
Gravitational Waves 
Theory and Observations

Edited by Carlos Frajuca

Edited by Carlos Frajuca

Gravitational waves were predicted by Albert Einstein in his most famous theory, the 
general theory of relativity, but it took almost a century for these waves to be detected 

and their existence proven. This book introduces gravitational waves and discusses 
some of their applications in five dimensions, this is all done in classical gravity. It also 

explains gravitational waves in quantum gravity (in which the universe is considered to 
be not continuous) and implications for trying to understand and explore dark energy 

and an expanding accelerated universe.

Published in London, UK 

©  2024 IntechOpen 
©  peterschreiber.media / iStock

ISBN 978-1-83769-490-7

G
ravitational W

aves - Th
eory and O

bservations





Gravitational Waves - 
Theory and Observations

Edited by Carlos Frajuca

Published in London, United Kingdom



Gravitational Waves - Theory and Observations
http://dx.doi.org/10.5772/intechopen.1000226
Edited by Carlos Frajuca

Contributors
Jean-Francois Pommaret, Dmitry Yu Tsipenyuk, Wladimir B. Belayev, Shinichi Ishiguri, Andrew Walcott 
Beckwith, Yendamuri Sobhanbabu, Y. Jnana Prasuna, G. Satyanarayana, Carlos Frajuca, Hilal Benkhelil

© The Editor(s) and the Author(s) 2024

The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, 
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. 
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or 
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning 
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department 
(permissions@intechopen.com).

Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of 
the individual chapters, provided the original author(s) and source publication are appropriately 
acknowledged. If so indicated, certain images may not be included under the Creative Commons 
license. In such cases users will need to obtain permission from the license holder to reproduce 
the material. More details and guidelines concerning content reuse and adaptation can be found at 
http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not 
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of 
information contained in the published chapters. The publisher assumes no responsibility for any 
damage or injury to persons or property arising out of the use of any materials, instructions, methods 
or ideas contained in the book.

First published in London, United Kingdom, 2024 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, 
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Gravitational Waves - Theory and Observations
Edited by Carlos Frajuca
p. cm.
Print ISBN 978-1-83769-490-7
Online ISBN 978-1-83769-489-1
eBook (PDF) ISBN 978-1-83769-491-4



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

6,700+ 
Open access books available

156
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

182,000+
International  authors and editors

195M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

 

CL
AR

IVATE ANALYTICS

IN D E X E D





Meet the editor

Carlos Frajuca graduated with a higher education degree in 
mechanics from Sao Carlos Federal University, Brazil, in 1986, a 
Ph.D. in Science from Sao Paulo University, Brazil, in 1996, and 
a two-year research period at Louisiana State University, USA, 
working with electromechanical transducers on the detection 
of Gravitational Waves. He obtained a habilitation degree in 
Stellar Astrophysics, Compact Objects and Cosmology from the 

Sao Paulo Federal University, Brazil. He is a member of master’s programs at the Rio 
Grande Federal University (FURG) and at the Sao Paulo Federal Institute (IFSP), 
where he was the director of teaching, research, and postgraduate studies. He 
received research productivity scholarships from the National Council for Scientific 
and Technological Development (CNPq) in 2014, 2018, and 2022. He was assigned 
to the Brasilia Federal Institute in 2009 as Dean of Research and Deputy Rector. 





Preface XI

Section 1
Theory 1

Chapter 1 3
Gravitational Waves and Parametrizations of Linear Differential Operators
by Jean-Francois Pommaret

Chapter 2 41
Gravitational Waves, Fields, and Particles in the Frame of (1 + 4)D Extended 
Space Model
by Dmitry Yu Tsipenyuk and Wladimir B. Belayev

Chapter 3 63
Analytical Description of Unified Field Theory for Electromagnetic and Gravity 
Fields with the Introduction of Quantized Spacetime and Zero-Point Energy
by Shinichi Ishiguri

Chapter 4 97
New Conservation Law as to Hubble Parameter, Squared Divided by Time  
Derivative of Inflaton in Early and Late Universe, Compared with Discussion 
of HUP in Pre Planckian to Planckian Physics, and Relevance of Fifth Force  
Analysis to Gravitons and GW
by Andrew Walcott Beckwith

Chapter 5 115
Kantowski-Sachs Barrow Holographic Dark Energy Model in Saez-Ballester 
Theory of Gravitation
by Yendamuri Sobhanbabu, Y. Jnana Prasuna and G. Satyanarayana

Section 2
Observation 135

Chapter 6 137
Main Experiments for Detection of Gravitational Waves at Frequency 
below 3 kHz: A Quick Review
by Carlos Frajuca

Contents



II

Chapter 7 149
Effects of Gravitational Waves on Two-Level Atom Moving in a Quantized  
Traveling Light Field: Exact Solution via Path Integral
by Hilal Benkhelil

Preface

This book is a useful reference for those wanting to understand gravitational waves. It 
is organized into two sections on the theory of gravitational waves and observations.

Section one contains five chapters. Chapter 1, “Gravitational Waves and Parametrizations 
of Linear Differential Operators”, introduces the topic. Chapter 2, “Gravitational Waves, 
Fields, and Particles in the Frame of (1 + 4)D Extended Space Model”, presents gravi-
tational waves in an extended space model in five dimensions. Chapter 3, “Analytical 
Description of Unified Field Theory for Electromagnetic and Gravity Fields with the 
Introduction of Quantized Spacetime and Zero-Point Energy”, describes gravitational 
waves in a quantized space-time with five dimensions (four space coordinates and one 
time coordinate). Chapter 4, “New Conservation Law as to Hubble Parameter, Squared 
Divided by Time Derivative of Inflaton in Early and Late Universe, Compared with 
Discussion of HUP in Pre Planckian to Planckian Physics, and Relevance of Fifth Force 
Analysis to Gravitons and GW”, describes a proposed new conservation law effects in 
cosmology, gravitational waves, and a possible fifth force. Chapter 5, “Kantowski-Sachs 
Barrow Holographic Dark Energy Model in Saez-Ballester Theory of Gravitation”, 
describes dark energy and some aspects of gravitational waves in a different theory of 
gravity. The Saez-Ballester theory of gravitation is considered to be the proper theory 
to study dark energy and the accelerated universe.

Section 2 includes two chapters. Chapter 6, “Main Experiments for Detection of 
Gravitational Waves at Frequency below 3 kHz: A Quick Review”, summarizes 
experiments for detecting gravitational waves with frequencies below 3 kHz. Finally, 
Chapter 7, “Effects of Gravitational Waves on Two-Level Atom Moving in a Quantized 
Traveling Light Field: Exact Solution via Path Integral”, discusses the effects of 
 gravitational waves over atoms, which can be used for gravitational wave detection.

Carlos Frajuca
IMEF, Rio Grande Federal University,

Rio Grande, Brazil
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Chapter 1

Gravitational Waves and
Parametrizations of Linear
Differential Operators
Jean-Francois Pommaret

Abstract

When D : ξ! η is a linear differential operator, a “direct problem” is to find the
generating compatibility conditions (CC) in the form of an operator D1 : η! ζ such
that Dξ ¼ η implies D1η ¼ 0. Similarly, D1η ¼ ζ may imply D2ζ ¼ 0 and so on. Con-
versely, when D1 is given, a much more difficult “inverse problem” is to look for an
operator D : ξ! η with generating CC D1η ¼ 0. If this is possible, one shall say that
the operator D1 is parametrized by D. The parametrization is “minimum” if the
differential module defined by D does not contain any free differential submodule.
The systematic use of the adjoint of a differential operator provides a constructive
test. The parametrization of the Cauchy stress operator in arbitrary dimension n has
attracted many famous scientists (G.B. Airy in 1863 for n ¼ 2, J.C. Maxwell in 1863, G.
Morera and E. Beltrami in 1892 for n ¼ 3, A. Einstein in 1915 for n ¼ 4). We prove
that all these works are already explicitly using the self-adjoint Einstein operator,
which cannot be parametrized, and are thus all based on a confusion between the
Cauchy operator, (adjoint of the Killing operator D), and the div operator induced
from the Bianchi operator D2 CC of the Riemann operator D1 parametrized by D. This
purely mathematical result deeply questions the origin and existence of gravitational
waves that are solutions of the adjoint of the Ricci operator. We do believe that
Einstein was aware of these previous works as the comparison needs no comment. The
same methods are also used in order to revisit the mathematical foundations of
electromagnetism.

Keywords: differential sequence, Killing operator, Riemann operator, Bianchi
operator, general relativity, gravitational waves, Maxwell equations

1. Introduction

The problem of parametrizing the Einstein operator or, equivalently and by
analogy with Maxwell equations for electromagnetism (EM), to decide about the
existence of a potential for Einstein equations in vacuum, has been proposed for
the first time as a 1000 dollars challenge by J. Wheeler while the author of this
paper was a visiting student of D. C. Spencer in 1970 at Princeton university.
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No progress at all has been done during the next 25 years, till the author gave a
negative answer in 1995, contrary to what the general relativity (GR) community
was believing [1, 2]. Indeed, after teaching elasticity for 25 years to high-level
students in some of the best french civil engineering schools, the author of this
paper proposed an exercise explaining why a dam made with concrete is always
vertical on the water side with a slope of about 42 degrees on the other free side in
order to obtain a minimum cost and the auto-stability under cracking of the
surface underwater (See ([3], p. 108) and the introduction of [4] for more details).
Surprisingly, the main tool involved is the approximate computation of the Airy
function inside the dam in this two-dimensional elasticity problem. The author dis-
covered at that time that no one of the other teachers did know that the Airy param-
etrization was nothing else than the adjoint of the linearized Riemann operator used as
generating CC for the deformation tensor by any engineer. Being involved in GR with
A. Lichnerowicz at that time, he got for the first time the idea of using the adjoint of
an operator in a systematic way. Giving a seminar in Paris in order to present this
result, somebody in the audience told him about a possible link with the recently
published master thesis of the Japanese student M. Kashiwara [5]. It has been a
shock to discover this mixing up of differential geometry [6, 7] and homological
algebra [8–10], now called “Differential Homological Algebra”, in particular the intro-
duction of the Differential Extension Modules (See [4, 5, 11–13] for
extensive references) (See also Zbl 1079.93001 for comments). It is only recently
that he discovered GR could be considered as a way to parametrize the Cauchy
operator and to introduce gravitational waves (GW) [14, 15]. It follows that exactly the
same confusion has been done by Maxwell, Morera, Beltrami and Einstein because,
in all these cases, the operator considered is self-adjoint. However, most of the pure
mathematicians involved were proud not to be interested by applications and in
any case unable to do any computation. Accordingly and until now, the GR
community has never wanted to take these new tools into account and Ref. [16] is
providing a good example of such a poor situation. This is the reason for which
we have not been able to provide any other reference and why all the results
presented are new.

For example, the fact that the Cauchy operator is the adjoint of the Killing operator
for the Euclidean metric is apparently in the chapter “variational calculus” of any
textbook of continuum mechanics, and the parametrization problem has been quoted
by many famous authors, as we said in the Abstract, but only from a computational
point of view. The same comment can be done for the two sets of Maxwell equations
in electromagnetism [4, 13]. However, it is still not known that the adjoint of the
20 components of the Bianchi operator has been introduced by C. Lanczos between
1939 and 1962 [17] as we explained with details in [18] by using Spencer cohomology.
The main trouble is that these two problems have never been treated in an intrinsic
way and, in particular, changes of coordinates have never been considered. The same
situation can be met for the Vessiot structure equations but is out of the scope of this
paper [12, 19].

Lemma 1.1. When yk ¼ f k xð Þ is invertible with Δ xð Þ ¼ det ∂if
k xð Þ

� �
6¼ 0 and

inverse x ¼ g yð Þ, then we have n identities ∂

∂yk
1
Δ ∂if

k g yð Þð Þ
� �

¼ 0 (See [4] p 490 and

[20] for other applications).

Proof: Using the chain rule for derivatives, we get ∂iΔ ¼ ∂ijf
k cofactor ∂jf

k
� �

¼
∂ijf

kΔ ∂gj

∂yk and thus:
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1
Δ
∂ijf

k ∂gj

∂yk
� 1
Δ2 ∂if

k ∂gj

∂yk
∂jΔ

� �
¼ 1

Δ
∂ijf

k ∂gj

∂yk
� 1
Δ2 ∂iΔ ¼ 0

□
Proposition 1.2. The Cauchy operator is the adjoint of the Killing operator in

arbitrary dimension n, up to sign. Similarly, when n ¼ 4, the Maxwell operator

∧4T ∗ ⊗∧2T !ad dð Þ
∧4T ∗ ⊗T : F ij� �! ∂iF

ij ¼ J j� �
is the adjoint of the parametrizing

operator T ∗ !d ∧2T ∗ : A! dA ¼ F in electromagnetism (EM), independently of the
Minkowski constitutive relations F ! F .

Proof: Let X be a manifold of dimension n with local coordinates x1, … , xnð Þ,
tangent bundle T, and cotangent bundle T ∗ . If ω∈ S2T ∗ is a metric with det ωð Þ 6¼ 0,
we may introduce the standard L, that is, derivative in order to define the first order
Killing operator ξ! L ξð Þω, namely:

D : ξ∈T ! Ω ¼ Ωij ¼ ωrj xð Þ∂iξr þ ωir xð Þ∂jξr þ ξr∂rωij xð Þ
� �

∈ S2T ∗ (1)

Here starts the problem because, in our opinion at least, a systematic use of the
(formal) adjoint operator has never been done in mathematical physics (continuum
mechanics, EM, … ) apart from a variational procedure. As will be seen later on, the
purely intrinsic definition of the adjoint can only be done in the theory of differential
modules by means of the so-called side-changing functor. From a purely differential
geometric point of view, the idea is to associate to any vector bundle E over X, a new
vector bundle ad Eð Þ ¼ ∧nT ∗ ⊗E ∗

, where E ∗ is obtained from E by patching local
coordinates while inverting the transition matrices, exactly like T ∗ is obtained from T
in tensor calculus. It follows that the stress tensor σ ¼ σij

� �
∈ ad S2T ∗ð Þ ¼ ∧nT ∗ ⊗ S2T

is not a tensor but a tensor density, that transforms like a tensor up to a certain power
of the Jacobian matrix. When n ¼ 4, the fact that such an object is called stress-energy
tensor does not change anything as it cannot be related to the Einstein tensor which is

a true tensor indeed. Of course, it is always possible in GR to use det ωð Þð Þ12 but, as we
shall see, the study of contact structures must be done without any reference to a
background metric. In any case, we may define as usual:

ad Dð Þ : ∧nT ∗ ⊗ S2T ! ∧nT ∗ ⊗T : σ ! φ (2)

Multiplying Ωij by σij and integrating by parts, the factor of �2ξk is easily seen
to be:

∇iσ
ik ¼ ∂iσ

ik þ γkijσ
ij ¼ φk (3)

with well known Christoffel symbols γkij ¼ 1
2ω

kr
∂iωrj þ ∂jωir � ∂rωij
� �

.
However, if the stress should be a tensor, we should get for the covariant

derivative:

∇rσ
ij ¼ ∂rσ

ij þ γirsσ
sj þ γjrsσ

is ) ∇iσ
ik ¼ ∂iσ

ik þ γrriσ
ik þ γkijσ

ij

The difficulty is to prove that we do not have a contradiction because σ is a tensor
density.
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If we have an invertible transformation like in the lemma, we have successively by
using it:

τkl f xð Þð Þ ¼ 1
Δ
∂if

k xð Þ∂jf l xð Þσij xð Þ
∂τkl

∂yk
¼ ∂

∂yk
1
Δ
∂if

k
� �� �

∂jf
lσij þ 1

Δ
∂if

k ∂

∂yk
∂jf

l
� �

σij þ 1
Δ
∂if

k
∂jf

l ∂

∂yk
σij

) ∂τku

∂yk
¼ 1

Δ
∂ijf

u� �
σij þ 1

Δ
∂jf

u
∂iσ

ij

Now, we recall the transformation law of the Christoffel symbols, namely:

∂rf
u xð Þγrij xð Þ ¼ ∂ijf

u xð Þ þ ∂if
k xð Þ∂jf l xð Þγukl f xð Þð Þ

) 1
Δ
∂rf

uγrijσ
ij ¼ 1

Δ
∂ijf

uσij þ γukl yð Þτkl

Eliminating the second derivatives of f , we finally get:

ψu ¼ ∂τku

∂yk
þ γuklτ

kl ¼ 1
Δ
∂rf

u
∂iσ

ir þ γrijσ
ij

� �
¼ 1

Δ
∂rf

uφr

This tricky technical result, which is not evident, explains why the additional term
we had is just disappearing, in fact, when σ is a density.

The case of EM is even simpler because ∂ij f
uF ij ¼ ∂ji f

uF ji ¼ �∂ij f uF ij ¼ 0 and γ
is not needed. The two sets of Maxwell equations are thus separately invariant by any
diffeomorphism. Though surprising it may look like, the conformal group of space–
time is only the maximum group of invariance of the Minkowski constitutive law in
vacuum. Indeed, this law is not at all Fij ¼ μ0ωirωjsF

rs
, where μ0 is the magnetic

constant because such a relation is not tensorial as F is a 2-form, that is, a 2-covariant
tensor, but F is a 2-contravariant tensor density. Hence, introducing the metric density
ω̂ij ¼ jdet ωð Þjð Þ�1=nωij, we must set Fij ¼ μ0ω̂irω̂jsF

rs. Accordingly, this constitutive
law is only invariant by diffeomorphisms preserving ω̂, and this is exactly the defini-
tion of the Lie pseudogroup of conformal transformations [13].

□
By chance, the control community has been interested during a while by these new

techniques for dealing with PD control theory but mostly restricting to operators with
constant coefficients [4, 20, 21]. The following example, coming from partial differ-
ential (PD) control theory, will allow the reader to become familiar with these new
tools and to understand why they are related to the mathematics of GW. Accordingly,
the “relative” parametrization of the Cauchy stress operator has thus nothing to do
with the mathematical background of elasticity theory. In particular, the way to
simplify the GW equations by bringing them back to the d’Alembert operator while
adding a few differential constraints (Compare [14, 15, 22–24]) through a reference to
the so-called “gauge invariance” is rather a physical argument and not a mathematical
one.

Example 1.3. Let us consider the first order operator with two independent vari-
ables x1, x2ð Þ:

D1 : η1, η2
� �! d2η1 � d1η2 þ x2η2 ¼ ζ (4)

6
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The non-commutative ring of differential operators involved in a formal study is
D ¼ K d1, d2½ � with K ¼  x1, x2ð Þ ¼  xð Þ and the characters of this involutive system
are α11 ¼ 2, α21 ¼ 1

� �
with β21 ¼ 2� 1 ¼ 1 as there is only one equation. Multiplying on

the left by a test function λ and integrating by parts, the corresponding adjoint
operator is described by:

ad D1ð Þ : λ! �d2λ ¼ μ1, d1λþ x2λ ¼ μ2
� �

Using crossed derivatives, this operator is injective because λ ¼ d2μ2 þ d1μ1 þ x2μ1

and we even obtain a lift id : λ! μ! λ. Substituting, we get the second order
involutive operator ad Dð Þ : μ1, μ2ð Þ ! ν1, ν2ð Þ with characters α12 ¼ 1, α22 ¼ 1

� �
,

namely:

d22μ2 þ d12μ1

d12μ2 þ d11μ1

(
þx2d2μ1 þ 2μ1 ¼ ν1

þ2x2d1μ1 þ x2d2μ2 þ x2
� �2

μ1 � μ2 ¼ ν2

1 2

1 •

allowing to define a second order operator D by using the fact that ad ad Dð Þð Þ ¼ D.
This operator is involutive and the only corresponding generating CC is
d2ν2 � d1ν1 � x2ν1 ¼ 0. Therefore, ν2 is differentially dependent on ν1 but ν1 is also
differentially dependent on ν2. Multiplying on the left by a test function θ and inte-
grating by parts, the corresponding adjoint operator is:

D�1 : θ ! d1θ � x2θ ¼ ξ1,�d2θ ¼ ξ2
� �

Multiplying now the first equation of ad Dð Þ by the test function ξ1, the second
equation by the test function ξ2, adding and integrating by parts, we get the second
order operator:

D : ξ1, ξ2
� �! d22ξ1 þ d12ξ2

d12ξ1 þ d11ξ2

(
�x2d2ξ2 � 2ξ2 ¼ η2

�x2d2ξ1 � 2x2d1ξ2 þ ξ1 þ x2
� �2

ξ2 ¼ η1

1 2

1 •
(5)

which is easily seen to be a parametrization of D1. This operator is involutive and
the kernel of this parametrization has differential rank equal to 1 because ξ1 or ξ2 can
be given arbitrarily.

As we are using the Lagrange multiplier ξ1, ξ2
� �

, we consider in fact the PD
equation ξ1ν1 þ ξ2ν2. Hence, we could indeed consider each term separately, that is
using independently each equation as we shall see later on, ν1 for a certain ξ and ν2 for a
certain ξ0. Equivalently (exactly like Morera and Maxwell did as we shall see later on),
keeping ξ1 ¼ ξ while setting ξ2 ¼ 0, we now obtain the first second order minimal
parametrization

ξ! d22ξ ¼ η2, d12ξ� x2d2ξþ ξ ¼ η1
� �

(6)

This system is again involutive, and the parametrization is minimal because the
kernel of this parametrization has differential rank equal to 0. With a similar com-
ment, setting now ξ1 ¼ 0 while keeping ξ2 ¼ ξ0, we get the second second order minimal
parametrization:

7
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ξ0 ! d12ξ0 � x2d2ξ0 � 2ξ0 ¼ η2, d11ξ0 � 2x2d1ξ0 þ x2
� �2

ξ0 ¼ η1
� �

, (7)

which is again easily seen to be involutive by exchanging x1 with x2.
With again a similar comment, setting now ξ1 ¼ d1ϕ, ξ2 ¼ �d2ϕ in the canonical

parametrization, we obtain the third different second order minimal parametrization:

ϕ! x2d22ϕþ 2d2ϕ ¼ η2, x2d12ϕ� x2
� �2

d2ϕþ d1ϕ ¼ η1
� �

(8)

We are now ready for understanding the meaning and usefulness of what we have
defined and called “relative parametrization” in [24] by imposing the differential con-
straint d2ξ1 þ d1ξ2 ¼ 0. First of all, we have to prove that such a constraint is compatible.
For this, taking into account the constraint, we have the following first order system
defined over K:

d2ξ1 þ d1ξ2 ¼ 0

d2ξ2 þ 2
x2

ξ2 ¼ � 1
x2

η2

d1ξ2 � x2ξ2 � 1
x2

ξ1 ¼ � 1
x2

η1

8>>>><
>>>>:

1 2

1 2

1 •

We let the reader prove that this first order system is involutive with full class 2
and characters α11 ¼ 1, α21 ¼ 0

� �
and that the only CC involved is the initial system for

η (The reader will discover that this checking is quite harder that what one could
believe on such an elementary example).

