs), inhibiting bacterial cell wall synthesis [31]. Specifically, 
they prevent transpeptidation [32]. Conventionally, that β-lactam class enters Gram-
negative bacteria through outer membrane proteins (OMPs), also known as porins [28].

A classification system for carbapenems was proposed based on their antimicro-
bial activity, dividing them into three groups. Carbapenems group 1, which included 
ertapenem, are inefficient against non-fermentative Gram-negative bacilli and may 
be more suitable for community-acquired infections. Carbapenems from group 2, 
such as meropenem, imipenem, and doripenem, have broad-spectrum actions, are 
active against non-fermentative Gram-negative bacilli, and are effective against 
nosocomial infections. Group 3 carbapenems are potent against non-fermentative 
Gram-negative bacilli and S. aureus, which are resistant to methicillin [33–35].

Carbapenems have low oral bioavailability and must be administered intra-
venously because they cannot cross the gastrointestinal membranes readily. 
Additionally, imipenem-cilastatin and ertapenem can also be administered intramus-
cularly. All these carbapenem antibiotics are excreted via the kidneys [28].

These agents have a role as empirical and definitive therapy options in a range of 
serious infections. In ICU, carbapenems are especially valuable in units with known 
third-generation cephalosporin resistance problems, in patients with disease who have 
received previous antibiotic courses, and in polymicrobial infections [36]. Carbapenems 
are appropriate for use in the lower respiratory tract, skin and soft tissue, central nervous 
system, urinary tract, joint, muscle, gynecologic, obstetric, and abdominal infections or 
in the management of febrile neutropenia and problems due to cystic fibrosis [27].

Since the first CRAb was identified in 1991, there has been a considerable increase 
in the amount of A. baumannii strains that have acquired resistance to this β-lactam 
class [37]. This problem is critical, especially considering that most CRAb strains 
resist other antibiotic classes.

2.2 Treatment options

When carbapenem resistance is suspected and/or determined, some agents can be 
used in therapeutic combinations to treat CRAb infections, for example, β-lactamase 
inhibitors such as sulbactam; polymyxins, tetracyclines, such as minocycline and 
doxycycline; fosfomycin, rifamycin, and carbapenem therapy combined with other 
antibiotics [38].

2.3 Global rates of CRAb

Carbapenem resistance rates can vary according to the geographic Region around 
the world. Among 2.674 A. baumannii isolates collected from 13 countries in the 
Asia-Pacific region by Antimicrobial Testing Leadership and Surveillance (ATLAS) 
program between 2012 and 2019, carbapenem resistance rates ranged from the lowest 
in Japan (2.8%) and Australia (6.5%) to the highest in South Korea (88%). According 
to the previous review, CRAb is critically problematic across Asia and the Americas, 
except in Japan (3.5%) and Canada (4.7%). Oceania, Western Europe, the Nordic 
Region, and part of central Europe have the lowest rates (<10%). However, in areas 
surrounding the Mediterranean, including southern Europe, the Middle East, and 
North Africa, up to 90% of strains are resistant to carbapenems [39].

The latest Surveillance of AMR in Europe 2022 reports the total carbapenem 
resistance rate ranged from 31.9 to 38% among Acinetobacter spp. Isolates from 2016 
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to 2020. The percentages of carbapenem-resistant Acinetobacter spp. Varied within 
the Region in 2020, from below 1% in three (8%) of 38 countries/areas (Ireland, the 
Netherlands, and Norway) to percentages equal to or above 50% in 21 (55%) coun-
tries/areas, mostly in Southern and Eastern Europe [40]. The number of European 
countries with 50% or higher carbapenem resistance rates increased from 12 in 
2015–2018 to 21 countries in 2018–2020 [40, 41].