We obtain therefore the new first order relative parametrization:

ξ1, ξ2
� �! �x2d2ξ2 � 2ξ2 ¼ η2, x2d2ξ1 þ x2

� �2
ξ2 þ ξ1 ¼ η1

� �
mod d2ξ1 þ d1ξ2 ¼ 0

� �

In a different way, we may add the differential constraint d1ξ1 þ d2ξ2 ¼ 0 but we
have to check similarly that it is compatible with the previous parametrization. For
this, we have to consider the following second order involutive system with five
equations, which are easily seen to be involutive, obtained by adding the constraint
and its two derivatives to the system like before:

d22ξ2 þ d12ξ1 ¼ 0

d22ξ1 þ d12ξ2 � x2d2ξ2 � 2ξ2 ¼ η2

d12ξ2 þ d11ξ1 ¼ 0

d12ξ1 þ d11ξ2 � x2d2ξ1 � 2x2d1ξ2 þ ξ1 þ x2ð Þ2ξ2 ¼ η1

d2ξ2 þ d1ξ1 ¼ 0

8>>>>>><
>>>>>>:

1 2

1 2

1 •

1 •

• •

The four generating CC only produce the desired system for η1, η2ð Þ as we wished.
We could not impose the condition D�1θ ¼ ξ already found as it should give the

identity 0 ¼ η.
It is, however, also important to notice that the long strictly exact sequence [25]:

0! θ !D�1 ξ!D η!D1
ζ ! 0

8
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splits because we have a lift id : ζ ! �∂1ζ þ x2ζ ¼ η1,�∂2η2 ¼ η2ð Þ ! ∂2η1 � ∂1η2 þ x2η2 ¼ ζ.
All the differential modules defined from the operators involved are projective,

thus torsion-free, and we notice that D1 is parametrized by D which is again para-
metrized by D�1, exactly like div is parametrized by curl which is again parametrized
by grad in vector geometry. Needless to say that such an approach has nothing to do
with Lorenz gauge invariance in electromagnetism (EM) and we shall arrive to the
same conclusion for GW in GR.

Going on along the historical survey 50 years ago, while the author of this paper
was working in GR under the leadership of Prof. A. Lichnerowicz, he became familiar
with the Lanczos problems. Since that time, he had no wish at all to enter this kind of
game as this domain became the private garden of a few persons, each one writing
after another one alternatively, claiming to have the full solution. Also, the papers
were covered with “computations” involving awful technical formulas, one paper
using Gröbner bases, another computer algebra, another Cartan exterior calculus or
Janet bases and so on during these 50 years.

Later on, in 2001 and for different reasons, namely control theory as we just
explained, being more familiar with differential homological algebra and the so-called
“parametrization problem,” the way towards the Lanczos problems became easier
as follows [18]. In dimension four, the only considered by Lanczos, the Lanczos
“potential” Lij,k ¼ �Lji,k has 6� 4 ¼ 24 components. As they must be related by the
four relations Lij,k þ Ljk,i þ Lki,j ¼ 0, we get 20 independent components, namely the
number of (second) Bianchi identities. However, who is speaking about “potential”
means “parametrization”, … of what?. Here comes the confusion of Lanczos, too
much familiar with electromagnetism (EM) while using mainly quadratic
Lagrangians with the Riemann tensor in place of the EM field F and the Bianchi
identities as differential constraint in the corresponding variational calculus with
constraint. The operator to be parametrized was thus the adjoint of the Riemann
operator that we called Beltrami operator while the parametrizing operator, that we
called Lanczos operator, was just the adjoint of the Bianchi operator, going now back-
wards, that is from right to left in the adjoint sequence of the Killing resolution
presented in the abstract. As for the extension to the conformal framework, it is
clear that Lanczos did not even know the Weyl tensor when he lectured in France
in 1962, invited by Lichnerowicz. Moreover, it is only recently in 2016 that the
author of this paper proved that the analogue of the Bianchi identities is made by an
operator of order two when n ¼ 4, such a result being tested through computer
algebra by his former PhD student A. Quadrat (See [12, 13] and arXiv:1603.05030 for
more details). Such a construction, based on difficult results of homological algebra,
has been missed by Lanczos and all followers as such tools were only available after
1995 through the works of pure mathematicians not interested by applications.
Therefore, the main idea is to replace technical formulas by diagram chasing without
any formula. As a byproduct, we shall understand, without any computation, the
confusion done between the Cauchy operator, adjoint of the Killing operator, and the
Bianchi operator as explained in the abstract. We shall explain its historical origin as
the names of many celebrated scientists are involved in this confusion as we also said
in the abstract.

The story ended with a strange letter sent by J. Wheeler back to the author with a
one dollar bill attached, refusing to admit the negative answer to his parametrization
challenge and claiming that future quantum GR should find a positive answer (!). As a
byproduct, the impossibility to parametrize Einstein equations in vacuum can only be
found in books of control theory [20, 26].
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After this rather historical introduction, the content of the paper is clear:
The second section presents the mathematical tools that are absolutely needed

while the third section is dealing with the solution of the parametrization problem.
The applications to Einstein equations and the corresponding GW equations is finally
presented in the fourth section before concluding. In any case, we want to point
out that no one of these methods have ever been used in GR, in particular for the
study of GW.

2. Mathematical tools

We start recalling the basic tools from the formal theory of systems of ordinary
differential (OD) or partial differential (PD) equations and differential modules
needed in order to understand and solve the parametrization problem presented in
the abstract. Then we provide the example of the system of infinitesimal lie
equations defining contact transformations and conclude the paper with the general
parametrization problem existing in continuum mechanics and general relativity for
an arbitrary dimension of the ground manifold. As these new tools are difficult and
not so well known as we already said, we advise the interested reader to follow them
step by step on the explicit motivating examples illustrating this paper, while referring
to [4, 12, 20, 22, 25, 27–30] for more details, even though the paper is rather self-
contained and uses standard notations. Parts of the present paper have already been
published independently with slight differences in [2, 12, 13, 18, 20–24, 31] but the
present paper is mainly revisiting the mathematical foundations of GW in the frame-
work of differential homological algebra.

2.1 System theory

If X is a manifold of dimension n with local coordinates xð Þ ¼ x1, … , xnð Þ,
we denote as usual by T ¼ T Xð Þ the tangent bundle of X, by T ∗ ¼ T ∗ Xð Þ the
cotangent bundle, by ∧rT ∗ the bundle of r-forms and by SqT ∗ the bundle of
q-symmetric tensors. More generally, let E be a vector bundle over X with local
coordinates xi, yk

� �
for i ¼ 1, … , n and k ¼ 1, … ,m simply denoted by x, yð Þ,

projection π : E! X : x, yð Þ ! xð Þ and changes of local coordinate x ¼ φ xð Þ, y ¼ A xð Þy.
We shall denote by E ∗ the vector bundle obtained by inverting the matrix A of the
changes of coordinates, exactly like T ∗ is obtained from T. We denote by f : X ! E :
xð Þ ! x, y ¼ f xð Þð Þ a global section of E, that is a map such that π ∘ f ¼ idX but local
sections over an open set U ⊂X may also be considered when needed. Under a change
of coordinates, a section transforms like f φ xð Þð Þ ¼ A xð Þf xð Þ and the changes of the
derivatives can also be obtained with more work. We shall denote by Jq Eð Þ the q-jet
bundle of E with local coordinates xi, yk, yki , y

k
ij, …

� �
¼ x, yq
� �

called jet coordinates

and sections f q : xð Þ ! x, f k xð Þ, f ki xð Þ, f kij xð Þ, …
� �

¼ x, f q xð Þ
� �

transforming like

the sections jq fð Þ : xð Þ ! x, f k xð Þ, ∂if k xð Þ, ∂ijf k xð Þ, …
� �

¼ x, jq fð Þ xð Þ
� �

where both f q
and jq fð Þ are over the section f of E. For any q≥0, Jq Eð Þ is a vector bundle over X
with projection πq, while Jqþr Eð Þ is a vector bundle over Jq Eð Þ with projection

π
qþr
q , ∀r≥0.
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Definition 2.A.1: A linear system of order q on E is a vector sub-bundle Rq ⊂ Jq Eð Þ
and a solution of Rq is a section f of E such that jq fð Þ is a section of Rq. With a slight
abuse of language, the set of local solutions will be denoted by Θ⊂E.

Let μ ¼ μ1, … , μnð Þ be a multi-index with length ∣μ∣ ¼ μ1 þ … þ μn, class i if μ1 ¼
… ¼ μi�1 ¼ 0, μi 6¼ 0 and μþ 1i ¼ μ1, … , μi�1, μi þ 1, μiþ1, … , μn

� �
. We set yq ¼

ykμj1≤ k≤m, 0≤ jμj≤ q
n o

with ykμ ¼ yk when ∣μ∣ ¼ 0. If E is a vector bundle over X and

Jq Eð Þ is the q-jet bundle of E, then both sections f q ∈ Jq Eð Þ and jq fð Þ∈ Jq Eð Þ are over the
section f ∈E. There is a natural way to distinguish them by introducing the Spencer

operator d : Jqþ1 Eð Þ ! T ∗ ⊗ Jq Eð Þ with components df qþ1
� �k

μ,i
xð Þ ¼ ∂if

k
μ xð Þ � f kμþ1i xð Þ.

The kernel of d consists of sections such that f qþ1 ¼ j1 f q
� �

¼ j2 f q�1
� �

¼ … ¼ jqþ1 fð Þ.
Finally, if Rq ⊂ Jq Eð Þ is a system of order q on E locally defined by linear equations

Φτ x, yq
� �

� aτμk xð Þykμ ¼ 0 and local coordinates x, zð Þ for the parametric jets up to

order q, the r-prolongation Rqþr ¼ ρr Rq
� � ¼ Jr Rq

� �
∩Jqþr Eð Þ⊂ Jr Jq Eð Þ

� �
is locally

defined when r ¼ 1 by the linear equations Φτ x, yq
� �

¼ 0, diΦτ x, yqþ1
� �

�
aτμk xð Þykμþ1i þ ∂ia

τμ
k xð Þykμ ¼ 0 and has symbol gqþr ¼ Rqþr∩SqþrT ∗ ⊗E⊂ Jqþr Eð Þ if one

looks at the top order terms. If f qþ1 ∈Rqþ1 is over f q ∈Rq, differentiating the identity

aτμk xð Þf kμ xð Þ � 0 with respect to xi and substracting the identity

aτμk xð Þf kμþ1i xð Þ þ ∂ia
τμ
k xð Þf kμ xð Þ � 0, we obtain the identity aτμk xð Þ ∂if

k
μ xð Þ � f kμþ1i xð Þ

� �
�

0 and thus the restriction d : Rqþ1 ! T ∗ ⊗Rq. More generally, we have the restriction:

d : ∧sT ∗ ⊗Rqþ1 ! ∧sþ1T ∗ ⊗Rq : f kμ,I xð ÞdxI
� �

! ∂if
k
μ,I xð Þ � f kμþ1i,I xð Þ

� �
dxi∧dxI

� �

(9)

with standard multi-index notation for exterior forms and one can easily check that
d ∘ d ¼ 0. The restriction of�d to the symbol is called the Spencermap δ in the sequences:

∧s�1T ∗ ⊗ gqþrþ1 !
δ ∧sT ∗ ⊗ gqþr !

δ ∧sþ1T ∗ ⊗ gqþr�1 (10)

because δ ∘ δ ¼ 0 similarly, leading to the purely algebraic δ-cohomology Hs
qþr gq
� �

at

∧sT ∗ ⊗ gqþr (See [4, 6, 7, 12, 13, 25, 27–29, 31] for details and examples).
Definition 2.A.2: A system Rq is said to be formally integrable (FI) when all

the equations of order qþ r are obtained by r prolongations only, ∀r≥0 or,

equivalently, when the projections πqþrþsqþr : Rqþrþs ! R sð Þ
qþr ⊆Rqþr are such that

R sð Þ
qþr ¼ Rqþr, ∀r, s≥0.
Finding an intrinsic test has been achieved by D.C. Spencer in 1965–1970 [6, 7]

along coordinate dependent lines sketched by M. Janet in 1920 [20, 25, 29]. The next
procedure providing a Pommaret basis and where one may have to change linearly the
independent variables if necessary, is intrinsic though it must be checked in a particular
coordinate system called δ-regular [4, 25, 27–29].
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• Equations of class n: Solve the maximum number βnq of equations with respect to

the jets of order q and class n. Then, call x1, … , xnð Þ multiplicative variables.

• Equations of class i≥ 1: Solve the maximum number βiq of remaining equations with

respect to the jets of order q and class i. Then, call x1, … , xi
� �

multiplicative
variables and xiþ1, … , xn

� �
non-multiplicative variables.

• Remaining equations equations of order ≤ q� 1: Call x1, … , xnð Þ non-multiplicative
variables.

In actual practice, we shall use a Janet tabular where the multiplicative “variables”
are in upper left position while the non-multiplicative variables are represented by
dots in lower right position.

Definition 2.A.3: A system of PD equations is said to be involutive if its first
prolongation can be obtained by prolonging its equations only with respect to the
corresponding multiplicative variables. In that case, we may introduce the
characters αiq ¼ m qþn�i�1ð Þ!

q�1ð Þ! n�ið Þ!ð � βiq for i ¼ 1, … , n with α1q ≥ … ≥ αnq ≥0 and we have

dim gq
� �

¼ α1q þ … þ αnq while dim gqþ1
� �

¼ α1q þ … þ nαnq .

Remark 2.A.4: As long as the prolongation/projection (PP) procedure allowing to

find two integers r, s≥0 such that the system R sð Þ
qþr is involutive, has not been

achieved, nothing can be said about the CC (Fine examples can be found in [12, 16]).

When Rq is involutive, the operator D : E!
jq

Jq Eð Þ !Φ Jq Eð Þ=Rq ¼ F0 of order q is
said to be involutive. Introducing the Janet bundles
Fr ¼ ∧rT ∗ ⊗ Jq Eð Þ= ∧rT ∗ ⊗Rq þ δ Sqþ1T ∗ ⊗E

� �� �
, we obtain the linear Janet sequence

(Introduced in [25]):

0! Θ! E!D
q
F0!D1

1
F1!D2

1
…!Dn

1
Fn ! 0 (11)

where each other operator is first order involutive and generates the CC of the
preceding one.

Similarly, introducing the Spencer bundles Cr ¼ ∧rT ∗ ⊗Rq=δ ∧r�1T ∗ ⊗ gqþ1
� �

, we

obtain the linear Spencer sequence induced by the Spencer operator, that can be linked
to the Janet sequence [25, 29]:

0! Θ!
jq

C0!D1

1
C1!D2

1
…!Dn

1
Cn ! 0 (12)

It must be noticed, as we shall see in Section 4, that the Killing operator/system is
FI if and only if the metric ω has constant Riemanniann curvature (for example the
flat Minkowski metric) but is not involutive and the Janet sequence cannot be
exhibited. As for the conformal Killing operator/system obtained by eliminating the
arbitrary function A xð Þ in the inhomogeneous system L ξð Þω ¼ A xð Þω or by consider-
ing simply the system L ξð Þω̂ ¼ 0, it is FI if and only if ω has vanishingWeyl tensor but
is not involutive and the order of the successive CC operators may change with the
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ground dimension n, the worst situation being for n ¼ 4 as the analogue of the Bianchi
operator is now an operator of order two indeed [12, 13]. As these results highly
depend on the Spencer δ-cohomology, it is clear that they are neither known nor
acknowledged and it follows that the mathematical foundations of conformal geome-
try must be entirely revisited.

2.2 Module theory

Let K be a differential field with n commuting derivations ∂1, … , ∂nð Þ and consider
the ring D ¼ K d1, … , dn½ � ¼ K d½ � of differential operators with coefficients in K with n
commuting formal derivatives satisfying dia ¼ adi þ ∂ia in the operator sense. If
P ¼ aμdμ ∈D ¼ K d½ �, the highest value of ∣μ∣ with aμ 6¼ 0 is called the order of the
operator P and the ring D with multiplication P,Qð Þ ! P ∘Q ¼ PQ is filtred by the
order q of the operators. We have the filtration
0⊂K ¼ D0 ⊂D1 ⊂ … ⊂Dq ⊂ … ⊂D∞ ¼ D. As an algebra, D is generated by K ¼ D0

and T ¼ D1=D0 with D1 ¼ K⊕T if we identify an element ξ ¼ ξidi ∈T with the vector
field ξ ¼ ξi xð Þ∂i of differential geometry, but with ξi ∈K now. It follows that D¼DDD is
a bimodule over itself, being at the same time a left D-module by the composition P!
QP and a right D-module by the composition P! PQ. We define the adjoint functor
ad : D! Dop : P ¼ aμdμ ! ad Pð Þ ¼ �1ð Þ∣μ∣dμaμ and we have ad ad Pð Þð Þ ¼ P both with
ad PQð Þ ¼ ad Qð Þad Pð Þ, ∀P,Q ∈D. It follows that any operator can be considered as the
adjoint of its own adjoint. Such a definition can be extended by linearity to any matrix
of operators by using the transposed matrix of adjoint operators (See [4, 5, 11–13, 18,
20, 21, 24] for more details and applications to control theory or mathematical physics).

Accordingly, if y ¼ y1, … , ymð Þ are differential indeterminates, then D acts on yk by
setting diyk ¼ yki ! dμyk ¼ ykμ with diykμ ¼ ykμþ1i and yk0 ¼ yk. We may therefore use the
jet coordinates in a formal way as in the previous section. Therefore, if a system of
OD/PD equations is written in the form Φτ � aτμk y

k
μ ¼ 0 with coefficients a∈K, we

may introduce the free differential module Dy ¼ Dy1 þ … þDym ≃Dm and consider
the differential module of equations I ¼ DΦ⊂Dy, both with the residual differential
module M ¼ Dy=DΦ or D-module and we may set M¼DM if we want to specify the
ring of differential operators. We may introduce the formal prolongation with respect
to di by setting diΦτ � aτμk ykμþ1i þ ∂ia

τμ
k

� �
ykμ in order to induce maps di : M!M : ykμ !

ykμþ1i by residue with respect to I if we use to denote the residue Dy!M : yk ! yk by a
bar like in algebraic geometry. However, for simplicity, we shall not write down the
bar when the background will indicate clearly if we are in Dy or in M. As a byproduct,
the differential modules we shall consider will always be finitely generated
(k ¼ 1, … ,m<∞) and finitely presented (τ ¼ 1, … , p<∞). Equivalently, introducing
the matrix of operators D ¼ aτμk dμ

� �
with m columns and p rows, we may introduce the

morphism Dp !D Dm : Pτð Þ ! PτΦτð Þ over D by acting with D on the left of these row
vectors while acting with D on the right of these row vectors by composition of operators
with im Dð Þ ¼ I. The presentation of M is defined by the exact cokernel sequence

Dp !D Dm ! M! 0. We notice that the presentation only depends on K,D and Φ or
D, that is to say never refers to the concept of (explicit local or formal) solutions. It
follows from its definition that M can be endowed with a quotient filtration obtained
from that ofDm which is defined by the order of the jet coordinates yq inDqy. We have
therefore the inductive limit 0⊆M0 ⊆M1 ⊆ … ⊆Mq ⊆ … ⊆M∞ ¼M with diMq ⊆Mqþ1
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and M ¼ DMq for q≫0 with prolongations DrMq ⊆Mqþr,∀q, r≥0. It may be
sometimes quite difficult to work out Iq or Mq from a given presentation which is not
involutive [4].

Definition 2.B.1: An exact sequence of morphisms finishing at M is said to be a
resolution of M. If the differential modules involved apart from M are free, that is
isomorphic to a certain power of D, we shall say that we have a free resolution of M.

Having in mind that K is a left D-module with the action D,Kð Þ ! K : di, að Þ ! ∂ia
and that D is a bimodule over itself with PQ 6¼ QP, we have only two possible
constructions:

Definition 2.B.2: We may define the right (care) differential module homD M,Dð Þ
with fPð Þ mð Þ ¼ f mð Þð ÞP) fPQð Þ mð Þ ¼ fPð Þ mð Þð ÞQ ¼ f mð Þð ÞPð ÞQ ¼ f mð Þð ÞPQ .

Definition 2.B.3: We define the system R ¼ homK M,Kð Þ and set Rq ¼ homK Mq,K
� �

as the system of order q. We have the projective limit R ¼ R∞ ! … ! Rq ! … !
R1 ! R0. It follows that f q ∈Rq : ykμ ! f kμ ∈K with aτμk f

k
μ ¼ 0 defines a section at order q,

and we may set f∞ ¼ f ∈R for a section of R. For an arbitrary differential field K, such a
definition has nothing to do with the concept of a formal power series solution (care).

Proposition 2.B.4: When M is a left D-module, then R is also a left D-module.
Proof: As D is generated by K and T as we already said, let us define:

afð Þ mð Þ ¼ af mð Þ ¼ f amð Þ, ∀a∈K, ∀m∈M

ξfð Þ mð Þ ¼ ξf mð Þ � f ξmð Þ, ∀ξ ¼ aidi ∈T, ∀m∈M

In the operator sense, it is easy to check that dia ¼ adi þ ∂ia and that ξη� ηξ ¼
ξ, η½ � is the standard bracket of vector fields. We finally get difð Þkμ ¼ difð Þ ykμ

� �
¼ ∂if

k
μ �

f kμþ1i and thus recover exactly the Spencer operator of the previous section though this

is not evident at all. We also get didjf
� �k

μ
¼ ∂ijf

k
μ � ∂if

k
μþ1j � ∂jf

k
μþ1i þ f kμþ1iþ1j ) didj ¼

djdi, ∀i, j ¼ 1, … , n and thus diRqþ1 ⊆Rq ) diR⊂R induces a well defined operator
R! T ∗ ⊗R : f ! dxi ⊗ dif . This operator has been first introduced, up to sign, by F.
S. Macaulay as early as in 1916 but this is still not ackowledged. For more details on the
Spencer operator and its applications, the reader may look at [12, 13, 25, 27–30].

□
Definition 2.B.5: With any differential module M, we shall associate the graded

module G ¼ gr Mð Þ over the polynomial ring gr Dð Þ≃K χ½ � by setting G ¼ ⊕∞
q¼0Gq with

Gq ¼Mq=Mq�1, and we get gq ¼ G ∗
q where the symbol gq is defined by the short exact

sequences:

0! Mq�1 ! Mq ! Gq ! 0 ⇔ 0! gq ! Rq ! Rq�1 ! 0

We have the short exact sequences 0! Dq�1 ! Dq ! SqT ! 0 leading to
grq Dð Þ≃ SqT and we may set as usual T ∗ ¼ homK T,Kð Þ in a coherent way with
differential geometry.

The two following definitions, which are well known in commutative algebra, are
also valid (with more work) in the case of differential modules (See [4, 20] for more
details or the references [4, 8–10, 12, 13, 29] for an introduction to homological
algebra and diagram chasing).
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Definition 2.B.6: The set of elements t Mð Þ ¼ m∈Mj∃0 6¼ P∈D,Pm ¼ 0f g⊆M is
a differential module called the torsion submodule of M. More generally, a module M is
called a torsion module if t Mð Þ ¼M and a torsion-free module if t Mð Þ ¼ 0. In the short
exact sequence 0! t Mð Þ ! M! M0 ! 0, the module M0 is torsion-free. Its defining
module of equations I0 is obtained by adding to I a representative basis of t Mð Þ set up
to zero and we have thus I⊆ I0.

Definition 2.B.7: A differential module F is said to be free if F≃Dr for some integer
r>0 and we shall define rkD Fð Þ ¼ r. If F is the biggest free differential module
contained in M, then M=F is a torsion differential module and homD M=F,Dð Þ ¼ 0. In
that case, we shall define the differential rank of M to be rkD Mð Þ ¼ rkD Fð Þ ¼ r.
Accordingly, if M is defined by a linear involutive operator of order q, then
rkD Mð Þ ¼ αnq .

Proposition 2.B.8: If 0!M0 ! M!M00 ! 0 is a short exact sequence of
differential modules and maps or operators, we have rkD Mð Þ ¼ rkD M0ð Þ þ rkD M00ð Þ.