From 2012 to 2017, the incidence of CRAb from clinical cultures decreased in the 
United States. The Centers for Disease Control and Prevention (CDC) estimated 8500 
cases among U.S. hospitalized patients in 2017, resulting in 700 deaths [42]. Between 
2013 and 2016, the SENTRY Antimicrobial Surveillance Program reported, among 
ACB complex Isolates, a susceptibility rate for meropenem of 54.9% in North America 
[43]. For imipenem, the susceptibility rate was 57.7%. Comparing the intervals 
1997–2000 and 2013–2016, the susceptibility rate for meropenem significantly 
decreased from 88.8 to 54.9% [43].

Among 4.320 A. baumannii isolates collected across different regions of the world 
between 2016 and 2018 by Seifert et al. [44], the global resistance rate for merope-
nem was 64.4%. The highest meropenem resistance rates observed were in Africa/
Middle East (81.1%), Latin America (78.4%), Asian/South Pacific (67.5%), and 
Europe (63%) [44].

2.4 CRAb in Latin America

Rates of carbapenem resistance among A. baumannii in Latin America appear to 
be one of the highest in the world. These rates up to 90% for A. baumannii isolates 
can be found across the different countries of Latin America, with the resistance rate 
of A. baumannii isolates greater than 50% in many countries [15]. In a review by Ma 
and McClean [39], Carbapenem resistance rates ranged from 0 to 97.5% among Latin 
American isolates [39].

ACB complex Isolates were collected from 17 Latin America centers (7 countries) 
from January 1997 to December 2016 through the SENTRY Program. Data of this 
Surveillance program appointed a susceptibility rate for meropenem of 13.7%. For 
imipenem, this resistance rate was 14.4%. The susceptibility rates declined continu-
ously in Latin America’s 2009–2012 and 2013–2016 periods [43].

The global dissemination of CRAb is associated with clonal lineages, illustrat-
ing this organism’s success in acquiring carbapenem resistance [45]. Initially, three 
disseminated lineages of A. baumannii called European clones I, II, and III were 
characterized in European countries. Posteriorly, complementary studies showed 
that these lineages had already spread worldwide, and thus, European clones were 
renamed international clonal (IC) lines I, II, and III [7, 45, 46]. At the moment, 
molecular epidemiological studies have recognized nine major International 
Clones (1–9) of A. baumannii, the most widespread of which is IC 2 (II) [47]. 
However, CRAb isolates in Latin America are not associated with the most perva-
sive IC2 [48, 49].

In Latin countries such as Brazil, Argentina, Chile, and Paraguay, the major 
CRAb clones were found to belong to IC 4 and IC 5 [49, 50]. These IC 4 and IC 5 
correspond to clonal complexes CC15Past/CC103OXF and CC79Past/CC227OXF defined 
by Pasteur (Past) and Oxford (OXF) Multilocus Sequence Type (MLST) schemes 
[49–51]. Other ICs have been observed in Latin regions, such as IC 1 (CC1Past/
CC109OXF), IC 2 (CC2Past/CC92OXF), IC 6 (CC78Past/CC944OXF) and IC7 (CC25Past/
CC110OXF) [50, 52–55].
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2.5 CRAb in COVID-19 pandemic

Latin America has faced critical moments during the COVID-19 pandemic and was 
considered one of the world epicenters [56]. Hospitalization of COVID-19 patients pre-
disposed to severe consequences such as HAIs and secondary or coinfections associated 
with MDR bacteria such as A. baumannii [57–59]. Since the beginning of COVID-19, the 
emergence of resistant microorganisms causing HAIs has been documented [60].

An increased risk of CRAb infections in patients with an increased risk of mortal-
ity due to COVID-19 infections was reported. This increased incidences of A. bauman-
nii infections during the COVID-19 pandemic were related to various reasons such as 
prolonged hospital stay, mechanical ventilation, and immunosuppression [61].