In the general situation, let us consider the sequence M0 !f M!g M” of modules
which may not be exact. Then, we may define the coboundary submodule
B ¼ im fð Þ⊆M, the cocycle submodule Z ¼ ker gð Þ⊆M and the cohomology module
H ¼ Z=B.

Using the last (delicate) proposition, we may provide the following definitions that
will be in the heart of the parametrization problem, successively in the operator and
module frameworks.

Definition 2.B.9: When D ¼ Φ ∘ jq : E! F is a linear differential operator of
order q with coefficients in a differential field K, between the sections of two vector
bundles E with dim Eð Þ ¼ m and F with dim Fð Þ ¼ p, we shall define in a formal way
the differential rank rkD Dð Þ ¼ m� αnq ¼ βnq ¼ rkD im Dð Þð Þ≤ p by introducing the char-
acters of the corresponding linear system Rq ¼ ker Φð Þ⊆ Jq Eð Þ of order q over E. We
have thus rkD Dð Þ≤ inf m, pð Þ (See [4, 20] for details). The order of an operator will be
indicated under it arrow.

Definition 2.B.10: When a differential module M is defined by the presentation

Dp!D
q
Dm !M! 0, we shall introduce the differential module I ¼ im Dð Þ⊆Dm and set

rkD Dð Þ ¼ rkD Ið Þ ¼ m� rkD Mð Þ in a coherent way with the last proposition and
definition.

We obtain the important theorem which is generalizing to operators the rank
property of a m� p matrix, even when D and ad Dð Þ are neither FI nor involutive
([4, 20, 29], p. 340):

Theorem 2.B.11: One has rkD Dð Þ ¼ rkD ad Dð Þð Þ≤ inf m, pð Þ.
In order to conclude this section, we may say that the main difficulty met when

passing from the differential framework to the algebraic framework is the “inversion”
of arrows. Indeed, when an operator is injective, that is when we have the exact

sequence 0! E!D F with dim Eð Þ ¼ m, dim Fð Þ ¼ p, like in the case of the operator

0! E!
jq

Jq Eð Þ, on the contrary, using differential modules, we have the epimorphism

Dp !D Dm ! 0. The case of a formally surjective operator, like the div operator,

described by the exact sequence E!D F ! 0 is now providing the exact sequence of

differential modules 0! Dp !D Dm ! M! 0 because D has no CC.
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3. Parametrization problem

In this section, we shall set up and solve the minimum parametrization problem by
comparing the differential geometric approach and the differential algebraic
approach. In fact, both sides are essential because certain concepts, like “torsion”, are
simpler in the module approach while others, like “involution” are simpler in the
operator approach. However, the reader must never forget that the “extension
modules” or the “side changing functor” are pure product of differential homological
algebra with no system counterpart. The link between “differential duality” and the
“adjoint operator” may not be evident at all, even for people familiar with
mathematical physics [2, 4, 12, 13, 18, 22, 29].

Let us start with a given linear differential operator η!D1
ζ between the

sections of two given vector bundles F0 and F1 of respective fiber dimension
m and p. Multiplying the equations D1η ¼ ζ by p test functions λ considered as a
section of the adjoint vector bundle ad F1ð Þ ¼ ∧nT ∗ ⊗ F ∗

1 and integrating by parts
as we did in the introduction, we may introduce the adjoint vector bundle

ad F0ð Þ ¼ ∧nT ∗ ⊗ F ∗
0 with sections μ in order to obtain the adjoint operator μ  ad D1ð Þ

λ,
writing on purpose the arrow backwards. More generally, let us consider a differential
sequence:

ξ!D η!D1
ζ (13)

such that D1 generates the CC of D or, equivalently, such that D1 is parametrized
by D.

We may introduce the adjoint differential sequence:

ν  ad Dð Þ
μ  ad D1ð Þ

λ (14)

As we haveD1 ∘D ¼ 0, we obtain ad Dð Þ ∘ ad D1ð Þ ¼ 0. However, ifD1 generates the
CC of D, then ad Dð Þ may not generate the CC of ad D1ð Þ. Such a situation may not be
satisfied as we saw and the so-called extension modules have been introduced in order
to measure these “gaps.”

In order to pass to the differential module framework, let us introduce the free
differential modules Dξ≃Dl,Dη≃Dm,Dζ≃Dp. We have similarly the adjoint free
differential modules Dν≃Dl,Dμ≃Dm,Dλ≃Dp, because dim ad Eð Þð Þ ¼ dim Eð Þ and
homD Dm,Dð Þ≃Dm. Of course, in actual practice, the geometric meaning is totally differ-
ent because we have volume forms in the dual framework. We have thus obtained the
formally exact sequence of differential modules:

Dp !D1 Dm !D Dl !M! 0

↘ ↗

M1

↗ ↘

0 0

(15)

with rkD Dð Þ þ rkD D1ð Þ ¼ m⇔ rkD Mð Þ þ rkD M1ð Þ ¼ l. We have the adjoint
sequence:
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Dp  ad D1ð Þ
Dm  ad Dð Þ

Dl

with rkD ad Dð Þð Þ þ rkD ad D1ð Þð Þ ¼ m and we may thus state [4, 9, 10, 20]:
Definition 3.1: We may define the zero differential extension module ext0 Mð Þ ¼

ker ad Dð Þð Þ and the first differential extension module ext1 Mð Þ to be the cohomology of
this sequence at Dm. The latter is a torsion module because it has vanishing differential
rank. They only depend on M.

Theorem 3.2: There is a constructive test in order to find out whether a differential
operator D1 can be parametrized or not (Example 1.3 or the div operator with n ¼ 3).

Proof: The test has five steps along with the following diagram in operator
language:

1 ) Start with D1 : η! ζ,
2 ) Construct ad D1ð Þ : λ! μ,
3 ) Construct its CC as an operator ad Dð Þ : μ! ν,
4 ) Construct its adjoint D ¼ ad ad Dð Þð Þ : ξ! η,
5 ) Construct the CC D01 of D : η! ζ0.

ζ0 5

↗
D01

4 ξ !D η !D1
ζ 1

3 ν  ad Dð Þ
μ  ad D1ð Þ

λ 2

We have ad Dð Þ ∘ ad D1ð Þ ¼ 0) D1 ∘D ¼ 0, that is D1 is surely among the CC of D
but other CC may also exist. The parametrization is thus existing if and only if we may
have D01 ¼ D1.

□
Corollary 3.3: Each new CC eventually brought by D0 which is not already a

differential consequence of D1 is providing a torsion element of the differential mod-
ule M1 determined by D1.

Example 3.4: If D : ξ! d22ξ ¼ η2, d12ξ ¼ η1ð Þ we have D1 ¼ η1, η2ð Þ ! d1η2 �
d2η1 ¼ ζ and the only first order generating CC of ad D1ð Þ : λ! d2λ ¼ μ1,�d1λ ¼ μ2ð Þ
is d1μ1 þ d2μ2 ¼ ν0 while ad Dð Þ : μ1, μ2ð Þ ! d12μ1 þ d22μ2 ¼ ν is a second order opera-
tor like D. Hence, if we should like to parametrize ad Dð Þ, we should successively find
D, D1, ad D1ð Þ and finally get the additional first order CC d1μ1 þ d2μ2 ¼ ν0 which is
such that ν ¼ 0) d2ν0 ¼ 0, that is ν0 is a torsion element for the system
d12μ1 þ d22μ2 ¼ 0.

Example 3.5: Many other examples can be found in ordinary differential control
theory because it is known that a linear control system is controllable if and only if it is
parametrizable (See [4, 20, 29] for more details and examples). In our opinion, the
simplest one is provided by the double pendulum in which a rigid bar is able to move
horizontally with reference position x and has two pendulums attached with respec-
tive length l1 and l2 making the (small) angles θ1 and θ2 with the vertical. The
corresponding control system does not depend on the mass of each pendulum and is:

d2xþ l1d
2θ1 þ gθ1 ¼ 0, d2xþ l2d

2θ2 þ gθ2 ¼ 0
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where g is the gravity. The classical approach is to prove that this control system is
controllable if and only if l1 6¼ l2 by using a tedious computation through the standard
Kalman test [20]. However, equivalently, but this way is still not acknowledged by the
control community, the idea is to prove that the corresponding second order operator
ad D1ð Þ is injective. We let the reader realize the experiment, prove this result as an
exercise and apply the previous theorem in order to work out the parametrizing
operator D of order 4, namely:

�l1l2d4ϕ� g l1 þ l2ð Þd2ϕ� g2ϕ ¼ x
l2d

4ϕþ gd2ϕ ¼ θ1

l1d
4ϕþ gd2ϕ ¼ θ2

8><
>:

Example 3.6: As a less academic example, the following diagram is proving that
Einstein equations cannot be parametrized [1, 2]:

10 !Riemann
20 !Bianchi 20

∥ ↗ ↓ ↓

4 !Killing 10 !Einstein 10 !div 4 ! 0

0! 4  Cauchy 10  Einstein 10

and that the Cauchy and Killing operators (left side) have strictly nothing to do with
the Bianchi and div operators (right side). According to the last corollary, the 20�
10 ¼ 10 new CC are generating the torsion submodule of the differential module
defined by the Einstein operator. In the last section we shall explain why such a basis
of the torsion module is made by the 10 independent components of the Weyl tensor,
a result which is not evident, leading to the so-called Lichnerowicz waves (in France)
[12, 13, 22, 32, 33].

In continuummechanics, the Cauchy stress tensor may not be symmetric in the so-
called Cosserat media where the Cauchy stress equations are replaced by the Cosserat
couple-stress equations which are nothing else than the adjoint of the first Spencer
operator, totally different from the third [27, 28, 34, 35]. When n ¼ 2, we shall see that
the single Airy function has strictly nothing to do with any perturbation of the metric
having three components.

Example 3.7: A similar comment can be done for electromagnetism through the
exterior derivative as the first set of Maxwell equations can be parametrized by the
EM potential 1-form because dA ¼ F ) dF ¼ 0 while the second set of Maxwell
equations (adjoint of this parametrization) can be parametrized by the EM pseudo-
potential, a 3 - skew-symmetric contravariant tensor density in ∧4T ∗ ⊗∧3T through

the adjoint of the exterior derivative ∧2T ∗ !d ∧3T ∗ [12, 13, 27, 28]. These results,
which are deeply supporting the conformal origin of EM [31], are also strengthening
the comments we shall make in Section 4 on the origin and existence of gravitational
waves [13, 22, 23].

As a summarizing comment, we discover that not only it is sometimes not possible
to parametrize a linear differential operator but that, whenever it is possible, not only
it is not easy to have an idea about the number of potential functions needed but even
more difficult to have any idea about the order of the parametrizing operator that may
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be unexpectedly quite high indeed for the double pendulum. In addition, we have
provided in [4], examples showing that the case of variable coefficients is even much
more difficult than the case of constant coefficients. Moreover, the mathematical tools
involved are sometimes not accessible to intuition like this theorem (See [4, 5, 20] for
details):

Theorem 3.8: If M is a differential module, we have the exact sequence of differ-
ential modules:

0! t Mð Þ !M!ε homD homD M,Dð Þ,Dð Þ (16)

where the map ε is defined by ε mð Þ fð Þ ¼ f mð Þ,∀m∈M, f ∈ homD M,Dð Þ.
Theorem 3.9: When D1 can be parametrized or, equivalently, when M1 is torsion-

free and can be thus embedded into a free module Dl, we have thus rkD M1ð Þ ¼ l0 ≤ l.
There is a constructive procedure in order to embed M1 into Dl0 , that is to obtain a
minimum parametrization.

Proof: The procedure with 4 steps is as follows in the operator language
(Example 1.3):

1 ) Start with the formally exact parametrizing sequence already constructed
by differential biduality. We have thus im Dð Þ ¼ ker D1ð Þ and the corresponding
differential module M1 defined by D1 is torsion-free by assumption.

2 ) Construct the adjoint sequence which is also formally exact by assumption.
3 ) Find a maximum set of differentially independent CC ad D0ð Þ : μ! ν0 among

the generating CC ad Dð Þ : μ! ν of ad D1ð Þ in such a way that im ad D0ð Þð Þ is a maxi-
mum free differential submodule of im ad Dð Þð Þ that is any element in im ad Dð Þð Þ is
differentially algebraic over im ad D0ð Þð Þ.

4 ) Using differential duality, construct D0 ¼ ad ad D0ð Þð Þ.
Let us prove that D1 generates the CC of D0 in the following double diagram:

4 ξ0

↑ ↘
D0

ξ !D η !D1
ζ 1

ν  ad Dð Þ
μ  ad D1ð Þ

λ 2

↑ ↙
ad D0ð Þ

3 ν0

↙ ↑

0 0

First of all, we have by construction im ad D0ð Þð Þ ¼ im ad Dð Þð Þ in the bottom
diagram and thus:

rkD ad D0ð Þð Þ þ rkD ad D1ð Þð Þ ¼ rkD ad Dð Þð Þ þ rkD ad D1ð Þð Þ ¼ m

Passing to the upper diagram, we have, therefore:
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rkD D0ð Þ þ rkD D1ð Þ ¼ rkD Dð Þ þ rkD D1ð Þ ¼ m

We have ad D0ð Þ ∘ ad D1ð Þ ¼ ad D1 ∘D0ð Þ ¼ 0) D1 ∘D0 ¼ 0 and D1 is surely among

the CC of D0. Therefore, the differential sequence ξ0 !D
0
η!D1

ζ on the operator level or

the sequence Dp !D1 Dm !D
0
Dl0 on the differential module level may not be exact. In the

latter, we have now B ¼ im D1ð Þ ¼ ker Dð Þ⊆ ker D0ð Þ ¼ Z ⊆Dm. But we have also
rkD Bð Þ ¼ m� rkD Dð Þ, rk Zð Þ ¼ m� rkD D0ð Þ ) rkD Hð Þ ¼ rkD Dð Þ � rkD D0ð Þ ¼ 0.
Using the fact that M1 ¼ coker D1ð Þ while setting M01 ¼ im D0ð Þ⊆Dl0 , we get the
commutative and exact diagram:

0 0

↓ ↓

0 ! B ! Dm ! M1 ! 0

↓ ∥ ↓

0 ! Z ! Dm ! M01 ! 0

↓ ↓ ↓

H 0 0

↓

0

A snake chase shows that the kernel of the induced epimorphism M1 ! M01 ! 0 is
isomorphic to H and is thus a torsion module because we have just proved that
rkD Hð Þ ¼ 0. However, we know that M1 is a torsion-free module and we reach a
contradiction unless H ¼ 0⇔M1 ≃M01.

In actual practice, as shown in the contact case below, things are not so simple and
we shall use the following commutative and exact diagram of differential modules:

0! ker ad Dð Þð Þ ! Dl !ad Dð Þ
Dm ! coker ad Dð Þð Þ ! 0

↘ ↗

L
↗ ↑ ↘

0 Dl0 0

↑

0

Setting L ¼ Dl=ker ad Dð Þð Þ and introducing the biggest free differential module

Dl0 ⊆L we have l0 ¼ rkD Dl0
� �

¼ rkD Lð Þ≤ rkD Dl� �) l0 ≤ l, we may define the injective

(care) operator ad D0ð Þ by the composition of monomorphisms Dl0 ! L! Dm where
the second is obtained by picking a basis of Dl0 , lifting it to Dl and pushing it to Dm by
applying ad Dð Þ. We notice that L can be viewed as the differential module defined by
the generating CC of ad Dð Þ.

□
Example 3.10: Contact transformations.
With m ¼ n ¼ 3,K ¼  x1, x2, x3ð Þ ¼  xð Þ, we may introduce the so-called contact

1-form α ¼ dx1 � x3dx2. The system of infinitesimal Lie equations defining the
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infinitesimal contact transformations is obtained by eliminating the factor ρ xð Þ in the
equations L ξð Þα ¼ ρα where L is the standard Lie derivative. This system is thus only
generated by η1 and η2 below but is not involutive and one has to introduce η3 defined
by the first order CC operator:

η1, η2, η3
� �! d3η1 � d2η2 � x3d1η2 þ η3 ¼ ζ

� �

in order to obtain the following involutive system with two equations of class 3 and
one equation of class 2, a result leading to β31 ¼ 2, β21 ¼ 1, β11 ¼ 0 and the characters
α31 ¼ 3� 2 ¼ 1< α21 ¼ 3� 1 ¼ 2, α11 ¼ 3� 0 ¼ 3 with sum equal to
1þ 2þ 3 ¼ 6 ¼ dim g1

� � ¼ 3� 3� 3.

d3ξ3 þ d2ξ2 þ 2x3d1ξ2 � d1ξ1 ¼ η3

d3ξ1 � x3d3ξ2 ¼ η2

d2ξ1 � x3d2ξ2 þ x3d1ξ1 � x3ð Þ2d1ξ2 � ξ3 ¼ η1

8><
>:

1 2 3

1 2 3

1 2 •

The characters are thus α31 ¼ 3� 2 ¼ 1< α21 ¼ 3� 1 ¼ 2, α11 ¼ 3� 0 ¼ 3 with sum
equal to 1þ 2þ 3 ¼ 6 ¼ dim g1

� � ¼ 3� 3� 3 ¼ 6 and we get dim g2
� � ¼ 3þ 2� 2ð Þ þ

3� 1ð Þ ¼ 10 ¼ dim S2T ∗ ⊗Tð Þ � 8 along the Janet tabular [20].
In this situation, if M is the differential module defined by this system or the

corresponding operator D, we know that
rkD Mð Þ ¼ α31 ¼ 1 ¼ 3� 2 ¼ rkD Dξð Þ � rkD Dð Þ. Of course, a differential transcendence
basis for D can be the operator D0 : ξ! η2, η3

� �
but, in view of the CC, we may

equally choose any couple among η1, η2, η3
� �

and we obtain rkD D0ð Þ ¼ rkD Dð Þ ¼ 2 in
any case, but now D0 is formally surjective, contrary to D. The same result can also be
obtained directly from the unique CC or the corresponding operator D1 defining the
differential module M1. Finally, we have rkD M1ð Þ ¼ 3� 1 ¼ 2 ¼ rkD Dηð Þ � rkD D1ð Þ
and we check that we have indeed rkD Mð Þ þ rkD M1ð Þ ¼ 1þ 2 ¼ 3 ¼ rkD Dξð Þ.

It is well known that such a system can be parametrized by the injective para-
metrization (See [19, 29] for more details and the study of the general dimension
n ¼ 2pþ 1):

�x3d3ϕþ ϕ ¼ ξ1, � d3ϕ ¼ ξ2, d2ϕþ x3d1ϕ ¼ ξ3 ) ξ1 � x3ξ2 ¼ ϕ

Noticing that D is generated by D0 : ξ! η1, η2ð Þ, we obtain the operator ad D0ð Þ:

�d3μ2 � d2μ1 � x3d1μ1 ¼ ν1, x3d3μ2 þ μ2 þ x3d2μ1 þ x3
� �2

d1μ1 ¼ ν2, � μ1 ¼ ν3

It follows that μ1 ¼ �ν3, μ2 ¼ ν2 þ x3ν1 and, substituing, the only CC:

x3d3ν1
� �þ d3ν2

� �þ d2ν3 þ x3d1ν3
� � ¼ 0

which is exactly ad D�1ð Þ as can be seen by multiplying by a test function ϕ and
integrating by parts. No such computations can be found in the literature on contact
structures.

The associated differential sequence is:

0! ϕ !D�1 ξ !D η !D1
ζ ! 0

0! 1 ! 3 ! 3 ! 1 ! 0
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with Euler-Poincaré characteristic 1� 3þ 3� 1 ¼ 0 but is not a Janet sequence
because D�1 is not involutive, its completion to involution being the trivially
involutive operator j1 : ϕ! j1 ϕð Þ.

Introducing the ring D ¼ K d1, d2, d3½ � ¼ K d½ � of linear differential operators with
coefficients in the differential field K, the corresponding differential module M≃D is
projective and even free, thus torsion-free or 0-pure [24], being defined by the split
exact sequence of free differential modules:

0! D!D1 D3 !D D3 !D�1 D! 0

We let the reader prove as an exercise that the adjoint sequence:

0 θ  ad D�1ð Þ
ν  ad Dð Þ

μ  ad D1ð Þ
λ 0

0 1  3 3  1 0

starting from the Lagrange multiplier λ is also a split exact sequence of free
differential modules.

We invite the reader to study, as a delicate exercise, the system of infinitesimal Lie
equations defining the infinitesimal unimodular contact transformations preserving
the 1-form α ¼ dx1 � x3dx2, thus also both the 2-form β ¼ dα ¼ dx2∧dx3 and the
volume 3-form α∧β ¼ dx1∧dx2∧dx3. Surprisingly, the Lie operator D : T !
∧1T ∗�X∧2T ∗ : ξ! L ξð Þα ¼ A,L ξð Þβ ¼ Bð Þ for the geometric object ω ¼ α, βð Þ is
involutive if and only if dα ¼ c0β, dβ ¼ c00α∧β with c0c00 ¼ 0. It provides the differential
Janet sequence 3! 6! 4! 1! 0 with Euler-Poincaré characteristic
rkD Mð Þ ¼ 3� 6þ 4� 1 ¼ 0. It follows that D cannot be parametrized. We have D1 :

A,Bð Þ ! dA� c0B ¼ U, dB� c00 A∧β þ α∧Bð Þ ¼ V
� �

and D2 : U,Vð Þ ! dU þ c0V ¼W
because c0c00 ¼ 0. (See [12] and the recent [19] for more details).

4. Einstein equations

If g1 ⊂T ∗ ⊗T with dim g1
� � ¼ n n� 1ð Þ=2 is the symbol of the Killing system

R1 ⊂ J1 Tð Þ with dim R1ð Þ ¼ n nþ 1ð Þ=2, its first prolongation is g2 ¼ 0. We may intro-

duce the Riemann tensor ρ ¼ ρkl,ij

� �
∈ F1 ¼ H2

1 g1
� �

with n2 n2 � 1ð Þ=12 components in

the short exact sequence [13, 18, 25, 27–29]:

0! F1 ! ∧2T ∗ ⊗ g1 !
δ ∧3T ∗ ⊗T ! 0 (17)

Linearizing the Ricci tensor ρij ¼ ρri,rj ¼ ρji

� �
∈ S2T ∗ over the Minkowski metric ω,

we obtain the usual second order homogeneous Ricci operator Ω! R with 4 terms
(care):

2Rij ¼ ωrs drsΩij þ dijΩrs � driΩsj � dsjΩri
� � ¼ 2Rji

tr Ωð Þ ¼ ωijΩij ) tr Rð Þ ¼ ωijRij ¼ ωijdijtr Ωð Þ � ωruωsvdrsΩuv

We may define the Einstein operator by setting εij ¼ ρij � 1
2ωijωrsρrs ) Eij ¼ Rij �

1
2ωijtr Rð Þ and obtain the 6 terms (care) [9]:
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2Eij ¼ ωrs drsΩij þ dijΩrs � driΩsj � dsjΩri
� �� ωij ω

rsωuvdrsΩuv � ωruωsvdrsΩuvð Þ

We have the (locally exact) differential sequence of operators acting on sections of
vector bundles:

T !Killing
1

S2T ∗ !Riemann

2
F1 !Bianchi

1
F2

n!D n nþ 1ð Þ=2!D1 n2 n2 � 1
� �

=12!D2 n2 n2 � 1
� �

n� 2ð Þ=24
(18)

where F2 ¼ H3
1 g1
� �

is similarly defined by the short exact sequence:

0! F2 ! ∧3T ∗ ⊗ g1 !
δ ∧4T ∗ ⊗T ! 0 (19)

Our purpose is now to study the differential sequence onto which its right part is
projecting:

S2T ∗ !Einstein
2

S2T ∗!div
1
T ∗ ! 0

n nþ 1ð Þ=2! n nþ 1ð Þ=2! n! 0

and the following adjoint sequence where we have set [13, 18, 25, 27–29]:

ad Tð Þ  Cauchy ad S2T ∗ð Þ  Beltrami
ad F1ð Þ  Lanczos ad F2ð Þ (20)

In this sequence, if E is a vector bundle over the groundmanifold X with dimension n,
we may introduce the new vector bundle ad Eð Þ ¼ ∧nT ∗ ⊗E ∗

, where E ∗ is obtained
from E by inverting the transition rules exactly like T ∗ is obtained from T. We have for
example ad Tð Þ ¼ ∧nT ∗ ⊗T ∗ ≃∧nT ∗ ⊗T ≃∧n�1T ∗ because T ∗ is isomorphic to T by
using the metric ω. The 10� 10 Einstein operator matrix is induced from the 10 � 20
Riemann operator matrix and the 10� 4 div operator matrix is induced from the 20� 20
Bianchi operator matrix. We advise the reader not familiar with the formal theory of
systems or operators to follow the computation in dimension n ¼ 2 with the 1� 3 Airy
operator matrix, which is the formal adjoint of the 3� 1 Riemann operator matrix,
and n ¼ 3 with the 6� 6 Beltrami operator matrix which is the formal adjoint of the 6� 6
Riemann operator matrix which is easily seen to be self-adjoint up to a change of basis.

• n ¼ 2: The stress equations become d1σ11 þ d2σ12 ¼ 0, d1σ21 þ d2σ22 ¼ 0. Their
second order parametrization σ11 ¼ d22ϕ, σ12 ¼ σ21 ¼ �d12ϕ, σ22 ¼ d11ϕ has been
provided by George Biddell Airy in 1863 [36] and is well known [4]. We get the
second order system:

σ11 � d22ϕ ¼ 0

�σ12 � d12ϕ ¼ 0

σ22 � d11ϕ ¼ 0

8><
>:

1 2

1 •

1 •

which is involutive with one equation of class 2, 2 equations of class 1 and it is easy
to check that the 2 corresponding first order CC are just the Cauchy equations. Of
course, the Airy function (1 term) has absolutely nothing to do with the perturbation
of the metric (3 terms). With more details, when ω is the Euclidean metric, we may
consider the only component:
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tr Rð Þ ¼ d11 þ d22ð Þ Ω11 þ Ω22ð Þ � d11Ω11 þ 2d12Ω12 þ d22Ω22ð Þ ¼ d22Ω11 þ d11Ω22 � 2d12Ω12

Multiplying by the Airy function ϕ and integrating by parts, we get Airy ¼
ad Riemannð Þ and Cauchy ¼ ad Killingð Þ in the following differential sequences:

2 !Killing
1

3 !Riemann

2
1! 0

0 2  Cauchy
1

3  Airy
2

1

• n ¼ 3: It is quite more delicate to parametrize the 3 PD equations:

d1σ11 þ d2σ12 þ d3σ13 ¼ 0, d1σ21 þ d2σ22 þ d3σ23 ¼ 0, d1σ31 þ d2σ32 þ d3σ33 ¼ 0

A direct computational approach has been provided by Eugenio Beltrami in 1892
[37, 38], James Clerk Maxwell in 1870 [39] and Giacinto Morera in 1892 [38, 40] by
introducing the 6 stress functions ϕij ¼ ϕji in the Beltrami parametrization. The
corresponding system:

σ11 � d33ϕ22 þ d22ϕ33 � 2d23ϕ23 ¼ 0

�σ12 � d33ϕ12 þ d12ϕ33 � d13ϕ23 � d23ϕ13 ¼ 0

σ22 � d33ϕ11 þ d11ϕ33 � 2d13ϕ13 ¼ 0

σ13 � d23ϕ12 þ d12ϕ23 � d22ϕ13 � d13ϕ22 ¼ 0

�σ23 � d23ϕ11 þ d11ϕ23 � d12ϕ13 � d13ϕ12 ¼ 0

σ33 � d22ϕ11 þ d11ϕ22 � 2d12ϕ12 ¼ 0

8>>>>>>>><
>>>>>>>>:

1 2 3

1 2 3

1 2 3

1 2 •

1 2 •

1 2 •

is involutive with 3 equations of class 3, 3 equations of class 2 and no equation of
class 1. The three characters are thus α32 ¼ 1� 6� 3 ¼ 3< α22 ¼ 2� 6� 3 ¼ 9< α12 ¼
3� 6� 0 ¼ 18 and we have dim g2

� � ¼ α12 þ α22 þ α32 ¼ 18þ 9þ 3 ¼ 30 ¼
dim S2T ∗ ⊗ S2T ∗ð Þ � dim S2T ∗ð Þ ¼ 6� 6� 6 [22]. The 3 CC are describing the stress
equations which admit therefore a parametrization … but without any geometric
framework, in particular without any possibility to imagine that the above second
order operator is nothing else but the formal adjoint of the Riemann operator, namely the
(linearized) Riemann tensor with n2 n2 � 1ð Þ=2 ¼ 6 independent components when
n ¼ 3 [12, 13].

Breaking the canonical form of the six equations which is associated with the Janet
tabular, we may rewrite the Beltrami parametrization of the Cauchy stress equations
as follows, after exchanging the third row with the fourth row, keeping the ordering
11ð Þ< 12ð Þ< 13ð Þ< 22ð Þ< 23ð Þ< 33ð Þf g:

d1 d2 d3 0 0 0

0 d1 0 d2 d3 0

0 0 d1 0 d2 d3

0
B@

1
CA

0 0 0 d33 �2d23 d22
0 �d33 d23 0 d13 �d12
0 d23 �d22 �d13 d12 0

d33 0 �2d13 0 0 d11
�d23 d13 d12 0 �d11 0

d22 �2d12 0 d11 0 0

0
BBBBBBBB@

1
CCCCCCCCA
� 0
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as an identity where 0 on the right denotes the zero operator. However, if Ω is a
perturbation of the metric ω, the standard implicit summation used in continuum
mechanics is, when n ¼ 3:

σijΩij ¼ σ11Ω11 þ 2σ12Ω12 þ 2σ13Ω13 þ σ22Ω22 þ 2σ23Ω23 þ σ33Ω33

¼ Ω22d33ϕ11 þΩ33d22ϕ11 � 2Ω23d23ϕ11 þ …

þΩ23d13ϕ12 þΩ13d23ϕ12 �Ω12d33ϕ12 �Ω33d12ϕ12 þ …

because the stress tensor density σ is supposed to be symmetric. Integrating by parts in
order to construct the adjoint operator, we get:

ϕ11 ! d33Ω22 þ d22Ω33 � 2d23Ω23

ϕ12 ! d13Ω23 þ d23Ω13 � d33Ω12 � d12Ω33

and so on. The identifications Beltrami ¼ ad Riemannð Þ,Lanczos ¼ ad Bianchið Þ in
the diagram:

3 !Killing
1

6 !Riemann

2
6 !Bianchi

1
3 ! 0

0 3  Cauchy
1

6  Beltrami

2
6  Lanczos

1
3

: (21)

prove that the Cauchy operator has nothing to do with the Bianchi operator
[12, 13].

When ω is the Euclidean metric, the link between the two sequences is
established by means of the elastic constitutive relations 2σij ¼ λtr Ωð Þωij þ 2μΩij

with the Lamé elastic constants λ, μð Þ but mechanicians are usually setting Ωij ¼ 2εij.

Using the standard Helmholtz decomposition ξ
! ¼ ∇

!
φþ ∇

!
∧ψ! and substituting in the

dynamical equation diσij ¼ ρd2=dt2ξj where ρ is the mass per unit volume, we get the
longitudinal and transverse wave equations, namely Δφ� ρ

λþ2μ
d2

dt2
φ ¼ 0 and

Δψ! � ρ
μ

d2

dt2
ψ
! ¼ 0, responsible for earthquakes, with respective speeds c2L ¼ λþ 2μð Þ=ρ

and c2T ¼ μ=ρ.
Then, taking into account, the factor 2 involved by multiplying the second, third

and fifth row by 2, we get the new 6� 6 operator matrix with rank 3 which is clearly
self-adjoint:

0 0 0 d33 �2d23 d22
0 �2d33 2d23 0 2d13 �2d12
0 2d23 �2d22 �2d13 2d12 0

d33 0 �2d13 0 0 d11
�2d23 2d13 2d12 0 �2d11 0

d22 �2d12 0 d11 0 0

0
BBBBBBBB@

1
CCCCCCCCA

Following Maxwell, we keep ϕ11 ¼ A,ϕ22 ¼ B,ϕ33 ¼ C, set ϕ12 ¼ ϕ23 ¼ ϕ31 ¼ 0
and get:
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σ11 � d33Bþ d22C ¼ 0

σ22 � d33Aþ d11C ¼ 0

�σ23 � d23A ¼ 0

σ33 � d22Aþ d11B ¼ 0

�σ13 � d13B ¼ 0

�σ12 � d12C ¼ 0

8>>>>>>>><
>>>>>>>>:

1 2 3

1 2 3

1 2 •

1 2 •

1 • •

1 • •

This system may not be involutive and no CC can be found “a priori” because the
coordinate system is surely not δ-regular. Effecting the linear change of coordinates
x1 ¼ x1, x2 ¼ x2, x3 ¼ x3 þ x2 þ x1 and taking out the bar for simplicity, we obtain the
involutive system:

d33Cþ d13Cþ d23Cþ d12C ¼ 0

d33Bþ d13B ¼ 0

d33Aþ d23A ¼ 0

d23Cþ d22C� d13C� d13B� d12C ¼ 0

d23A� d22Cþ d13Bþ 2d12C� d11C ¼ 0

d22Aþ d22C� 2d12Cþ d11Cþ d11B ¼ 0

8>>>>>>>><
>>>>>>>>:

1 2 3

1 2 3

1 2 3

1 2 •

1 2 •

1 2 •

and it is easy to check that the 3 CC obtained just amount to the desired 3 stress
equations when coming back to the original system of coordinates. However, the three
characters are different as we have now α32 ¼ 3� 3 ¼ 0< α22 ¼ 2� 3� 3 ¼ 3< α12 ¼
3� 3� 0 ¼ 9 with sum equal to dim g2

� � ¼ 6� 3� 6 ¼ 18� 6 ¼ 12. We have thus a
minimum parametrization. Of course, if there is a geometrical background, this change of
local coordinates is hiding it totally. Moreover, we notice that the stress functions kept
in the procedure are just the ones on which d33 is acting. The reason for such an
apparently technical choice is related to very general deep arguments in the theory of
differential modules that will only be explained at the end of the paper.

Following Morera, we keep ϕ23 ¼ L,ϕ13 ¼M,ϕ12 ¼ N, set ϕ11 ¼ ϕ22 ¼ ϕ33 ¼ 0,
and get:

d23L ¼ 0

d33N � d13L� d23M ¼ 0

d13M ¼ 0

d22M� d23N � d12L ¼ 0

d11L� d12M� d13N ¼ 0

d12N ¼ 0

8>>>>>>>><
>>>>>>>>:

Using the same change of coordinates, we obtain the following involutive system:

d33N þ d23N þ d13N þ d12N ¼ 0

d33Mþ d13M ¼ 0

d33Lþ d23L ¼ 0

d23N þ d23M� d23Lð Þ þ d13N � d13Mþ d13Lð Þ þ d12N ¼ 0

2d23Mþ d13N � d13M� d13Lð Þ þ d12M� d11L ¼ 0
d22Mþ d12N � d12M� d12Lð Þ þ d11L ¼ 0

8>>>>>>>><
>>>>>>>>:

1 2 3

1 2 3

1 2 3

1 2 •

1 2 •

1 2 •
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After elementary but tedious computations (that could not be avoided!), one
can prove that the 3 CC corresponding to the 3 dots are effectively satisfied and
that they correspond to the 3 Cauchy stress equations which are therefore
parametrized. The parametrization is thus provided by an involutive operator
defining a torsion module because the character α32 is vanishing in δ-regular
coordinates, just like before for the Maxwell parametrization. We have thus another
minimum parametrization. Of course, such a result could not have been understood by
Beltrami in 1892 because the work of Cartan could not be adapted easily in the
language of exterior forms and the work of Janet appeared only in 1920 with no
explicit reference to involution because only Janet bases are used while the Pommaret
bases have only been introduced in 1978 (See [25, 29] for historical facts).

We may finally keeep ϕ11,ϕ12,ϕ22f g, set ϕ13 ¼ ϕ23 ¼ ϕ33 ¼ 0 and get the different
involutive system with the same characters, in particular with α32 ¼ 0:

σ11 � ∂33ϕ22 ¼ 0

�σ12 � ∂33ϕ12 ¼ 0

σ22 � ∂33ϕ11 ¼ 0

σ13 � ∂23ϕ12 � ∂13ϕ22 ¼ 0

�σ23 � ∂23ϕ11 � ∂13ϕ12 ¼ 0

σ33 � ∂22ϕ11 þ ∂11ϕ22 � 2∂12ϕ12 ¼ 0

8>>>>>>>><
>>>>>>>>:

1 2 3

1 2 3

1 2 3

1 2 •

1 2 •

1 2 •

(22)

So far, we have thus obtained three explicit local minimum parametrizations of
the Cauchy stress equations with n n� 1ð Þ=2 ¼ 3 stress potentials but there may
be others.

• n ¼ 4: It just remains to explain the relation of the previous results with Ein-
stein equations. The first suprising link is provided by the following technical propo-
sition:

Proposition 4.1: The Beltrami parametrization is just described by the Einstein
operator when n ¼ 3. The same confusion existing between the Bianchi operator and
the Cauchy operator has been made by both Einstein and Beltrami because the Einstein
operator is self-adjoint in arbitrary dimension n≥ 3, contrary to the Ricci operator.

Proof: The number of components of the Riemann tensor is
dim F1ð Þ ¼ n2 n2 � 1ð Þ=12. We have the combinatorial formula n2 n2 � 1ð Þ=12�
n nþ 1ð Þ=2 ¼ n nþ 1ð Þ nþ 2ð Þ n� 3ð Þ=12 expressing that the number of components of
the Riemann tensor is always greater or equal to the number of components of the
Ricci tensor whenever n> 2. Also, we have shown in many books [12, 13, 25, 27–29] or
papers [16, 18] that the number of Bianchi identities is equal to n2 n2 � 1ð Þ n� 2ð Þ=24,
that is 3 when n ¼ 3 and 20 when n ¼ 4. Of course, it is well known that the div
operator, induced as CC of the Einstein operator, has n components in arbitrary
dimension n≥ 3.

Accordingly, when n ¼ 3 we have n2 n2 � 1ð Þ=12 ¼ n nþ 1ð Þ=2 ¼ 6 and it only
remains to prove that the Einstein operator reduces to the Beltrami operator and not
just to the Ricci operator.

The following formulas can be found in any textbook on general relativity. In
particular, the difference existing between Rij (4 terms only) and Eij (6 terms) can
only be seen when ωi 6¼j ¼ 0. In our situation with n ¼ 3 and the Euclidean metric, we
obtain successively:
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2R12 ¼ 2E12 ¼ d11 þ d22 þ d33ð ÞΩ12 þ d12 Ω11 þΩ22 þΩ33ð Þ
� d11Ω12 þ d12Ω22 þ d13Ω23ð Þ � d12Ω11 þ d22Ω12 þ d23Ω13ð Þ
¼ d33Ω12 þ d12Ω33 � d13Ω23 � d23Ω13

2R11 ¼ d11 þ d22 þ d33ð ÞΩ11 þ d11 Ω11 þΩ22 þΩ33ð Þ
�2 d11Ω11 þ d12Ω12 þ d13Ω13ð Þ
¼ d22 þ d33ð ÞΩ11 þ d11 Ω22 þ Ω33ð Þ � 2 d12Ω12 þ d13Ω13ð Þ

tr Rð Þ ¼ d11Ω22 þ d11Ω33 þ d22Ω11 þ d22Ω33 þ d33Ω11 þ d33Ω22ð Þ
� 2 d12Ω12 þ d13Ω13 þ d23Ω23ð Þ

2E11 ¼ d22Ω33 þ d33Ω22 � 2d23Ω23

In the light of modern differential geometry, comparing these results with the
works of Maxwell, Morera, Beltrami and Einstein, it becomes clear that they have
been confusing the div operator induced from the Bianchi operator with the Cauchy
operator. However, it is also clear that they both obtained a possibility to parametrize
the Cauchy operator by means of 3 arbitrary potential like functions in the case of
Maxwell and Morera, 6 in the case of Beltrami explaining the previous choices, and 10
in the case of Einstein. Of course, as they were ignoring that the Einstein operator was
self-adjoint whenever n≥ 3, they did not notice that we have Cauchy ¼ ad Killingð Þ and
they were unable to compare their results with the Airy operator found as early as in
1870 for the same mechanical purpose when n ¼ 2. To speak in a rough way, the
situation is similar to what could happen in the study of contact structures if one
should confuse D�1 with D1 or D with D2 in the Killing sequence [16]. Finally, using
the double differential duality test, we can choose a differential transcendence basis
with n n� 1ð Þ=2 potentials that can be indexed by ϕij ¼ ϕji with i< j or 1≤ i, j≤ n� 1 or
even 2≤ i, j≤ n when the dimension n≥ 2 is arbitrary (See [24, 29] for more details on
differential algebra).

□
Remark 4.2: The author of this paper is not an historian of sciences but a specialist

of mathematical physics interested by the analogy existing between electromagnetism
(EM), elasticity (EL), and gravitation (GR) by using the conformal group of space–
time along the idea of H. Weyl [41] (See [4, 13, 18, 19, 28–31] for related works). It is
thus difficult to imagine that Einstein could not have been aware of the works of
Maxwell and Beltrami on the foundations of EL and tensor calculus as they were quite
famous when he started his research on GR. We also notice that the Mach-Lippmann
analogy [4, 13, 28, 29, 35] was introduced at the same time and that the phenomeno-
logical law of piezzo-electricity has been discovered by… Maxwell [19, 20]. We do
believe that classical variational calculus must be considered as a kind of “duality
theory” that should only depend on new purely mathematical tools, namely “group
theory” on one side and “differential homological algebra” on the other side (See [12, 13,
28] for the theory and [4] for the applications).

The two following crucial results, still neither known nor acknowledged today, are
provided by the next proposition and corresponding corollary:

Proposition 4.3: The cauchy operator can be parametrized by the adjoint of the
Ricci Operator

Proof: The Einstein operator Ω! E is defined by setting Eij ¼ Rij � 1
2ωijtr Rð Þ that

we shall write Einstein ¼ C ∘Ricci where C : S2T ∗ ! S2T ∗ is a symmetric matrix only
depending on ω, which is invertible whenever n≥ 3. Surprisingly, we may also
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introduce the same linear transformation C : Ω! Ω ¼ Ω� 1
2ω tr Ωð Þ and the unknown

composite operator X : Ω! Ω! E in such a way that Einstein ¼ X ∘C where X is
defined by (See [15], 5.1.5, p. 134):

2Eij ¼ ωrsdrsΩij � ωrsdriΩsj � ωrsdsjΩri þ ωijω
ruωsvdrsΩuv

Now, introducing the test functions λij, we get:

λijEij ¼ λij Rij � 1
2
ωijtr Rð Þ

� �
¼ λij � 1

2
λrsωrsω

ij
� �

Rij ¼ λ
ijRij

Integrating by parts while setting as usual □ ¼ ωrsdrs, we obtain:

□λ
rs þ ωrsdijλ

ij � ωsjdijλ
ri � ωridijλ

sj
� �

Ωrs ¼ σrsΩrs (23)

Moreover, suppressing the “bar” for simplicity, we have:

drσrs ¼ ωijdrijλrs þ ωrsdrijλij � ωsjdrijλri � ωridrijλsj ¼ 0 (24)

As Einstein is a self-adjoint operator (contrary to the Ricci operator), we have the
identities:

ad Einsteinð Þ ¼ ad Cð Þ ∘ ad Xð Þ ) Einstein ¼ C ∘ ad Xð Þ ) ad Xð Þ ¼ Ricci) X ¼ ad Riccið Þ

Indeed, ad Cð Þ ¼ C because C is a symmetric matrix and we know that
ad Einsteinð Þ ¼ Einstein. Accordingly, the operator ad(Ricci) parametrizes the
Cauchy equations, without any reference to the Einstein operator, which has no
mathematical origin, in the sense that it cannot be obtained by any diagram chasing.
The three terms after the Dalembert operator factorize through the divergence
operator diλri. We may thus add the differential constraints diλri ¼ 0 without any
reference to a gauge transformation in order to obtain a (minimum) relative parametri-
zation (see [24] for details and explicit examples). When n ¼ 4 we finally obtain the
adjoint sequences:

4 !Killing 10 !Ricci 10

0 4  Cauchy 10  ad Riccið Þ
10

(25)

without any reference to the Bianchi operator and the induced div operator.
Finally, using Theorem 2.1 or Proposition 2.2, we may choose a differential

transcendence basis made by λijji< j
� �

or λijj1< i, j< n� 1
� �

or even λijj2< i, j< n
� �

when n≥ 2.
□

According to Theorem 3.2 and Example 3.6, the Einstein and thus also the Ricci
operators cannot be parametrized. Now, according to Corollary 3.3, the differential
module N that they define is not torsion-free.

Corollary 4.4: t Nð Þ is generated by the 10 components of the Weyl tensor and
each component is killed by the Dalembert operator.
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Proof: We first recall the 5 steps of the double differential duality test in this
framework:

1 ) Start with the Einstein operator D1 : 10 !Einstein 10.
2 ) Consider its formal adjoint: ad D1ð Þ : 10  Einstein 10.
3 ) Compute the generating CC, namely the Cauchy operator:

ad Dð Þ : 4  Cauchy 10.
4 ) Consider its formal adjoint: D ¼ ad ad Dð Þð Þ : 4 !Killing 10.
5 )Compute the generating CC, namely the Riemann operator: D01 : 10 !Riemann

20.
With a slight abuse of language, we have the direct sum Riemann ¼ Ricci⊕Weyl

with 20 ¼ 10þ 10. It follows from differential homological algebra that the
10 additional CC in D01 that are not in D1, are generating the torsion submodule t Nð Þ of
the differential module N defined by the Einstein or Ricci operator. If K is a differential
field and we consider the ring D ¼ K d1, … , dn½ � ¼ K d½ � of differential operators with
coefficients in K, we know that rkD Dð Þ ¼ rkD ad Dð Þð Þ for any operator matrix D with
coefficients in K. In the present situation, as the Minkowski metric has coefficients
equal to 0, 1, � 1, we may choose K ¼ . Hence, there must exist operators P and
Q with rkD Pð Þ ¼ 10 and:

P ∘Weyl ¼ Q ∘Ricci (26)

One may also notice that rkD Einsteinð Þ ¼ rkD Riccið Þ with:

rkD Einsteinð Þ ¼ n nþ 1ð Þ
2

� n ¼ n n� 1ð Þ
2

, rkD Riemannð Þ ¼ n nþ 1ð Þ
2

� n ¼ n n� 1ð Þ
2

It is a pure chance that the differential ranks of the Einstein and Riemann operators are
equal. Indeed, rkD Einsteinð Þ has only to do with the div operator induced by contract-
ing the Bianchi operator, while rkD Riemannð Þ has only to do with the classical Killing
operator and the fact that the corresponding differential Killing module is a torsion
module because we have a Lie group of transformations having nþ n n�1ð Þ

2 ¼ n nþ1ð Þ
2

parameters (translations + rotations). Hence, as the Riemann operator is a direct sum
of the Weyl operator and the Einstein or Ricci operator according to the previous
theorem, each component of the Weyl operator must be killed by a certain operator
whenever the Einstein or Ricci equations in vacuum are satisfied. Equivalently, we
have to prove that we obtain a torsion differential module if we set the 10 constraints
Rij ¼ 0 in the 20 equations Rkl,ij ¼ 0. With more details, we may start from the long
exact sequence:

0! Θ! 4 !Killing
1

10 !Riemann

2
20 !Bianchi

1
20!