In a retrospective analysis of two prospective observational cohort studies of 
COVID-19 patients in 10 countries, including Colombia, Chile, Ecuador, Mexico, 
Argentina, Uruguay, and Brazil, A. baumannii was Latin America’s fourth most preva-
lent bacteria (10.6%). However, this bacteria was less predominant in Europe [62].

A recent study reported the occurrence of CRAb belonging to IC 2 caused a 
large outbreak among COVID-19 patients at a public hospital in Brazil [63]. At an 
Argentinian hospital, an experience with carbapenem-resistant isolates such as CRAb 
during the period with active cases of COVID-19 was reported [64]. Loyola-Cruz 
et al. described A. baumannii involved in outbreaks non-detected in COVID-19 
patients at a Mexican hospital. Among 14 A. baumannii isolates, meropenem and 
imipenem resistance rates were 100% [65]. Another Mexican study conducted by 
Alcántar-Curiel et al. [66] reported 34% (n = 39) of CRAb isolates linked to nosoco-
mial bacteremias in COVID-19 patients [66].

Brazilian studies can be examples of increased carbapenem resistance in A. 
baumannii isolates trends in Latin American territories in Pandemic times. A recent 
report described that CRAb was notified in 7.9% (373/4734) of device-associated 
infections notifications in 2019 and 12.4% (805/6514) in 2020 in 99 hospitals from 
Paraná state, south of Brazil. The monthly incidence density of CRAB per 1000 
patient days increased significantly after April 2020, having a strong positive correla-
tion with the incidence density of COVID-19 [67].

Polly et al. reported a retrospective observational study that compared the 
incidence density of HAIs caused by MDR bacteria (including CRAb) pre-COVID 
(2017–2019) and during the COVID-19 pandemic (2020) in hospitalized patients at a 
tertiary care public teaching hospital (São Paulo, Brazil). CRAb incidence density in 
the Pre-pandemic period (2017–2019) was 0.53. That increase can also be expressed 
by 108% in HAI infection by CRAB in all hospital units and 42% in ICU [68].

3. Mechanisms of carbapenem-resistance in A. baumannii

Several mechanisms of carbapenem resistance have been described in A. baumannii 
[1, 12, 48, 69]. Considering intrinsic cellular mechanisms, carbapenem resistance might 
be attributed to loss or decrease in outer membrane porins (OMPs), decreased drug affin-
ity due to the downregulation of PBPs, and over-expression of efflux pumps [70–73].

However, inactivation or enzymatic degradation of carbapenems has been considered 
the major key associated with the development of carbapenem resistance in A. bauman-
nii [12, 74, 75]. Different classes of carbapenem-hydrolyzing enzymes (carbapenemases) 
are based on molecular Ambler classification: Class A, B, and D [1, 12]. These enzymes 
are found frequently on plasmids and are transmissible [76]. Class A carbapenemases 
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consist mainly of six members (SME, IMI, NMC, GES, SFC, and KPC), and GES class A 
carbapenemases seem the most prevalent in A. baumannii. Metallo-lactamases (MBLs), 
also called Class B enzymes, are potent carbapenemases, and four families (IMP, VIM, 
SIM, and NDM) have also been described in A. baumannii [77].

Instead of Class A and B, which are commonly identified in other bacterial patho-
gens, the carbapenem-hydrolyzing-class-D β-lactamases (CHDLs), also called oxacil-
linases/OXA-type β-lactamases, are referred as the most common carbapenemases 
in A. baumannii [12, 69]. β-lactamases of Ambler class D, OXA enzymes, possess an 
active serine site similar to class A and C β-lactamases. These β-lactamases show cloxa-
cillin- and oxacillin-hydrolyzing activity and are classified into Bush-Jacoby functional 
group 2d. Those OXA enzymes that hydrolyze carbapenems belong to the Bush-Jacoby 
active subgroup 2df. Originally, OXA-type carbapenemases have mainly been found on 
the chromosomes of A. baumannii strains. However, several types of β-lactamases are 
also encoded on plasmids, allowing for their wide dissemination [78, 79].