1
6! 0 (27)

This resolution of the set of Killing vector fields is not at all a Janet sequence
because the Killing operator is not involutive as it is an operator of finite type with
symbol of dimension n n� 1ð Þ=2 ¼ 6 and one should need one prolongation for getting
an involutive operator with vanishing symbol at order two. Splitting the Riemann
operator, we get the commutative and exact diagram:

30

Gravitational Waves – Theory and Observations



0 0 0

↓ ↓ ↓

0 10 ! 16 ! 6 ! 0

↓ ↓↑ ↓ ∥

4 !Killing 10 !Riemann
20 !Bianchi 20 ! 6 ! 0

∥ ↓↑ ↓ ↓

10 !Einstein 10 !div 4 ! 0

↓ ↓ ↓

0 0 0

(28)

Passing to the differential module point of view, we have the long exact sequence:

0! D6 ! D20 !Bianchi D20 !Riemann
D10 !Killing D4 !M! 0 (29)

Which is a resolution of the Killing differential module M ¼ coker Killingð Þ, and we
have indeed the vanishing of the Euler-Poincaré characteristic with
rkD Mð Þ ¼ 4� 10þ 20� 20þ 6 ¼ 0.

Accordingly, we have N0 ¼ coker Riemannð Þ≃ im Killingð Þ⊂D4 and thus N0 is
torsion-free with rkD N0ð Þ ¼ 4� 0 ¼ 4 ¼ n because rkD Mð Þ ¼ 0. The kernel L of the
epimorphism N ! N0 is a torsion module because rkD Lð Þ ¼ rkD Nð Þ � rkD N0ð Þ ¼ 4� 4 ¼ 0.
As D is an integral domain and N0 ⊂D4 is torsion-free, we have thus L ¼ t Nð Þ in the
following commutative and exact diagram where N ¼ coker Einsteinð Þ is the
differential module defined by Einstein equations in vacuum:

0

↓

0 0 0 t Nð Þ
↓ ↓ ↓ ↓

0 ! D4 !div D10 !Einstein D10 ! N ! 0

↓ ↓ ↓ ∥ ↓

0! D6 ! D20 !Bianchi D20 !Riemann
D10 ! N0 ! 0

∥ ↓ ↓ ↓ ↓

0! D6 ! D16 ! D10 0 0

↓ ↓ ↓

0 0 0

A snake chase in the previous diagram allows to exhibit the long exact connecting
sequence:

0! D6 ! D16 ! D10 ! t Nð Þ ! 0

We point out that, for n ¼ 4 (only), the CC of the Weyl operator are of order 2 and
not 1 like the Bianchi CC for the Riemann operator (See [12, 18], Appendix 2 for a
computer algebra checking by A. Quadrat). Accordingly, we have the conformal
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sequence in which D̂ is the conformal Killing operator when n ¼ 4, with
rkD M̂
� � ¼ 4� 9þ 10� 9þ 4 ¼ 0:

0! Θ̂! 4!D̂
1
9!D̂1

2
10!D̂2

2
9!D̂3

1
4! 0 (30)

and one cannot find canonical morphisms between the classical and the conformal
resolutions (!).

It follows from the last theorem that the short exact sequence 0! D10 ! D20 !
D10 ! 0 splits with D20 ≃D10⊕D10 but the existence of a canonical lift D20 ! D10 !
0 in the above diagram does not allow to split the right column and thus N 6¼ N0⊕t Nð Þ
as N0 is not even free. As for the torsion elements, we have t Nð Þ ¼ coker D16 ! D10� �
and we may thus represent them by the 10 components of the Weyl tensor. It is not at
all evident that □ is killing each component of the Weyl tensor whenever Rij ¼ 0. A
tricky technical computation can be found in ([32], p. 206), ([33], Exercise 7.7) and
([13], p. 95).

Indeed, according to the double differential duality test, each additional CC in D01
which is not already in D1 is a torsion element as it belongs to this module. Now, as
rkD Dð Þ ¼ rkD im Dð Þð the differential ranks of the Einstein and Riemann operators are
thus equal to n n� 1ð Þ=2, but this is a pure coincidence because rkD Einsteinð Þ has only to
do with the div operator induced by contracting the Bianchi identities, while
rkD Riemannð Þ has only to do with the classical Killing operator and the fact that the
corresponding differential module is a torsion module because we have a Lie group of
transformations having nþ n n�1ð Þ

2 ¼ n nþ1ð
2 parameters (translations + rotations). Hence,

as the Riemann operator is a direct sum of the Weyl operator and the Einstein or Ricci
operator according to the previous theorem, each component of the Weyl operator
must be killed by a certain operator whenever the Einstein or Ricci equations in
vacuum are satisfied in arbitrary dimension n≥4.

We prove directly that each component of the Weyl tensor is killed by the Dalembertian.
With Christoffel symbols γ and the corresponding covariant derivative ∇ we know

that ∇ω ¼ 0 and we may thus move up and down the indices as needed. We provide
this tricky computation using essentially the (second) Bianchi identities. We have
successively:

∇rρ
k
l,ij þ ∇iρ

k
l,jr þ ∇jρ

k
l,ri ¼ 0 ) ∇rρrl,ij � ∇iρlj þ ∇jρli ¼ 0

) ∇r∇rρkl,ij þ ∇r∇iρkl,jr þ ∇r∇jρkl,ri ¼ 0

) ∇r∇rρkl,ij þ ∇i∇rρkl,jr þ ∇j∇rρkl,ri þ ∇r,∇i½ �ρkl,jr þ ∇r,∇j
� �

ρkl,ri ¼ 0

) ∇r∇rρkl,ij þ ∇i∇rρkl,jr þ ∇j∇rρkl,ri þ
X

quadratic
� �

¼ 0

But we have also ρkl,ij ¼ ρij,kl and thus
∇rρij,rl ¼ ∇iρlj � ∇jρli ) ∇rρjr � 1

2∇jρ ¼ 0.

□ρkl,ij ¼ ∇i ∇kρlj � ∇lρkj

� �� �
� i$ jð Þ þ

X
quadratic

� �

Linearizing at the Euclidean metric for n ¼ 2, 3 or at the Minkowski metric for
n ¼ 4, we get:

32

Gravitational Waves – Theory and Observations



□Rkl,ij ¼ di dkRlj � dlRkj
� �� dj dkRli � dlRkið Þ (31)

We may finally use the splitting formula for defining the Weyl tensor σkl,ij with
σrl,rj ¼ 0, namely:

σkl,ij ¼ ρkl,ij �
1

n� 2ð Þ δki ρlj � δkj ρli þ ωks ωljρsi � ωliρsj

� �� �
þ 1

n� 1ð Þ n� 2ð Þ δki ωlj � δkj ωli

� �
ρ

σkl,ij ¼ ρkl,ij �
X

ρrs

� �
) Σk

l,ij ¼ Rk
l,ij �

X
Rrs

� �

At any moment, we could have used the Ricci operator in place of the Einstein operator.
□

Finally, for the sake of completeness, we compute directly the characters of the
Einstein system.

Using a direct checking with the ordering 11< 12< 13< 14< 22< … < 34<44, we
obtain:

E33 ¼ ω44d44Ω33 þ lower  terms, E23 ¼ ω44d44Ω23 þ …

We are in the position to compute the characters of the Einstein operator but a
similar procedure could be followed with the Ricci operator. We obtain at once:

β42 ¼ 6, β32 ¼ 4, β22 ¼ 0, β12 ¼ 0⇔ α42 ¼ 4, α32 ¼ 16, α32 ¼ 30, α12 ¼ 40

a result leading to dim g2
� � ¼ α12 þ α22 þ α32 þ α42 ¼ 90 and dim g3

� � ¼ α12 þ 2α22 þ
3α32 þ 4α42 ¼ 164 in a coherent way with the long exact sequences:

0! g2 ! S2T ∗ ⊗ S2T ∗ ! S2T ∗ ! 0, 0! g3 ! S3T ∗ ⊗ S2T ∗ ! T ∗ ⊗ S2T ∗ ! T ∗ ! 0

Now, we have by definition div ¼ d1, d2, d3, d4ð Þ and div ∘Einstein ¼ 0,0,0,0ð Þ.
However, the Einstein operator is a 10� 10 operator matrix which is self-adjoint up to
a change of basis [2] because it is made with homogeneous second order terms. It is
thus of rank 6 and we obtain therefore, with a slight abuse of language,
det Einsteinð Þ ¼ 0. This result which is not evident at first sight must be compared with
the Poincaré situation when n ¼ 3:

d1d2d3ð Þ
0 �d3 d2
d3 0 �d1
�d2 d1 0

0
B@

1
CA ¼ 000ð Þ

This module interpretation may thus question the proper origin and existence of
gravitational waves because the div operator on the upper left part of the diagram has
strictly nothing to do with the Cauchy ¼ ad Killingð Þ operator which cannot even appear
anywhere in this diagram. Also, looking back to Example 3.3, if we use ad(Einstein) or
ad(Ricci) in order to parametrize the Cauchy operator, the 10 potentials involved are
similar to the Airy or Maxwell/Morera potentials and have thus strictly nothing to do
with a perturbation of the metric. Such a result is explaining the conceptual confusion
announced in the abstract.

Corollary 4.5:When D is a Lie operator of finite type, that is when Θ,Θ½ �⊂Θ under
the ordinary bracket of vector fields and gqþr ¼ 0 for r large enough, then the Spencer
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sequence is locally isomorphic to the tensor product of the Poincaré sequence for the
exterior derivative by a finite dimensional Lie algebra G, namely [29]:

0! Θ! ∧0T ∗ ⊗G !d ∧1T ∗ ⊗ ÂG !d ∧2T ∗ ⊗G !d … !d ∧nT ∗ ⊗G ! 0: (32)

It is thus formally exact both with its adjoint sequence. As it is known that
the extension modules do not depend on the resolution used, this is the reason for
which not only the Cauchy stress operator can be parametrized but also the
Cosserat couple-stress operator ad D1ð Þ can be parametrized by ad D2ð Þ, a result not
evident at all (see [34, 35] for explicit computations). Similarly, in the case of the
conformal Killing system R̂1 ⊂ J1 Tð Þ for n ¼ 4, the symbols do not depend on any
conformal factor because ĝ1 is defined by ωrjξ

r
i þ ωirξ

r
j � 2

nωijξ
r
r ¼ 0, ĝ2 ≃T ∗ (the

so-called elations of E. Cartan) is defined by ξkij � 1
n δki ξ

r
rj þ δkj ξ

r
ri � ωijωksξrrs

� �
¼ 0

(with the Kronecker notation) and finally ĝ3 ¼ 0, ∀n≥ 3. The EM field is thus a
section F∈ δ T ∗ ⊗ ĝ2

� � ¼ δ T ∗ ⊗T ∗ð Þ ¼ ∧2T ∗ killed by the exterior derivative d. It
follows that EM only depends on the conformal group and not on U 1ð Þ [30, 31] in a
coherent way with the dream of H. Weyl because T ∗ ⊗T ∗ ≃ S2T ∗⊕∧2T ∗ ¼
Rij
� �

⊕ Fij
� �

[29, 41].
Remark 4.6: A similar situation is well known for the Cauchy- Riemann equations

when n ¼ 2. Indeed, any infinitesimal complex transformation ξ must be solution of
the linear first order homogeneous system ξ22 � ξ11 ¼ 0, ξ12 þ ξ21 ¼ 0 of infinitesimal Lie
equations which is defining a torsion differential module because we have
ξ111 þ ξ122 ¼ 0, ξ211 þ ξ222 ¼ 0, that is ξ1 and ξ2 are separately killed by the Laplace opera-
tor Δ ¼ d11 þ d22.

Remark 4.7: A similar situation is also well known for the EM field F in electro-
magnetism. Indeed, starting with the first set of Maxwell equations dF ¼ 0 (M1) and
using theMinkowski constitutive law in vacuum with electric constant ε0 and magnetic
constant μ0, such that ε0μ0c2 ¼ 1 for the second set of Maxwell equations (M2) for the
induction F , a standard tricky differential elimination allows to avoid the Lorenz (no
“t”) gauge condition for the EM potential. Indeed, from M1 we get formally drFij þ
diFjr þ djFri ¼ 0 and from M2 we get drF ri ¼ 0) drFri ¼ 0. We finally obtain directly
□F ¼ drdrFij ¼ dr diFrj � djFri

� � ¼ 0 [4].
Example 4.8: (Lorenz condition for EM)
We prove that the Lorenz gauge condition for EM is just amounting to a

relative minimum parametrization. Using an Euclidean metric instead of the
Minkowski metric in order to have the Minkowski constitutive relation F ¼ F
in vacuum between the EM field and the EM induction, we have the
parametrization diAj � djAi ¼ Fij and obtain the conservation of current through
the composition:

di d
iAj � djAi� � ¼ did

iAj � dj diAi� � ¼ J j ) dj did
iAj � djdiAi� � ¼ djJ j ¼ 0

with implicit summation on i and j. The differential module defined by the
involutive system diiAj � dijAi ¼ 0 has a differential rank equal to 1 as there is only
one CC. Adding the Lorenz condition diAi ¼ 0 is bringing the rank to zero. The idea is
just to prove that the inhomogeneous system did

iAj ¼ J j, diAi ¼ 0 has again the only
CC djJ j ¼ 0 like in Example 1.3.
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5. Conclusion

After teaching elasticity theory during 25 years to students in some of the best
french civil engineering schools, the author of this paper still keeps in mind one of the
most fascinating but most difficult exercises that he has set up. The purpose was to
explain why the dome of the cathedral St Paul in London is called “whispering
cupola”, that is why if you go up to the gallery at one point, you can listen to a friend
whispering 30 meters away on the opposite side. This striking phenomena has been
first studied by Lord Rayleigh in 1878 and he introduced in 1910 the “surface elastic
waves” now called Rayleigh waves (See [3] p. 199). In fact the molecules close to the
free surface are moving along small ellipses as a combination of standard longitudinal
(L) and transverse (T) waves while propagating at a slightly smaller speed. Such
waves cannot propagate in liquid but may travel all around the earth surface many
times after earthquakes. If λ and μ are the elastic Lamé constants of the material with
mass ρ per unit volume, the respective speeds are such that c2L ¼ λþ 2μð Þ=ρ, c2T ¼ μ=ρ
and the speed of the Rayleigh wave is c2R ¼ χ 1� 2νð Þ= 2 1� νð Þð Þwhere ν ¼ λ= 2 λþ μð Þð Þ
is the Poisson coefficient. After (very) tedious computations one may find that χ must
be the only real root of the cubic equation χ3 � 8χ2 þ 8 2�ν

1�ν χ � 8
1�ν ¼ 0 existing in the

interval [0, 1] because 0< ν<0, 5.
Accordingly, elasticity can be considered as a way to parametrize the Cauchy

operator when n ¼ 3 while GR can be considered as a way to parametrize the Cauchy
operator when n ¼ 4. Hence, the situations existing with the Cauchy stress equations,
with the Cosserat couple-stress equations and with the Maxwell equations are similar,
only the constitutive laws are different. Meanwhile, we have shown why the mathe-
matical foundations of conformal geometry must be revisited in this new framework
which is valid in arbitrary dimension and could provide an intrinsic way to unify EM
and GR along the dream of Weyl [12, 31].

The situation of the gravitational waves equations seems quite different but the
least that can be said is that it is not coherent with differential double duality. However,
it follows that exactly the same confusion has been done by Maxwell, Morera, Beltrami,
and Einstein because, in all these cases, the operator considered is self-adjoint. Like
the Michelson and Morley experiment, we do believe that Einstein already knew the
previous works of all these researchers who were quite famous at the time he was
active. In any case, the comparison of the various parametrizations described in this
paper needs no comment.
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Chapter 2

Gravitational Waves, Fields, and
Particles in the Frame of (1 + 4)D
Extended Space Model
Dmitry Yu Tsipenyuk and Wladimir B. Belayev

Abstract

Interval s is used as a fifth additional coordinate. We employ (1 + 4)-dimensional
space G, an extension of the (1 + 3)-dimensional Minkowski space M. Interval changes
under the transformations in the extended space G. From a physical point of view our
expansion means that processes in which the rest mass of the particle’s changes are
acceptable now. In the Extended space model (ESM), a photon can have a nonzero
variable mass. The equations for the plane-wave potentials describing the process of
its localization are presented and their solution is found.

Keywords: (1 + 4)D space model, wave-particle interaction, plane wave localization,
Lagrange mechanics, photon gravitational mass, graviton

1. Introduction

Since the late nineteenth century, there have been discussions about the issue of
integrating electromagnetic and gravitational forces into a single field. These attempts
have been made by constructing geometric models of physical interactions and inter-
pretation of physics as geometry in the spaces of a larger number of dimensions. F.
Klein [1] developed the Hamilton-Jacobi theory in the late nineteenth century as
optics in the space with more dimensions. His thoughts did not, however, evolve at
that time. By developing the general theory of relativity (GRT), interest in the issue of
geometrization of physics has recently increased [2]. There have been attempts to use
gravity as an analogy to define electromagnetic in geometric terms.

Instead of attempting to develop a new model, their authors tried to improve the
GRT approach that has already existed. The most well known were the T. Kaluza [3]
and O. Klein [4] models. The works of H. Mandel [5] and V. Fock [6] are also
remarkable. The fact that they could only use a five-dimensional space is remarkable.
The issue of the fifth coordinate’s physical interpretation has not yet been satisfacto-
rily resolved. The development of these approaches was attempted by scientists and
researchers, including Einstein [7], de Broglie, Gamow, and Rumer [8]; nevertheless,
they were unsuccessful in generating any interesting results. We believe that the
reason is because, without including novel physical concepts, their works were formal
expansions of previous models. Another area of the geometrization of physical
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interactions that we should highlight is the theory of gauge fields [9]. According to
this paradigm, all interactions: electromagnetism, gravity, and others are viewed
geometrically [10].

Afterward, in arrangement to form the hypothesis of basic particles, another
approach to combining gravity with other interactions was developed. K.P.
Stanyukovich and M.A. Markov suggested attempts to account for the gravitational
field in the description of the interaction of elementary particles 50 years ago [11, 12].
They proposed the idea of two types of heave particles-planckions and maximons.

Three essential constants in nature were supposed by the authors: the Planck
constant ℏ, lights speed c, gravitational constant G. Above values can be used to build
expressions with dimensions of time, length, and mass. They are called Planck time
tPl, Planck length lPl, and Planck mass mPl:

tPl ¼
ffiffiffiffiffiffiffi
ℏG
c5

r
� 10�43 sec , lPl ¼

ffiffiffiffiffiffiffi
ℏG
c3

r
� 10�33cm,mPl ¼

ffiffiffiffiffi
ℏc
G

r
� 10�5g (1)

A particle with mass m corresponds to the Compton wavelength in the quantum
theory

λc ¼ ℏ
mc

: (2)

Particle size can be associated with this wavelength. In the case of the Planck mass
mPl substituted in the formula (2), it turns out that the Compton wavelength coincides
with the Planck length lPl.

λc ¼ lPl: (3)

But another linear parameter can be associated with mass m—the Schwarzschild
gravitational radius

rg ¼ Gm
c2

(4)

A spherically symmetric distribution of matter, according to the GRT, collapses
into a black hole when it is squeezed to such a size. As a result, it is presently assumed
that is the maximum value of an elementary particle’s mass mPl. Such particles were
named maximons. Large mass particles might become black holes. The corresponding
gravitational radius rgr can be considered as the minimum elementary particles’ pos-
sible size. If we substitute the Planck mass mPl in the formula (4), we will take the
result

rgr ¼ 2

ffiffiffiffiffi
ℏG
c3

r
¼ 2lPl (5)

Thus, the gravitational radius of maximon coincides in order of magnitude with
Planck length. In Landau’s work [13], estimates for the value of the “radius” of
elementary particles were obtained, based on the limit of applicability of electrody-
namics representations in quantum mechanics. Interestingly, the “radius” of the elec-
tron at the same time was equal to zero. Such relations were discussed in an attempt to
take into account the gravitational forces in the processes of interaction of elementary
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particles. This approach assumes the initial existence of particles with a large rest
mass, and since we do not observe such objects, it is not clear how it can be used to
describe the processes occurring in the laboratory.

The name extended space model (ESM) is due to the fact that it is formulated in a
flat five-dimensional space G(1,4) with the metric (+� � � �). ESM approach [14–17]
is fundamentally different from all these and similar theories. ESM is based on the
physical hypothesis that mass (rest mass) and its conjugation (interval) are dynamic
variables, and its values are determined by the field-particle interactions. So, ESM is a
direct SRT generalization. Interval and rest mass are invariants but can be changed in
ESM. In particular, photon mass can be positive and negative. This mass can vary
because of electromagnetic interactions and generates gravity interactions. This situa-
tion allows us to consider gravity and electromagnetism as unit fields. The equations
for the plane-wave potentials describing the process of its localization are presented.
The exact solution of these equations is found.

In GRT, the definition of the momenta of material and light particles moving in
curvilinear space-time, and the forces acting on them, aims to find relativistic correc-
tions to Newton’s theory of gravitation for a weak gravitational field. In [18–20], the
second derivatives of the coordinates along the path are considered as components of
the 4-vector of the force acting on a material particle of a unit mass. However, in the
gravitational field, not only the 4-momentum of matter alone, but the 4-momentum
of matter together with the gravitational field should be preserved [18]. In the equa-
tion of particle motion containing force in this form, there is no energy and momen-
tum transferred to the gravitational field.

Another approach is the choice of the Lagrangian of the particle, the definition of
generalized forces as its partial derivatives with respect to the coordinate in accor-
dance with Lagrange mechanics [21–24]. In GRT, the physical velocities of particles
are associated with the components of the contravariant 4-velocity vector. Therefore,
the physical force is aligned with the upper index vector associated with the general-
ized force vector. The energy and momenta of particles are considered to be the
components of the contravariant 4-vector of energy-momentum, as is done in [18] for
a particle moving in the Minkovsky space-time. The equations of motion will contain
an additional term, which express the rate of change of the energy and momentum
acquired by the gravitational field when a particle moves in it.

In the Fock proof [25] of the light motion along geodesics, the time component of
the covariant 4-velocity vector is taken as the Hamiltonian. Application of the varia-
tional principle of the energy stationary integral to the motion of a light-like [21–24]
particle in a gravitational field does not lead to a violation of the isotropy of the light
path. In the generalized Fermat’s principle [10], a variation of the integral of the time
component of the 4-velocity vector is used and gives the trajectory of light movement
that coincides with the geodesic.

For weak gravity, the analogy of the particle dynamics in Schwarzschild space-
time with Newtonian gravitational theory permits to determine the passive gravita-
tional mass of a photon. It is equal to twice the material particle mass of the same
energy corresponded to non-gravitational interactions. This agrees with the results of
Tolman, Ehrenfest, and Podolsky for the photon effective gravitational mass in the
interaction between light packets or beams and matter particles [26, 27]. Observance
of conservation of energy as a gravitation source suggests that at annihilation of an
electron and positron in addition to gamma quanta, the particles g� are released
[22–24]. The birth of gamma-ray electron-positron pair leads to the appearance of a
particle, which is identified [28] as a graviton.
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2. ESM short description

According to the ESM, several physical values that are assumed to be constant
under the conventional method are really not constant and can now change depending
on the circumstances. We are discussing the zero mass of the photon as well as the rest
mass of heavy particles. A model similar to the ESM model was developed by Wesson
and his coauthors [29–31]. Wesson proposed to use “mass” as the fifth coordinate, in
addition to the time and three spatial coordinates: “we … view mass as on the same
footing as time and space…” [20] and “This means that the role of the 4D uncharged
mass is played in 5D geometry by the extra coordinate.” We find this approach to be
irrational. In this context, it poses a difficulty to generalize the energy-momentum-
mass tensor in four-dimensional space to the tensor in five dimensions. The fifth
coordinate, mass, can be utilized, but not in the coordinate space. The mass of the
particle should be viewed as an additional value to the energy and other three
momentum components. The fifth coordinate in coordinate space should not have a
value related to the mass. It was hard to draw connections with actual experiments as
a result of the assignment of mass as a fifth coordinate in addition to time and space.

The physical meaning of the fifth coordinate is action. This value is constant under
the usual Lorentz transformations in M, but it changes when the transformations in
the extended space G(T, X, Y, Z, S) are used. From a physical point of view, our
expansion means that processes in which the rest mass of the particles changes are
acceptable now. Lorentz transformations in the 4D Minkowski space M(T; X, Y, Z) in
the planes (T, X), (T, Y), (T, Z) allow changing the energy and momentum of a
particle in the conjugate space of the expanded 4D energy-momentum space M∗(E;
Px, Py; Pz). In the ESM, gravity and electromagnetism are combined in one field, and
it is possible to construct a 5�5 energy-momentum-mass tensor. Recently, Overduin
and Henry [32] proposed the same idea of considering the fifth coordinate.

In ESM, the motion of a particle in a 5-dimensional cone

ctð Þ2 � x2 � y2 � z2 � s2 ¼ 0 (6)

is considered. The parameters t, x, y, z, s are coordinates of a point in extended
space G(1,4). The Minkowski space M(1,3) enters it as a subspace. In the extended
space G(1,4) the particle 4-vector of energy and momentum is padded to a five-
dimensional vector to a 5-vector

p ¼ E
c
, px, py, pz,mc

� �
(7)

where E is energy, and px, py, pz are momenta.
For a free particle, the components of this vector satisfy

E2

c2
� p2x � p2y � p2z �m2c2 ¼ 0 (8)

The interval s in Minkowski space serves as the fifth coordinate in the extended
space G(1,4). The variations of mass m correspond to variations of the interval s. Let
us now explain the fifth coordinate physical meaning in the ESM. For this purpose, we
use the expression for the action S of a free particle [20, 21].
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S ¼
ðb
a
Lds (9)

Here L is the Lagrangian of a particle. The integral is taken along the world line
between two given events—the position of the particle at the beginning and end
points of the Minkowski space.

Since the mass of the photon in STR ism ¼ 0, massless fields in the extended space
G(1,4) are mapped to a 5-vector

pf ¼
ℏω

c
,
ℏω

c
k
!
, 0

� �
(10)

We assume that a photon corresponds to a plane wave, which moves in M(1,3)

with a speed c in the direction given by the vector k
!
. We want to consider a broader

class of processes that can change mass. The energy-momentum-mass 5-vector (11)
characterizes a particle for which all the parameters, energy, momentum, and mass
are variables. The corresponding changes of these values can be described using
transformations of the extended space G(1,4), given by the hyperbolic rotations on an
angle ϕTS in the plane (TS)

E0

c
¼ E

c
coshϕTS þ ps sinhϕTS, P0 ¼ P, p0s ¼ ps coshϕTS þ

E
c
sinhϕTS (11)

and in the plane (XS)

E0

c
¼ E

c
, P0 ¼ P coshϕXS þ ps sinhϕXS p

0
s ¼ ps coshϕXS þ P sinhϕXS (12)

The extended space G(1,4) can be viewed as a set of Minkowski spaces with the
parameter n, which we conditionally refer to as the refractive index. We made this
parameterization option because the physical meaning of our model depends on the
photon’s movement and its velocity variations. We believe that the refractive index n
of any subspace M(1,3) of space G(1,4) defines these subspaces. From the point of
view of ESM, the transition from a medium with one refractive index n1 to a medium
with another refractive index n2 can be interpreted as the movement along the fifth
coordinate of the expanded space. In contrary to the usual relativistic mechanics, we
now suppose that the mass m is also a variable, and it can vary at motion of a particle
on the cone (6). In the ESM model when a particle enters an area of space with a non-
zero density of matter or field, its mass changes. In such areas, the speed of light is
reduced, and these areas can be characterized by the refractive index of a medium n.
This parameter relates the speeds of light in the vacuum and in the medium, which is
v ¼ c=n. For example, the refractive index of a gravitational field that is described by
the Schwarzchild solution [33] reads

n rð Þ ¼ 1� α

rg

� ��1
(13)

where r is a distance from gravity center. The values of the components of photon
5-vector (7) corresponding to this field are found using (TS) rotation (11) and will be
transformed as follows:
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ℏω
c
,
ℏω
c
, 0

� �
! ℏω

c
coshϕ,

ℏω
c
,
ℏω
c

sinhϕ
� �

¼ ℏω
c
n,

ℏω
c
,
ℏω
c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1
p� � (14)

Electromagnetic and gravitational fields combined in a single gravitational-
electromagnetic field. This is because in the ESM, electromagnetic interaction causes
the formation and changing of fields and particle mass. Since mass is assumed to be
variable in the ESM from the beginning, it is possible to describe new processes that
the STR framework is unable to explain properly. This arises from the fact that in
ESM, gravitational interaction of elementary particles occurs naturally.

3. Plane wave localization and mass appearance in the ESM

In the extended space G(1,4), the potentials of the field combining electromagne-
tism and gravity are determined by the equation [15]:

Π 5ð ÞA0 ¼ �4πe, Π 5ð ÞA
! ¼ �4π

c
j
!
, Π 5ð ÞAs ¼ � 4π

c
js

with

Π 5ð Þ ¼ ∂
2

∂s2
þ ∂

2

∂x2
þ ∂

2

∂y2
þ ∂

2

∂z2
� 1
c2

∂
2

∂t2
(15)

and the charge of a particle e.
On the right-hand side of the equations in system (15) are the components of the

five-dimensional current vector ρ. This vector is a generalization of the four-
dimensional current vector ~ρ, which in traditional four-dimensional electrodynamics is

~ρ ¼ e, j
!� �
¼ e0cffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
p ,

e0 v
!

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p
 !

; ~ρ2 ¼ e20c
2 (16)

where e is the charge of a particle.
In order to get ρ, we assign an additional component to the vector (16):

ρ ¼ ρ, j
!
, js

� �
(17)

This is an isotropic vector: ρ2 ¼ 0. We will consider an additional component as an
analog of the momentum of a charged sphere moving at low speed [34] in an extra
dimension

js ¼
4
3
κ

e20
8πcε0a

ds
dμ

(18)

where ε0 is the vacuum permittivity, a is the sphere radius, μ is an arbitrary affine
parameter along the path, and κ is a constant having the dimension of the ratio of
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charge to mass. Assuming that e0 and a ¼ re are the charge and radius of the electron
and the constant κ is equal to the ratio of its charge to mass: κ ¼ e0=me, we get

js ¼
4
3

e30
8πcε0reme

ds
dμ

(19)

The electromagnetic field is defined by the system of the first four Eq. (15), while
the fifth equation describes the scalar gravitational field. A single electrogravity field
results from the combination of these two fields if their values depend on the variable
s. For such fields, Lienard-Wichert potentials were found in [35]. When the variables
included in potentials have no dependence on the variable s, it splits into two
independent subsystems.

From electrostatics theory [36], the potential energy of a uniformly charged sphere
is given by

Epot ¼ e20
8πcε0a

(20)

When the fifth equation describes the gravitational field created by the electrons
charge, their gravity density js, Eq. (19), will not be equivalent to, their potential energy
and will depend on the speed of movement in the extra dimension ds=dμ. Accordingly,
the radius of an electron may differ from its classical radius re cl ¼ 2:8 • 10�15 m, deter-
mined from Eq. (20). This is confirmed by observation of a single electron in a Penning
trap [37], which suggests the upper limit of the particle’s radius to be 10�22 m.

Now let us look how a charged particle and a plane electromagnetic wave interact.
We take it as given that a plane wave is an object in empty space that fills this infinite
space. The following equations are used to find the field potentials without sources in
the extended space G(1,4):

Π 5ð ÞA0 ¼ 0, Π 5ð ÞA
! ¼ 0, Π 5ð ÞAs ¼ 0 (21)

Let us consider the equation

∂
2

∂s2
uþ ∂

2

∂x2
uþ ∂

2

∂y2
uþ ∂

2

∂z2
u� 1

c2
∂
2

∂t2
u ¼ 0 (22)

We are looking for its solutions in the form

U s, x, y, z, tð Þ ¼ u s, x, y, zð Þe�ikseiωt, k ¼ 2π
λ

(23)

We assume that the function u s, x, y, zð Þ varies slowly over the variable s, compared
with the variables x, y, z, so that the second derivative ∂

2=∂s2
� �

u can be neglected. Now
we get the equation

∂
2

∂x2
uþ ∂

2

∂y2
uþ ∂

2

∂z2
u� 2ik

∂

∂s
u ¼ 0 (24)

The neglect of the second derivative and presentation of Eq. (22) in the form (24) are
similar to the searching a solution for the optical wave propagating shape in a laser along
the z-axis [38]. Eq. (24) solution has the form of a three-dimensional Gaussian beam
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u ¼ u0
w0

w

� �3=2
exp �i ksþ φð Þ � x2 þ y2 þ z2

� � 1
w2 þ

ik
2R

� �� �
(25)

Here w0 is the radius of the “neck” of the beam, that is, its minimum width at the

point s ¼ 0. The value of w2 ¼ w2
0 1þ 2s=kw2

0

� �2h
is the diameter of the beam at the

point z. The radius of curvature of the beam wavefront is R zð Þ ¼ z 1þ kw2
0=2s

� �2h i
.

For s! ∞, the radius and the beam width also tend to infinity. Solution (25)
corresponds to a plane wave. If s! 0, the plane wave is localized in a volume that
looks like a ball with radius r ¼ w0. Process of localization takes place without chang-
ing the energy. It is described by orthogonal rotations in the planes (SX), (SY), (SZ).
The square of the wave modulus (25) reads as

juj2 ¼ ju0j2 w0

w

� �3
exp � x2 þ y3 þ z2

� � 2
w2

� �� �
(26)

As we can see, as the wave’s localization (25) diminishes, it grows and achieves its
maximum value at s ¼ 0.

This degree of localization is not, however, really reached. The presence of a
charged particle in space causes the localization of a plane wave. The charged particle
effects at the wave field, but the field also has an impact on the particle. Since a
charged particle’s mass distribution is defined by δ function, we suppose that it is
concentrated at a single point in empty space (refractive index n ¼ 1), and that this
delta function is the free particle wave function. The-function starts to change into a
Gaussian function as soon as such a charged particle reaches the plane-wave field.

We see that as s decreases, the localization of the wave (25) increases and reaches
its maximum value at s ¼ 0. However, this degree of localization is not really
achieved. The fact is that the process of localization of a plane wave is generated by
the presence of a charged particle in space. The wave field is affected by the charged
particle, but the particle itself is affected by the field. We assume that in empty space
(refractive index n ¼ 1), a charged particle is concentrated at a point, that is, its mass
distribution described by δ is a function, and we consider this delta function as the
free particle wave function. When such a charged particle enters the plane-wave field,
the δ-function begins to transform into a Gaussian function

jvs x, y, zð Þj2 ¼ Kjv0j2 1
s2π

� �3

exp � x2 þ y3 þ z2
� � 2

s2

� �� �
(27)

This expression is structurally similar to the solution of the differential heat equa-
tion describing the temperature distribution. For an infinite body with an instanta-
neous point source at the origin, the temperature distribution has the following form:

T x, y, z, tð Þ ¼ Q

ςρ 4πatð Þ3=2
exp � x2 þ y2 þ z2

4at

� �
(28)

Here T is the temperature at time t in coordinates x, y, z; Q is the heat emitted at
the time t ¼ 0 at the origin; t is the time elapsed since the introduction of heat; a is the
thermal diffusivity, ρ is the density of the body, and ς is its specific heat. Eq. (28) is
the fundamental solution of the heat equation under the action of an instantaneous
point source in an infinite body.
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The localization of a plane wave and the “swelling” of a massive particle are both
consistent processes. Our assumption is that their localizations must match in order
for the field and particle to interact. We get an expression for the value s0 that defines
the lowest value of the plane-wave localization and the maximum value of the point
particle swelling by comparing Eqs. (26) and (27):

s20 ¼
k2w4

0

k2w2
0 � 4

¼ π2w4
0

π2w2
0 � λ2

(29)

This imposes restrictions on the dynamics of interaction of the field with the particle.

4. Equations of Lagrange mechanics

In GRT, a four-dimensional pseudo-Riemannian space-time with coordinates xi

and metric coefficients gij is considered, the interval in which is written in the form

ds2 ¼ gijdx
idxj (30)

The 4-velocity vector of the particle is denoted as ui ¼ dxi=dμ, where μ is the
variable parameter. We obtain the equations of its dynamics in general form.

The particle Lagrangian corresponds to the covariant generalized momenta

pi ¼
∂L
∂ui

(31)

and generalized forces

Fi ¼ ∂L
∂xi

: (32)

The particle motion is determined by Hamilton’s principle of stationary action
δS ¼ 0 at

S ¼
ðμ1

μ0

Ldμ (33)

where μ0, μ1 are the values of the parameter at the points that are connected by the
desired trajectory of motion. The extremum condition leads to the Euler-Lagrange
equations

d
dμ

∂L
∂uλ
� ∂L
∂xλ
¼ 0 (34)

With generalized momenta (2.2) and forces (2.3), these equations are rewritten in
the form

dpλ
dμ
� Fλ ¼ 0 (35)
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The Lagrangian is chosen [21] so that contravariant momenta bind to the physical
energy and momentum of the particle

pj ¼ gjλpλ (36)

and the gravitational force acting on it is mapped to associated with (32) vector

Fl ¼ glλFλ (37)

Passing to them in Eq. (35), we find

gλiF
i ¼ gλi

dpi

dμ
þ ∂gλ i

∂xl
ulpi (38)

Multiplying these equations by gk λ and summing over the twice occurring index λ,
we obtain.

Fk ¼ dpk

dμ
þ gkλ

∂gλ i
∂xl

ulpi: (39)

The presence of the second term on the right side reflects that in the gravitational
field not only the 4-momentum of matter, but the 4-momentum of matter together
with the gravitational field is stored [18]. Its components express the rate of change of
the energy and momentum acquired by the gravitational field when a particle moves
in it

dp$
k

dμ
¼ gkλ

∂gλ i
∂xl

ulpi: (40)

Integration of this quantity over gives the energy and momentum received by the
gravitational field at a certain interval of its trajectory. As a result, Eq. (39) can be
written in the form

Fk ¼ dpk

dμ
þ dp$

k

dμ
: (41)

It follows from the laws of conservation of energy and momentum that the force
acting on a particle is equal in magnitude and opposite in sign to the force acting by
the source of gravity from the side of the particle. This is equivalent to fulfilling
Newton’s third law.

5. Variational principle of the energy stationary integral for the photon
motion

To determine the dynamics of a photon in a gravitational field, we will use
principle of the energy stationary integral [21–24]. Interval in pseudo-Riemannian
space-time with metric coefficients ~gij:
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ds2 ¼ ~gijdx
idxj (42)

after substitutions ~g11 ¼ ρ2g11, ~g1p ¼ ρg1p, ~gpq ¼ gpq at p, q ¼ 2, 3, 4 is rewritten as

ds2 ¼ ρ2g11dx
12 þ 2ρg1pdx

1dxp þ gpqdx
pdxq: (43)

The condition ds ¼ 0 corresponds to the motion of light. With g11 6¼ 0, the variable
ρ is given by the expression

ρ ¼
�g1pup þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1pg1q � g11gpq
� �

upuq
r

g11u1
, (44)

where σ takes the values �1 and 4-velocities ui are determined provided that μ is
an affine parameter. Further, we will consider variations near ρ ¼ 1, to which the
equality ~gij ¼ gij corresponds. If g11 ¼ 0 and condition g1p 6¼ 0 is satisfied for at least
one ρ, then it turns out

ρ ¼ �
gpqu

puq

2g1ku1uk
, (45)

where k takes on the values (2)–(4).
The Lagrangian of a freely moving particle is chosen as

L ¼ �ρ: (46)

For both values (44), (45), the covariant generalized momenta (31) and forces
(32) take the form

pλ ¼
uλ
u1u1

, (47)

Fλ ¼ 1
2u1u1

∂gij
∂xλ

uiuj: (48)

The chosen Lagrangian corresponds to the ratio

ρ ¼ uλ
∂L
∂uλ
� L (49)

being the integral of motion [39] and, accordingly, ρ will be the energy of the
system combining the light-like particle and the gravitational field given by the
metric (30).

The equations of motion are found from Hamilton’s principle of stationary action
(33), which, in view of (46), can be written in the form

S ¼ �
ðμ1

μ0

ρdμ: (50)

51

Gravitational Waves, Fields, and Particles in the Frame of (1 + 4)D Extended Space Model
DOI: http://dx.doi.org/10.5772/intechopen.1000868



The energy ρ is non-zero, its variations leave the interval light-like. The equations
of motion will be Euler-Lagrange Eq. (35). The principle of the energy stationary
integral for the photon motion is consistent [23, 24] with the generalized Fermat’s
principle [40], and the resulting curves are null geodesics.

The contravariant vector of generalized momenta is written as

pλ ¼ 1
u1u1

uλ: (51)

Physical energy and momenta of photon with frequency ν in Minkowski space-
time with affine parameter μ ¼ ct form contravariant 4-vector of momenta
πi ¼ ℏν=cð Þui. For arbitrary affine parameter, it is rewritten as

πi ¼ ℏν
c

ui

u1
: (52)

And in pseudo-Riemannian space-time, similar energy and momenta of the photon
will be put in line with the components of the contravariant vector of momenta. The
photon frequency in coordinate frame is given by

ν ¼ ν0
u1

, (53)

where ν0 is a certain fixed value of its frequency. Comparing Eqs. (51) and (52) we
obtain

πi ¼ hν0
c

pi: (54)

The Lagrangian (46) corresponds to a particle with unit energy. For a photon, it is

Lph ¼ hν0
c

L (55)

and the gravitational forces acting on photon

Ql ¼ hν0Fl (56)

are assigned to the components of the associated vector of generalized forces

Fl ¼ glλ
1

2u1u1
∂gij
∂xλ

uiuj: (57)

6. Photon dynamics in the Schwarzschild field

Let us consider the dynamics of a light-like particle in a static centrally symmetric
gravitational field described in spherical coordinates t, r, θ,ϕð Þby the Schwarzschildmetric

ds2 ¼ c2 1� rg
r

� �
dt2 � 1� rg

r

� ��1
dr2 � r2 dθ2 þ sin2θdφ2� �

, (58)
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In plane θ ¼ π=2, the energy-momentum vector of a photon (54) moving along an
open trajectory [21–24] is as follows:

πi ¼ hν0
1� rg

r

, �hν0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� С2

r2
1� rg

r

� �s
, 0,

hν0С
r2

0
@

1
A, (59)

where С is constant, and ν0 is a photon frequency away from the center of gravity.
In radial motion, the components of this vector coincide with the first components of
the vector (14) obtained by (TS)-rotation according to the ESM.

The only non-zero component of the associated vector of generalized forces (57) is

F2 ¼ � rg
r2
þ С2

r3
1� rg

r

� �
1� rg

2r

� �
: (60)

With radial motion (С ¼ 0), it is equal to

F2 ¼ � rg
r2
, (61)

coinciding with the doubled force acting on the particle in Newtonian gravity. In
view of (56), it corresponds to the passive gravitational mass of the photon

mph
p ¼

2hν0
c2

(62)

This result is consistent with a thought experiment on “weighing” a photon [41], in
which it performs periodic motion in the vertical direction between two horizontal
reflecting surfaces.

Considering the non-radial motion, in order to avoid the appearance of a fictitious
component of momenta and force due to the sphericity of the coordinate system, we
use the Schwarzschild metric in rectangular coordinates. It can be accessed using the
transformation

r ¼ 1þ rg
4r

� �2
r, (63)

x ¼ r cos θ cosφ, y ¼ r cos θ sinφ, z ¼ r sin θ (64)

of metric (58), which yields

ds2 ¼ c2
1� rg

4r

1þ rg
4r

 !2

dt2 � 1þ rg
4r

� �4
dx2 þ dy2 þ dz2
� �

: (65)

The motion in the plane z ¼ 0 is studied and the force acting on a light-like particle
at a point сt, x, 0, 0ð Þ.

The single non-zero component of the force vector [21–24] is

F2
rect ¼ �

rg 1� rg
8r

� �

r2 1þ rg
4r

� �5 1� rg
4r

� � , (66)
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which taking into account transformation (63) can be rewritten as

F2
rect ¼ �

rg 1� rg
8r

� �

r2 1� rg2

16r2

� � : (67)

The generalized force acting on a photon does not depend on the direction of its
motion. This expression differs from the formula (61) corresponding to radial motion
in spherical coordinates, which is a consequence of the non-covariance of the vector
Fl. However, in the limit of weak gravity (r≫ rg), these expressions converge asymp-
totically and give Newton’s law of gravitation with a passive gravitational mass of a
photon (62) equal to twice the mass of a material particle of equivalent energy.

The gravitational field of the electromagnetic radiation flux is determined from the
solution of the Einstein equations

Rij � 1
2
gijR ¼ χTij (68)

with Ricci tensor Rij and χ ¼ 8πG
c4 for the electromagnetic field energy-momentum

tensor

TEM
ij ¼

1
4
gijFklFkl � Fk

i Fjk, (69)

where Fij is the electromagnetic field tensor. In case of weak gravity, it
follows from analysis of acceleration of material particle that active gravitational
mass of light beam or light packet is twice as much as similar mass of a rod of
equivalent energy [26, 27, 42]. The equality of the active and passive gravitational
masses of a photon means the fulfillment of Newton’s third law in the gravitational
interaction of light and material particles and the laws of conservation of energy and
momentum.

7. Electron positron pair production, gravitons

The expansion of the Birkhoff theorem to a sphere with equally distributed elec-
trons and positrons provided the justification for applying the energy conservation
law to a gravitational field source at the annihilation reaction [26]. This was done
under the assumption that the gravitational mass of the sphere would not change
because of electron-positron annihilation before the particles left it. Energy conserva-
tion law for the source of the gravitational field applies to any pair of annihilating
particles if this condition is fulfilled for the entire sphere. Furthermore, due to the
double gravitational mass of the photon compared with the total mass of the electron
and positron 2me� , the annihilation reaction results in the appearance of particles g�

with a negative gravitational mass

mgr
g� ¼ �me� , (70)

dissipating the negative energy as a gravitational source.
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Annihilation process in this case looks as follows.

e� þ eþ ! 2γ þ 2g� (71)

There is no energy for particles g� specified by non-gravitational interactions. This
is because the total electron and positron energy is equal to the gamma quantum
energy produced. These particles have no kinetic momentum. As a result, it is impos-
sible to detect them using conventional particle registration techniques (such as a
bubble chamber). However, when a ray of light passes through the negative
energy region, a focusing effect can occur, as opposed to focusing by gravitational
lensing [43].