There are six main groups in /OXA-type β-lactamases known to be harbored by A. 
baumannii: the intrinsic OXA-51-like and the acquired OXA-23-like, OXA-58-like, OXA-
24/40-like, OXA-143-like and OXA-235-like [1, 12, 48, 80, 81]. Among them, OXA-
23-like is the most prevalent worldwide. Clonal outbreaks of carbapenem-resistant 
and OXA–23–23-producing A. baumannii have been reported in many countries [82]. 
Analysis of the genetic environment of OXA-carbapenemases genes has shown that the 
genes are associated with various mobile elements [83].

A major expression of OXA genes might be facilitated by insertion sequences (ISs) 
because these genetic elements have strong promoters that enable the  expression of 
OXA genes [74, 84]. For example, ISAba1, ISAba2, ISAba3, ISAba4, and IS18 are com-
monly associated with the presentation of carbapenemase genes in A. baumannii [85]. 

Countries OXa-type carbapenemases Other 
carbapenemases

References

Argentina OXA-23-like, OXA-58-like NDM [87–92]

Bolivia OXA-23-like, OXA-58-like — [93–96]

Brazil OXA-23-like, OXA-24-like, OXA-58-like, 
OXA-143-like

KPC, NDM, IMP, 
VIM

[97–105]

Colombia OXA-23-like, OXA-24-like, OXA-143-like NDM, VIM [52, 106–112]

Cuba OXA-23-like, OXA-24-like, OXA-58-like NDM [113, 114]

Chile OXA-23-like, OXA-58-like — [94, 115, 116]

Ecuador OXA-23-like, OXA-24-like NDM [94, 117]

Honduras — NDM [94, 118]

México OXA-24-like, OXA-58-like, OXA-235-ilke VIM [80, 119–121]

Paraguay OXA-23-like — [94]

Peru OXA-23-like, OXA-24-like, OXA-143-like NDM [19, 122–125]

Puerto Rico — KPC [97, 126, 127]

Uruguay OXA-23-like, OXA-58-like — [94, 128]

Venezuela OXA-23-like, OXA-58-like NDM [129–131]

Table 1. 
Reports of the carbapenemase distribution in A. baumannii isolates in Latin America.
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Transposons are another important genetic element responsible for the rapid spread 
of resistance genes worldwide [84]. The dissemination of blaOXA–23, for example, has 
been strongly associated with transposons such as Tn2006, Tn2007, and Tn2008 that 
were identified as genetic structures harboring this gene [82, 85].

3.1 CRAb and carbapenemases in Latin America

More than 50% of Acinetobacter spp. Isolates in Latin America expressed car-
bapenem resistance. Additionally, the high prevalence of OXAs in CRAB isolates in 
Latin America is notorious [86]. Other carbapenemases have been reported in some 
Latin American countries but less frequently (Table 1). The spread of OXA-23 is also 
observed in Latin America and other parts of the world. And this dissemination has 
been commonly associated with CC113/CC79 and CC104/CC15 [132, 133].

4. Conclusion

In summary, this chapter presents a comprehensive review of the distribution of 
CRAb in Latin America. The chapter begins by highlighting the current significance 
of CRAb as a relevant pathogen associated with healthcare-acquired infections 
globally. Carbapenems have played a critical role as a therapeutic option for infections 
caused by MDR A. baumannii. However, the world has faced increased A. baumannii 
strains that have acquired carbapenem resistance. The spread of CRAb is associated 
with two international clones, IC 4 and IC 5 in the Latin countries. As observed in 
other parts of the world, carbapenem resistance is mediated mainly by OXA-type 
β-lactamases in Latin America. That dissemination illustrates these OXA-23-CRAb 
strains’ success in Latin territory. Knowing the Latin American real scenario of CRAb 
is the first step in adopting measures to combat and control this challenging pathogen.
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