Conditions for the formation of electron-positron pairs are produced by high-
energy gamma radiation interactions (>1022 MeV) with matter. A “gravitational
charge” particle, designated gþ, appears as a result of the inverse annihilation reaction

2γ ! e� þ eþ þ 2gþ: (72)

Appearing in addition to the electron and positron particles are opposite to g� in
gravitational mass. It occurs with extracting pairs gþ, g� from a vacuum. Particle g� is
immediately absorbed, producing an electron and a positron, leaving gþ with positive
gravitational mass. Particles g� are immediately absorbed, producing an electron and a
positron and leaving gþ with a positive gravitational mass.

We consider a model in which the boson-like particles g� and gþ have a rest mass
of 0. These particles are assumed to have a spin of 2 and an electric charge of 0. The
graviton, a hypothetical quantum of gravitational radiation, holds the property of
particle gþ [28]. Fermi Gamma-ray Space Telescope [44] detects photons with an
energy, sufficient for reaction (72), in pulsar jets, such as Cygnus X-3 [45], gamma-
ray bursts from blazars [46], and cosmic ray generation in supernova remnants [47].

Gravitational mass of body is less than the sum of individual gravitational masses
its constituent elements [48]. The gravastar [49] with negative mass component with
half the mass two times less than the mass obtained by integrating the spatial volume
is considered in [17]. In this paper, the gravitational mass defect is inspected as a result
of the negative binding energy presence. This case reflects to the ratio between the
electron mass and gravitational mass of the particle g� released during annihilation.
Such condition corresponds to the negative internal pressure and positive pressure on
the shell. This model is a gravastar with inside approaching a de Sitter interior vacuum
with constant density and pressure, having a singularity near the shell [49].

8. Gravastar with constant pressure

The general static, spherically symmetric line element in Schwarzschild
coordinates is

ds2 ¼ f rð Þ dt2 � dr2

h rð Þ � r2 dθ2 þ sin 2θ dϕ2� �
(73)

with metric functions f rð Þ and h rð Þ. The stress-energy tensor of a static, spherically
symmetric distribution of matter with density q and isotropic pressure p is described
(in units in which c ¼ 1) by the diagonal matrix
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Ti
i ¼ diag q,�p,�p,�pð Þ: (74)

Metric functions are sought from the Einstein Eq. (68), which reduced [49] to

Gt
t ¼

1
r2

d
dr

r 1� hð Þ½ � ¼ 8πGρ, (75)

Gr
r ¼ �

h
rf

df
dr
þ 1
r2

1� hð Þ ¼ �8πGp: (76)

These equations have a solution [50]:

h rð Þ ¼ 1� 8πG
3

ρr2, (77)

f rð Þ ¼ const (78)

with constant density and pressure obeying the relation

p ¼ � 1
3
ρ: (79)

Metric functions f and h must match the exterior Schwarzschild solution (58) in
vacuum

f ext rð Þ ¼ hext rð Þ ¼ 1� rg
r
, rg ¼ 8πG

3
ρR3, r≥R, (80)

where R is radius of matter distribution. Thus, we have the boundary conditions

f Rð Þ ¼ h Rð Þ ¼ 1� rg
R
¼ 1� 8πG

3
ρR2, (81)

and since function f is constant inside the sphere (78), it will have the value

f rð Þ ¼ 1� 8πG
3

ρR2 (82)

The space-time inside the sphere is the following:

ds2 ¼ 1� 8πG
3

ρR2
� �

dt2 � dr2

1� 8πG
3 ρr2

� r2 dθ2 þ sin 2θ dϕ2� �
: (83)

Equation of state (79) characterizes the vacuum pressure that balances the
pressure of the gravitational field in a uniform sphere [21, 50, 51] or, in case of
electromagnetic field, pressure of it [27]. This gravastar model will have the same
dependence between its proper and negative mass components on radius and density
as the gravastar with a de Sitter interior vacuum [28, 49].

9. Conclusions

The generalization of Einstein’s special theory of relativity on 5-dimentional space
is considered, in which as fifth coordinate additional coordinate is identified with the
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interval of a particle. We obtained a 5D generalization of the 4D current vector under
the assumption that the mass of an electron is equivalent to a component of its
momentum dependent on its velocity in an additional dimension. As follows from this
approach, the radius of an electron can be substantially less than its classical radius.

A point charged particle’s field is entered by a plane electromagnetic wave. It was
found that such a wave can be described by potentials in a five-dimensional extended
space. It is considered on how such a wave could interact with a charged particle. We
can calculate the field strengths and determine their energy-momentum-mass tensor
using the explicit form of these potentials.

The dynamics of particles in curvilinear space-time is considered using Lagrange
mechanics. A correspondence is established between the physical energy and
momentum of a particle, determined from non-gravitational interactions, and the
contravariant vector of generalized momenta. The obtained dynamic equations
include the rate of change of the energy-momentum vector, the components
of which express the energy and momentum acquired by the gravitational field
when a particle moves in it. This vector is an analog of the pseudotensor used in
conservation laws in tensor form when considering the dynamics of an individual
particle.

By choosing the Lagrangian of a photon corresponding to the principle of the
energy stationary integral, a vector of forces acting on it in the Schwarzschild field is
obtained. Although these generalized forces are not covariant quantities, in the limit
of weak gravity, they express the Newtonian law of gravity with a passive mass of
particles corresponding to the active gravitational mass of moving point bodies and a
light beam. The passive gravitational mass of a photon does not depend on the
direction of its motion. Coinciding with its active gravitational mass when interacting
with a material particle, it is equal to twice the mass of a material particle having an
energy equivalent to a photon. When a particle moves in a gravitational field, the non-
covariance of the generalized forces vector and the vector composed of the rates of
energy and momentum transfer to it has the same nature as the non-covariance of the
gravitational field energy-momentum pseudo-tensor, with the help of which experi-
mentally confirmed changes in the circular orbits of two bodies moving around a
common center were calculated as a result of energy loss caused by the radiation of
gravitational waves.

With twice the gravitational photon mass compared with a material particle of
equivalent energy, the application of Birkhoff’s theorem to a sphere full of
annihilating electrons and positrons leads to the following conjecture: during electron-
positron annihilation, particles g� with a negative gravitational mass are released in
addition to gamma quanta. The opposite “gravitational charge” particle gþ will appear
as a result of the photon conversion event into an electron-positron pair. With a spin
of 2 and no electric charge, these hypothetical particles are categorized as bosons.
They are identified as gravitons, being the localization of elementary gravitational
waves. Gamma-ray blazar outbursts, the jets of pulsars like Cygnus X-3, and cosmic
ray emissions in supernova remnants contain photons with enough energy for their
appearance.

We proposed a gravastar model with constant pressure and no singularity. The
gravitational mass defect is explained by the presence of negative binding energy.
This model allows for a relation between the gravitational mass and the negative
component of mass corresponding to the relation between the mass of electron and
particle g�. The equation of state in the inner region is such that the pressure of the
vacuum balances the pressure of the gravitational or electromagnetic fields.
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Chapter 3

Analytical Description of Unified
Field Theory for Electromagnetic
and Gravity Fields with the
Introduction of Quantized
Spacetime and Zero-Point Energy
Shinichi Ishiguri

Abstract

We have previously derived the quantized Einstein’s gravity (QEG) equation using
concepts of zero-point energy and quantized space times. The theory section in this
chapter provides an analytical solution of the QEG equation that implies conservation
of angular momentum in terms of quantized space times. Moreover, the temperature
of the cosmic microwave background (CMB) emission is obtained, and the QEG
equation solution results in an analytical (not numerical) derivation of a gravity wave.
We have also analytically attempted to calculate every equation in terms of electro-
magnetic and gravity fields using the QEG equation solution. In the Results section of
this chapter, we first confirmed that the CMB emission temperature agrees with
measured values. Then, the analytical solution of the QEG equation resulted in most
electromagnetic and gravity field laws, in addition to the analytically derived gravity
wave, which agrees well with recent measurements. Moreover, calculations of ener-
gies in the basic configuration of quantized space times resulted in the rest energies of
all three leptons. Considering this basic configuration is uniformly distributed every-
where in the universe, we can conclude that τ-particles or static magnetic field energy
derived from the basic configuration of quantized space times is dark energy, which is
also distributed uniformly in the universe.

Keywords: unified field theory, zero-point energy, quantized space time, quantized
Einstein’s gravity equation, gravity wave

1. Introduction

1.1 Content summary, including previous works

This paper introduces the concepts of quantized space times and zero-point
energy. We have succeeded in reinforcing our previously established unified particle
theory [1, 2] and provided the reason for three generations of leptons with these
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concepts. Furthermore, these concepts result in the quantization of Einstein’s gravity
(QEG) equation, and its analytical solution imply conservation of angular momentum
in terms of quantized spacetimes. This solution solves current universe problems,
such as dark energy, analytical gravity waves, etc., and creates most laws and equa-
tions regarding electromagnetic and gravity fields. Electromagnetic and gravity fields
are related to weak interaction, strong interaction, neutrinos, quarks, and protons
because these fields are also created from the zero-point energy [1, 2], i.e., static fields.
Here, we reinforce the unified field theory introduced in the previous paper and
present the basic principle that the conservation of angular momentum in terms of
quantized space times, i.e., both zero-point energy and quantized space times, creates
most laws regarding particle physics.

1.2 Background

In our previous papers [1, 2], we succeeded in describing most electromagnetic,
gravity, weak, and strong interactions using zero-point energy and quantized space
times with no numerical or fitting methods. These descriptions were found to be in
agreement with measurements. In another paper [3], we analytically described neu-
trino self-energy and their oscillations, which also agreed with measurements.

However, in these previous papers, we did not describe the following.

1.Rotations of quantized space times using the QEG equation derived in [1].

2.Comparisons with measurements that prove the existence of the proposed
quantized spacetimes.

3.Our neutrino theory [3] depends on the assumption that masses of the three
leptons are given.

4.The definition of dark energy in view of particle physics.

Regarding the three lepton masses, we succeed in obtaining their values in the
present chapter from the basic configuration of quantized space times. This result is
important because our presented concept of quantized space times is certified by
measurements. Additionally, we can conclude that the energy of this configuration
of quantized space times implies dark energy because dark energy generally
distributes uniformly. Furthermore, this configuration also implies that the static
magnetic field energy (in GeV order) can explain recent measurements [4, 5] wherein
there are static magnetic fields everywhere in the universe, even in non-macroscopic
objects.

One significant point of this paper is that we succeed in obtaining the analytical
(not numerical) solution of Einstein’s gravity equation. The introduction of quantized
space times results in the QEG equation, which enables us to analytically solve this
equation. The resultant facts from this analytical solution are as follows.

1.The temperature for cosmic microwave background (CMB) emission is
predicted and agrees with measurements.

2.The gravitational wave, which has previously been calculated only using
numerical methods, is calculated analytically.
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3.With the concept of quantized space times and the QEG equation solution, the
conservation of angular momentum of quantized spacetimes creates most laws in
electromagnetism and gravity. That is, the unified field theory of particle physics
is now reinforced with our previous papers [1, 2].

Here, let us consider the problems in the current standard big-bang model.

1.The current model cannot explain acceleration expansion in the universe with
quantity [6].

2.There is a light-element problem in the standard model. The prediction for the
amount of Li (lithium) by the standard big-bang model does not agree well with
recent measurements [7].

3.As mentioned earlier, CMB emissions are well described without the standard
big-bang model.

4.The most serious problem with the standard big-bang model is that it must
assume infinite energy in the universe considering the singularity. This
assumption is strong in all general physics equations because all physics
equations generally form under conservation of energy.

5.The big-bang model does not describe dark energy, which is clarified by the
current study. However, this paper claims that this energy is merely a well-
known particle that obeys general gravitational law. Therefore, this paper claims
that dark energy, which exhibits repulsive forces, does not exist.

In short, the standard big-bang model cannot describe recent cosmology problems
and is not supported by measurements. In particular, the abovementioned “Li prob-
lem” is serious. Therefore, a new model has been recently pursued by other
researchers.

1.3 Summary of the significance of the present paper

We have succeeded in confirming the existence of the basic configuration of
quantized spacetimes, and the concepts of quantized space times and zero-point
energy have resulted in an analytical solution of Einstein’s gravity equation. This
implies conservation of the angular momentum of quantized space times. This
solution creates most electromagnetic and gravity field laws and equations. In our
previous papers [1, 2], weak interaction, strong interaction, and particle fields are
well described using only the concepts of zero-point energy and quantized space
times. Therefore, we now address an important principle: most physical fields and
their laws are created only by conservation of angular momentum in terms of
quantized space times, i.e., zero-point energy with the introduction of quantized
space times.

This paper was also able to obtain the reason why leptons and neutrinos have
three generations, which has been a puzzle since particle physics was established.
Additionally, the main problems in cosmology have been solved here without the
standard big-bang model. In particular, the gravity wave was obtained analytically.
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2. Theory

2.1 Review of the concepts of quantized spacetimes and Einstein’s gravity
equation

2.1.1 Quantized spacetime concept

We begin with the result of the Dirac equation, which implies that a photon creates
an electron and a positron:

ħω0 ¼ 2mec2, (1)

where ω0, me, and c denote a constant angular frequency, the mass of an electron,
and the speed of light, respectively. This equation can be interpreted as

1
2
ħω0 ¼ mec2 (2)

and produces the minimum quantized length, λ0, and time t0 in terms of a space
time:

λ0 ¼ ħ
2mec

(3)

and

t0 ¼ ħ
2mec2

: (4)

We derive a more general constant quantized space-time length and time:

λc ¼ λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r
(5)

and

tc ¼ t0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r
: (6)

We consistently assume that the above length (5) and time (6) are minima, thus,
they cannot be divided further. As discussed later, it was found that these concepts are
supported by measurement.

In Eq. (2), the left-hand side is identical for the zero-point energy in the harmonic
oscillator Hamiltonian:

H ¼ nþ 1
2

� �
ħω0: (7)

As every quantum field theory argues, the first term in Eq. (7) implies alternating
current electromagnetism. However, the second term, called zero-point energy
(neglected in quantum field theory), is more important because of direct current
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(DC) electromagnetism. Note that we will report that the first term creates
Maxwell’s time-dependent equations in view of different approaches from quantum
field theory.

Figure 1 shows a schematic of the basic configuration of quantized space times.
Two quantized space times, in terms of an electric field, are rotating with velocity v.
Each quantized space time, in terms of an electric field, has embedded up- and down-
spin electrons (this will become important when considering the creation of a μ-
particle). Note that it is necessary to distinguish these embedded electrons from real
body electrons. By rotations of embedded electrons, i.e., the rotations of the two
quantized space times, another quantized space time is induced in terms of a magnetic
field. This magnetic field accompanies the concept of flux (defined in the central
circle in Figure 1), that is, another quantized space time whose radius is the same as
λc. Therefore, it is very important to distinguish the two quantized space times as:

1.a quantized space time accompanying an embedded electron in terms of an
electric field and

2.a quantized space time induced in terms of a magnetic field.

As will be discussed later, the energies of the two quantized space times are
commonly expressed as zero-point energies. Force F is the Lorentz force originating
from the static magnetic field, and it is identified by attractive gravity forces, F, from
the gravitational field. This is important because gravity and the magnetic field are
unified in this scale, which results in the quantized Einstein’s gravity equation. An
important note is that this configuration can be described by the QEG equation
solution, as will also be discussed later.

Figure 1.
Diagram of the basic configuration of quantized space times.The radius of the quantized time space is λc, which is
determined using the Dirac equation and Lorentz contraction. For details, refer to our previous paper [1]. The
black dot denotes an embedded electron, which rotates with velocity v. The force F is generated as a result of
magnetic field generation (the Lorentz force). Note that the magnetic flux is defined in the central circle. As
discussed in our various previous papers, when the relative momentum in terms of two charged particles is zero,
these two particles generally experience an attractive force that stems from the Lorentz force. As shown, this
attractive force F is identical to an attractive gravity force, which is related to the quantization of Einstein’s gravity
equation.
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2.1.2 Quantization of Einstein’s gravity equation

According to our previous paper [1], energy relationships in terms of gravity, static
magnetic field, and electric field in the scale of the quantized space times are derived
as

uB ¼ �G2 1
r4

1
c2
uE

ħ
2c2

� �2

, uB ¼ uG (8)

where r, G, uB, uG, and uE denote the distance, the gravitational constant, magnetic
field energy, gravity field energy, and electric field energy, respectively. We can
combine Eq. (8) with Einstein’s gravity equation because both equations include G.
The existing Einstein’s equation is

Gμν ¼ 8πG
c4

Tμν (9-1)

and

Gμν ¼ Rμν � 1
2
Rgμν, (9-2)

where Rμν,Tμν, gμν, and R denote the Riemann curvature tensor, the energy flux
tensor, the metric tensor, and the Ricci tensor, respectively.

As a result of substituting G in Eq. (8), we obtain

Gμν ¼ 16π
cħ

ffiffiffiffiffiffiffiffiffi�uB
uE

r
λ2cTμν: (10)

Now, it is assumed that the macroscopic tensor gμν is approximately the Minkowski
tensor, gij, because an analytical differential cannot be defined for a quantized space
time [1]. That is, it merely implies division by λc[1]. Similarly, the energy density is
given using zero-point energy:

ε ¼ 1
2
ħω=λ3c : (11)

Thus,Tμν is approximated using the Minkowski tensor:

Tμν ¼ εgij: (12)

Considering the above, Einstein’s gravitational equation is transformed to

Rμν ¼ 16π
cħ

ffiffiffiffiffiffiffiffiffi�uB
uE

r juGj
λc
þ 1
2
R

� �
gij: (13)

The energy of a quantized space time regarding a magnetic field is given as the
zero-point energy:

juGj ¼ 1
2
ħω: (14)
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Assuming the Ricci tensor, ½R, to be substantially smaller than the first term, we
obtain

Rμν ¼ 16π
cħ

ffiffiffiffiffiffiffiffiffi�uB
uE

r
1
λc

1
2
ħω

� �
gij: (15)

Moreover, considering Eq. (8), the ratio uB/uE in Eq. (15) is obtained:

uB ¼ �G2 1
r4

1
c2
uE

ħ
2c2

� �2

¼ �G2 1
λ4c

1
c2
uE

ħ
2c2

� �2

: (16)

Considering this, we obtain conclusively

Rμν ¼ G
8π
c4

1
λ3c

1
2
ħω

 !
gij: (17)

2.2 Zero-point energy in quantized spacetime for gravity or magnetic fields

Let us estimate the zero-point energy in terms of a magnetic or gravity field as well
as in terms of an electric field concerning quantized space time. Here we consider
energy level jΔjfrom special relativity:

jΔj ¼ mec2ffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q : (18)

This energy level is located at the middle position within the band gap of the
vacuum, i.e., the energy gap is 2jΔj. If v 6¼ 0 in Eq. (18), 2jΔj is produced by the
product of both the fine-structure constant, α, and zero-point energy:

2jΔj ¼ 1
2
ħω� α: (19)

This fact will be proved while discussing CMB here or can be referenced in the
literature [8]. Note that if v = 0 in Eq. (18), this equation for jΔj implies the zero-point
energy in terms of an electric field, which is related to Eq. (2).

Conversely, v in Eq. (18) is assumed to be the critical velocity, vc, for an electron.
That is, an electron has a maximum velocity vc less than the speed of light c when
largely accelerated. According to our previous papers [1, 3], an electron can accom-
pany an e-neutrino and, thus, the e-neutrino speed is equal to the critical velocity of
an electron. Therefore, v = vc is substituted in Eq. (18) by 0.994c [1, 3]. Using Eq. (19),
the calculated zero-point energy for the magnetic or gravity field then becomes

1
2
ħω ¼ 2

α
jΔj ¼ 1:23� 109 eV: (20)

This value agrees with the measurement of a τ-particle [9].
In summary, the zero-point energy is related to special relativity energy, Eq. (18),

where v = 0 implies the rest energy of an electron and is related to the quantized space
time in terms of an electric field.While v in Eq. (18) is the vc for an electron, the zero-point
energy in Eq. (19) implies quantized space time in terms of magnetic or gravity fields.
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2.3 Three generations of lepton

2.3.1 Collapse of the basic configuration of quantized spacetimes

Figure 2 schematically indicates how the magnetic or gravity field in a quantized
spacetime (i.e., the combination of two embedded electrons in two quantized space–
times) collapses. Each quantized space time in terms of magnetic or gravity fields has
a torque property whose moment corresponds to the magnetic field vector.

From torque properties, a larger magnetic field is generated if two magnetic field
vectors of two quantized space times in terms of a magnetic field take the same
direction. Generally, this maximum superposition occurs in the location of the uni-
verse at which the gravity field becomes extremely strong. On the contrary, however,
if two magnetic field vectors of two quantized space times in terms of the magnetic
field take reverse directions, the net magnetic field vanishes. The magnetic field
energy is converted to τ-particles while μ-particle energy comes from the spin inter-
action of two electrons embedded in quantized space times in terms of the electric
field. In this way, a quantized space time in terms of a magnetic or gravity field
collapses even though the combination energy of two embedded electrons in two
quantized space times is quite large [3]. This fact results in the creation of τ- and
μ-particles, as discussed later.

2.3.2 Masses of μ- and τ-particles from the basic configuration of quantized spacetimes

This paper claims that the masses of the three generations of leptons stem from the
abovementioned collapse of the basic configuration of quantized space times. As a
result of the collapse, three energies are generated from collapsed quantized space
times. Based on Figure 1, we claim the following points.

1.The combination energy between two embedded electrons in quantized space
times in terms of electric field, i.e., the magnetic field (gravity field) energy in a
quantized space time, is converted. This energy corresponds to the remaining
energy of the τ-particle.

2.Each embedded electron in two quantized space times, which take rotations and
induce the magnetic field energy in quantized space time, have interactions in

Figure 2.
Schematic wherein two quantized space times in terms of a magnetic or gravity field interact with each other and
how these quantized space times collapse. This figure was cited from [10]. First, a quantized space time in terms of
magnetic field has a torque property whose moment corresponds to its magnetic field vector. The superposition case
in this figure is such that the two magnetic field vectors are maximally strengthened. An important case is their
cancelation with each other wherein the quantized space times in terms of a magnetic field collapse.
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terms of spins (up and down). This interaction is converted to the remaining
energy of the μ-particle.

3.Embedded electrons in Figure 1 automatically gain real bodies.

In the Results section, actual calculations illustrating these points will be
conducted.

2.4 Analytical solution to the quantized Einstein’s gravity equation

We now consider the quantized Einstein’s gravity (QEG) equation.

Rij ¼ 8πG
c4

1
2 ħω
λ3c

gij, (21)

where the Minkowski tensor, gij, is given by

gij ¼
�1 0

�1
�1

0 þ1

0
@

1
A (22)

This QEG equation requires a specific form of the Riemann curvature tensor, Rij,
for the following reasons.

1.Because gij is a diagonal matrix, Rij is a diagonal matrix considering Eq. (21).

2.The QEG equation must automatically express Lorentz conservation and does
not include this conservation as a condition.

3.Rij is a covariance tensor. Thus, it must be composed by the direct product of
position vector k:

k ¼ xe1 þ ye2 þ ze3 þ icte4, (23)

where i in the fourth term denotes the imaginary unit.

k� k! Rij, (24)

where the symbol � implies the direct product of the vectors in this paper.
Since

ei ∙ ej ¼ δij, (25)

Rij ¼

x2 0

y2

z2

0 � ctð Þ2

0
BBB@

1
CCCA (26)

In the QEG equation, Eq. (21) takes the trace, Tr, to form Lorentz conservation:
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x2 þ y2 þ z2 � ctð Þ2 ¼ �2ð Þ 8πG
c4

1
2 ħωi

λ3c
: (27)

According to Eq. (27), Lorentz conservation is automatically presented. In the
derived equation, time t should be considered a period,

r2i � x2 þ y2 ¼ �2ð Þ 8πG
c4

1
2 ħωi

λ3c
þ c

2π
ω

� �2

� z2, (28)

where ri implies the radius of rotation at each location indexed by i, and we assume
cylindrical coordinates. Note that ri depends on the values of variable z. Moreover,
variable angular frequency ω was introduced because time t implies a period. As will
be described later, the derived equation implies that z gives an anisotropic property.
We will see that this solution of the QEG equation describes both electromagnetism
and gravity fields well.

Considering Eqs. (21), (22), and (26), each position and time variable, x, y, z, and
t, are not independently defined. Thus, the Eq. (21) obtains its meaning only when the
trace of both sides is considered. This fact is important because we claim that moving
(rotating) space time exists. That is, the mathematical metrics in terms of Cartesian
geometry are an approximated concept in a vacuum. This can be understood by
considering an analogy that, while a rigid body has metrics on it like a length of a line,
the area of a square, etc., at the microscopic scale of the rigid body, many thermally
fluctuated lattices (phonons) exist and imply that the mathematical metrics on the
rigid body are not formed at the microscopic scale.

2.5 Cosmic microwave background (CMB)

First, let us consider the analytical solution of the QEG equation again:

r2i � x2 þ y2 ¼ �2ð Þ 8πG
c4

1
2 ħωi

λ3c
þ c

2π
ω

� �2

� z2: (29)

Index i is associated with both ri and 1
2 ħωi. Note that here we assume z = 0,

resulting in

r2i � �2ð Þ 8πG
c4

1
2 ħωi

λ3c
þ c

2π
ω

� �2

: (30)

Because ri should be considered a macroscopic variable of radius, the first term of
the right-hand side (i.e., the zero-point energy having index i) should be neglected. As
a result, considering the area of a circle, the macroscopic variable radius r appears and
thus a unique angular frequency is derived as

ω ¼
ffiffiffiffiffiffi
4π
p

c
r

: (31)
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Next, the angular frequency ω in Eq. (31) are substituted into the Prank emission,
αT, Eq. (32):

αT ¼ 1
π2

ħω=c2

exp ħω
kBT

� �
� 1

, (32)

where T and kB denote the temperature and the Boltzmann constant,
respectively. When the exponential function in Eq. (32) becomes e�1, the following
equation holds:

kBT0r
ħ
ffiffiffiffiffiffi
4π
p

c
¼ 1: (33)

In Eq. (33), temperature T0 implies one Prank emission. We claim that a CMB
photon is derived from the energy gap, which fluctuates in the energy level of the
vacuum [3] and is related to the e-neutrino self-energy. That is, considering that r in
Eq. (33) is the wavelength of a photon, this wavelength can be derived from fluctua-
tions in the vacuum energy level.

Figure 3 shows the iteration wherein photons are absorbed or emitted to or from
the energy gap, respectively. This implies that CMB photons are created and absorbed
everywhere in the universe, and thus, we claim that CMB photons are not the source
of birth of our universe in terms of the big-bang.

In the Results section, the actual calculation of the phenomena discussed above will
be conducted using e-neutrino self-energy.

Figure 3.
Schematic representation of creation and absorption of CMB photons through the neutrino energy gap. This
figure was cited from [10]. The left-hand-side panel indicates the creation of the energy gap, which fluctuates in
the vacuum energy level. An energy gap is created by emission of photons from the vacuum energy level. This
created energy gap is essentially equal to the self-energy of an e-neutrino. The right-hand-side panel shows the
disappearance of the energy gap by absorption of photons; a real body of an e-neutrino is emitted. As mentioned
in our previous paper [3], an energy gap is again created at the energy level of the vacuum according to the
BCS ground state because of many-body interactions of the basic configuration of quantized space times. The left-
hand and right-hand panels occur everywhere in the universe locally with iterations. Thus, the creation and
absorption of photons in terms of CMB arise everywhere and the CMB source is not the birth of the universe
(i.e., the big-bang).
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2.6 Analytical derivation of the gravity wave

In the QEG equation solution,

r2i ¼ x2 þ y2 ¼ �16πG
c4

1
2ħωi

λ3c
þ c

2π
ω

� �2

� z2, (34)

ri ¼ 0 is a condition of the generation of gravity waves. Note that index i is
arbitrary. The condition of the generation of gravity waves implies that previous
rotations cease everywhere. That is, macroscopic rotation ceased [11, 12].

Depending on z, variable angular frequency ω is varied. The center of the previous
rotation is considered in this case and in cylindrical coordinates. That is, z = 0 is
assumed. This also implies that the maximum is considered. For a secondary
condition, the zero-point energy is converted to a photon by the product of the
fine-structure constant, α, because it is needed to convert the energy level to an energy
gap. When the uncertainty relation is introduced, an ω equation dependent on Δt is
derived:

1
2
ħωi ! 1

2
ħωiα ¼ nħω ¼ ħ nωð Þ ¼ jΔj (35)

and

jΔj � Δt≈ ħ: (36)

Considering Eq. (35), ω! nω and

c
2π
nω

� �2

¼ 16πG
c4

1
λ3c
jΔj (37)

and

c
2π
nω

� �2

Δt ¼ 16πG
c4

1
λ3c

ħ: (38)

In this equation, the distributed relationship regarding λc is employed:

nωð Þ5 ¼ πc9

4G
1
ħ
Δt: (39)

Moreover, quantum number n is defined as

X
n
t0 � 1 s½ �, (40-1)

That is,

nt0 � 1: (40-2)

Next, strain hmax is considered:
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hmax ¼ δL
L
2

: (41)

This definition is translated to

hmax ¼ λc
L=2

, (42)

where

λc ¼ ctc, (43-1)

tc ¼ t0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r
, (43-2)

and

v ¼ vc ¼ 0:994c: (43-3)

As mentioned in Section 2.2, vc is the critical speed of an electron and is equal to
that of an e-neutrino. Therefore, this expression implies consideration of quantized
space times in terms of gravity (magnetic) fields.

With

L
2
¼ cΔt (44)

we have

hmax ¼ tc
Δt

(45)

and the chirp signal is given by

up ¼ tc
Δt

cos ωt00ð Þ, (46)

where t00 is defined as the constant 1[s] because ω is a variable dependent on Δt.
The chirp signal will be further discussed in the Results section.

2.7 Unified field picture in terms of electromagnetic and gravity fields by
rotations of quantized spacetimes

The solution of the QEG equation is again given as

r2i ¼ x2 þ y2 ¼ c
2π
ω

� �2

� 16πG
c4

1
λ3c

1
2
ħωi, (47)

where z = 0 is assumed.
As mentioned earlier, this equation implies quantized time-space rotation.
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2.7.1 The case of direct current

2.7.1.1 General notation

Eq. (47) creates every equation regarding electromagnetism and Newtonian gravity.
To show this, λc should first be canceled and later we consider general fields. We
assume that electric and magnetic fields only in a quantized space time have energies

1
2
ħωi ¼ 1

2
ε0E2

i λ
3
c (48-1)

and

1
2
ħωi ¼ B2

i

2μ0
λ3c , (48-2)

respectively. Concerning gravity, in the Section 2.2, we derived the zero-point
energy in terms of the gravity field:

1
2
ħωi ¼ 2

α
jΔj ¼ 2

α

mec2ffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q : (48-3)

Furthermore, the general wave function is considered:

ð
jψ j2dv ¼ jψ ij2λ3c ¼ 1: (48-4)

Note that the differential and integral become merely division and product,
respectively, in the quantized space time [1].

Each of the above equations is substituted into Eq. (47) and the general electric,
magnetic, and gravity field equations are derived as follows:

r2i ¼ c
2π
ω

� �2

� 16πG
c4

1
2
ε0E2

i , (49-1)

r2i ¼ c
2π
ω

� �2

� 16πG
c4

B2
i

2μ0
, (49-2)

and

r2i ¼ c
2π
ω

� �2

� 16πG
c4
jψ ij2

2
α

mec2ffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q , (49-3)

respectively.

2.7.1.2 Derivation of each Poisson equation

The Poisson equations can be obtained in terms of electrostatic, vector, and gravity
potentials based on the results obtained in the previous section.
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First, consider the Poisson equation in terms of electrostatic potential:

r2i ¼ c
2π
ω

� �2

� 16πG
c4

1
2
ε0E2

i : 49‐1ð Þ

If the first term is neglected,

ri � λc: (50)

Thus,

1
2
ε0

E2
i

λ2c
¼ �c

4

16πG
: (51-1)

In Eq. (51-1), division by λc must be translated to the normal differential to express
the mathematic equation. That is, the differential is revived [1]:

1
2
ε0

dE2
i

dr2
¼ �c

4

16πG
: (51-2)

Thus,

ε0Er
dEr

dr
1
λc
¼ �c

4

16πG
: (52)

Considering the concept of quantized space times:

r ¼ nλc, (53)

and

nEr0
dEr

dr
1
r
¼ �1

ε0

c4

16πG
: (54)

Introducing the electrostatic potential Φ, we have

Er ¼ �dΦdr (55)

and

�d2Φ
dr2

¼ �1
ε0

c4

16πG
1

nEr0
r: (56)

Herein, the following relation is assumed:

Er0 ¼ �vBz0, (57)

where v implies an arbitrary and rotational velocity, not the speed of light c, and
Eq. (56) becomes
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d2Φ
dr2
¼ �1

ε0

c4

16πG
1
v

1
Bz0

1
n
r: (58)

Considering the cyclotron angular frequency,

ωc ¼ eBz0

me
, (59)

we have

d2Φ
dr2
¼ �1

ε0

c4

16πG
1
v

e
meωc

1
n
r: (60)

Or, using

v ¼ rωc, (61)

we obtain

d2Φ
dr2
¼ �1

ε0

c4

16πG
e

meω2
c

1
n
: (62)

Next, we consider the Poisson equation in terms of vector potential.
Similar to the case of an electric field and using Eq. (49-2), we obtain

Bz
dBz

dr2
¼ �μ0

c4

16πG
(63)

and

Bz
dBz

dr
1
λc
¼ nBz0

dBz

dr
1
r
¼ �μ0

c4

16πG
: (64)

Cylindrical coordinates are considered in this case and, thus, the component of a
vector potential is introduced by

Bz ¼ 1
r
Aφ: (65)

Calculating dBz
dr we obtain

nBz0
�Aφ

r2

� �
¼ �μ0

c4

16πG
r: (66)

Thus, Aφ becomes a special dependent and division of r is transformed into the
differential:

d2Aφ

dr2
¼ μ0

c4

16πG
1

nBz0
r: (67)
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With the introduction of cyclotron angular frequency ωc we have

d2Aφ

dr2
¼ μ0

c4

16πG
1
n

e
meωc

r: (68)

Consequently,

d2Aφ

dr2
¼ μ0

c4

16πG
1
n

e
meωc

r: (69)

Next, we derive the Poisson equation in terms of gravity beginning with

r2i ¼ c
2π
ω

� �2

� 16πG
c4
jψ ij2

2
α

mec2ffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q : 49‐3ð Þ

The first term is neglected and ri � λc is assumed, resulting in

λ2c ¼
�16πG

c4
jψ ij2

2
α

mec2ffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q : (70)

In short,

1 ¼ �16πG
c4

jψ ij2
λ2c

2
α

mec2ffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q : (71-1)

Then, the normal differential must be revived [1] to ensure the mathematical
expression:

1 ¼ �16πG
c4

d2jψ ij2
dr2

2
α

mec2ffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q : (71-2)

The following term for the potential energy for gravity,ΦG,

gδ r!
� �
jψ ij2 � ΦG, (72)

where g is a variable and δ is the Dirac function, is introduced.
Thus,

d2ΦG

dr2
¼ �c

4

16πG
α

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� v2R

c2

q

mec2
gδ r!
� �

, (73)

where v � vR denotes the relative velocity between two charged particles
because r in the Dirac function implies the relative distance between the two charged
particles.
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When relative velocity vR is zero, two charged particles generally experience a
strong attractive force with each other as the Lorentz force. For example, this attrac-
tive force creates a Cooper pair in high-temperature superconductors [13]. Therefore,
when vR is assumed to be zero, Eq. (73) is approximated as

d2ΦG

dr2
¼ �1

16πG
1
me

c2gδ r!
� �

: (74)

In the above equation, g should be considered a variable. Note that α
2 has meaning

only when vR is not zero but large; the above conclusive equation does not include this
fine-structure constant.

Moreover,

ð
δ r!
� �

dv ¼ 1: (75)

Considering Eq. (75), we take the volume integral to Eq. (74). Note that,
spherical coordinates are considered in this case because r implies a relative distance.
We obtain

ð
d2ΦG

dr2
4πr2dr ¼ �1

16πG
1
me

c2g (76)

with the left side equal to

ð
dΦG

d
dr

4πr2 ¼ 8πrΦG: (77)

Thus, we finally obtain a Newtonian equation:

ΦG ¼ �18π
1

16πG
c2

me
g
1
r
: (78)

In the Results section, we will examine the validity of these derived Poisson
equations using actual calculations.

2.7.2 Derivation in the case of alternating current

First, when the zero-point energy in the QEG equation solution is translated to a
photon, the energy gap is expressed as

1
2
ħωi ! 1

2
ħωiα ¼ jΔj ¼ jEi � Ejj (79)

and the basic solution becomes

r2i ¼ c
2π
ω

� �2

� 16πG
c4

1
λ3c
jEi � Ejj, (80)
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where

jEi � Ejj ¼
ð j12 ε0E2

i �
B2
j

2μ0jdv ¼ j 12 ε0E2
i �

B2
j

2μ0 jλ3c : (81)

Thus,

r2i ¼ c
2π
ω

� �2

� 16πG
c4 j 12 ε0E2

i �
B2
j

2μ0 j: (82)

As shown in Figure 4, Eq. (82) implies that the magnetic field energy indexed by j
is dependent on the electric field energy indexed by i (here we do not consider the
previously mentioned and basic configuration of quantized spacetimes). Thus, a
magnetic field is induced by an electric field. If indices i and j are altered, the electric
field energy becomes dependent and is induced from the magnetic field energy:

r2i ¼ c
2π
ω

� �2

� 16πG
c4 j 12 ε0E2

i �
B2
j

2μ0 j or r2j ¼ c
2π
ω

� �2

� 16πG
c4 j �12 ε0E2

j þ
B2
i

2μ0 j:
(83)

That is, two energy levels indexed by both i and j are induced by each other and are
iterated by ω. This physical picture describes the process of an electromagnetic wave
and Eq. (83) implies time-dependent Maxwell’s equations.

Now we create Maxwell’s time-dependent equations based on Eq. (82):

ω! 2π
tc
, (84)

ri ! λc, (85)

and

Figure 4.
Schematic of induction of quantized space times in terms of both electric and magnetic fields. This figure was cited
from [10]. The left panel indicates that rotation of quantized space time for an electric field induces a quantized
space time for a magnetic field. On the contrary, the right panel shows that rotation of the quantized space time for
a magnetic field induces a quantized space time for an electric field.As will be derived later, these phenomena
imply the time-dependent Maxwell’s equations and indicate the process of electromagnetic wave induction.
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λ2c ¼ ctcð Þ2 � 16πG
c4

1
2
ε0E2 � B2

2μ0

� �
: (86)

In Eq. (86), E and B are not magnitudes but components. Considering generaliza-
tions into three dimensions in view of vector analysis, these components are assumed
to be arbitrary regarding any coordinates. Eq. (86) can be written as

λ2c �
16πG
c4

B2

2μ0

� �
¼ ctcð Þ2 � 16πG

c4
1
2
ε0E2

� �
(87)

and from this equation we consider the following simultaneous equations:

λ2c �
16πG
c4

B2

2μ0

� �
¼ α: (88-1)

and

ctcð Þ2 � 16πG
c4

1
2
ε0E2

� �
¼ α: (88-2)

Eq. (88-1) becomes

1� 16πG
c4

1
2μ0

B2

λ2c
¼ α

λ2c
: (89)

The differential must be revived and the number one is ignored to obtain:

�16πG
c4

1
2μ0

dB2

dr2
¼ dα

dr2
, (90)

�16πG
c4

1
2μ0

2B
dB
dr

1
λc
¼ dα

dr
1
λc
, (91)

and

�16πG
c4

1
μ0

dB
dr

B ¼ dα
dr

: (92)

Eq. (88-2) becomes

1� 16πG
c4

1
2
ε0

E2
i

ct2c
¼ α

ct2c
, (93)

and

�16πG
c4

1
2
ε0

1
c
dE2

dt
1
tc
¼ dα

dt
1
c
1
tc

(94)

and
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�16πG
c4

ε0E
dE
dt
¼ dα

dt
: (95)

At this time, the following Lorentz conservation is assumed:

drð Þ2 � c2 dtð Þ2 � 0: (96-1)

That is,

dr ¼ �cdt: (96-2)

The sign + is employed and Eq. (95) becomes

�16πG
c4

ε0E
dE
dt
¼ c

dα
dr

: (95-2)

Combining the above with Eq. (92):

�16πG
c4

ε0E
dE
dt
¼ c

�16πG
c4

1
μ0

B
dB
dr

� �
(97)

and

ε0E
dE
dt
¼ c

1
μ0

B
dB
dr

: (98)

The ratio E/B is related to the characteristic impedance Z in the vacuum and is
calculated as

E
B
¼ E

μ0H
¼ 1

μ0
Z ¼ 1

μ0

ffiffiffiffiffi
μ0
ε0

r
¼ 1ffiffiffiffiffiffiffiffiffiffi

μ0ε0
p ¼ c: (99)

Considering this relation, Eq. (98) becomes

dE
dt
¼ 1

ε0μ0

dB
dr

: (100)

In view of vector analysis, this process can be generalized into three dimensions as

rotH
! ¼ ∂D

!

∂t
: (101)

This conclusive equation is identical to Maxwell’s third equation.
Now we obtain Maxwell’s forth equation using the same method.
In the QEG equation solution, indices i and j are altered such that

r2j ¼ c
2π
ω

� �2

� 16πG
c4

�1
2

ε0E2
j þ

B2
i

2μ0

� �
: (102)

In a similar process, the following simultaneous equations are formed:
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λ2c �
16πG
c4

1
2
ε0E2

j

� �
¼ α (103-1)

and

ctcð Þ2 � 16πG
c4

B2
i

2μ0

� �
¼ α: (103-2)

From Eq. (103-1) we have

1� 16πG
c4

1
2
ε0

E2

λ2c
¼ α

λ2c
: (104)

As mentioned earlier, E and B are arbitrary components of vectors regardless of
any coordinate system (not magnitude).

From the division of λc, the differential must be revived and the number one is
ignored to obtain:

�16πG
c4

1
2
ε0

dE2

dr2
¼ dα

dr2
, (105)

�16πG
c4

ε0E
dE
dr

1
λc
¼ dα

dr
1
λc
, (106)

and

�16πG
c4

ε0E
dE
dr
¼ dα

dr
: (107)

Eq. (103-2) becomes

1� 16πG
c4

1
2μ0

B2

ct2c
¼ α

ct2c
(108)

and, similarly,

�16πG
c4

1
2μ0

dB2

cdt2
¼ dα

cdt2
, (109)

�16πG
c4

1
μ0

B
dB
dt

1
c
1
tc
¼ dα

dt
1
tc

1
c
, (110)

and

�16πG
c4

1
μ0

B
dB
dt
¼ dα

dt
: (111)

From the abovementioned Lorentz conservation,
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dr ¼ �cdt: 96‐2ð Þ
In this case, the sign – is employed and Eq. (111) becomes

�16πG
c4

B
μ0

dB
dt
¼ �c dα

dr
: (112)

Combining the above equation with Eq. (107),

�16πG
c4

B
μ0

dB
dt
¼ �c �16πG

c4
ε0E

dE
dr

� �
(113)

and

B
μ0

dB
dt
¼ �cε0EdE

dr
: (114)

As mentioned earlier,

E
B
¼ c, 99ð Þ

thus,

dB
dt
¼ �c2μ0ε0

dE
dr
¼ �dE

dr
: (115)

In view of vector analysis, this equation can be generalized to three dimensions as:

∂B
!

∂t
¼ �rotE!: (116)

This is how we derive Maxwell’s forth equation.
In the Results section, we will summarize these processes and results.

3. Results

3.1 Masses of the three leptons

From our previous paper [3], the combination energy (i.e., Lorentz force) in terms
of two embedded electrons in quantized space time, i.e., the magnetic (gravity) field
energy UB is estimated as.

jUBj ¼ j�8:0� 10�10j J (117)

This energy gives the rest energy of τ-particles. Considering that τ-particles are
fermions,

jUBj ¼ 2Mτc2, (118)

where Mτ is the mass of a τ-particle.
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As a result,

Mτ ¼ 2:5� 109eV=c2: (119)

Comparing the above result with the measurement in [9] indicates that the
theoretical value has the same order as the measurement value but is slightly larger.
This is because the gravity interaction between two τ-particles in the theoretical value
is due to their large masses. Strictly speaking, a very small term regarding gravity
interaction between two τ-particles should be added to Eq. (118). As mentioned, we
also claim that there are attractive, not repulsive, dark energy interactions due to
gravity.

We next consider the case of μ-particles. From our previous paper regarding
superconductivity [14], the spin interaction, V, between up- and down-spin electrons
is expressed as

V ¼ �e2ħ2
16π2me

2 2λcð Þ3 , (120)

where

λc ≈ λ0, (121)

and
e denotes the electron charge. Considering that the μ-particle is a fermion and that,

from Figure 1, the relative distance in Eq. (120) is the diameter of quantized space–
time 2λc, the remaining energy is derived as

2Mμc2 ¼ j �e2ħ2
16π2m2

e 2λcð Þ3 j, (122)

where Mμ denotes the mass of a μ-particle:

Mμ ¼ 1:15� 108eV=c2: (123)

The above value is in sufficient agreement with the measurement provided in [9].
Note that a real electron appears automatically as a result of the collapse of the
configuration of quantized space times.

The significance of the above discussion is that we have clarified the reason why
leptons have three generations from the view of the basic configuration of quantized
spacetimes (Figure 1). In a previous paper [3], we calculated the self-energy of three-
generation neutrinos. Thus, with these results, we have now obtained a comprehen-
sive understanding of why leptons have three generations.

3.2 CMB emission

The theory section derived the following unique angular frequency:

86

Gravitational Waves – Theory and Observations



ω ¼
ffiffiffiffiffiffi
4π
p

c
r

: 31ð Þ

Thus, when the exponential function in Eq. (32) becomes e�1, the following equa-
tion is obtained:

kBT0r
ħ
ffiffiffiffiffiffi
4π
p

c
¼ 1: 33ð Þ

In this equation,T0 implies one Prank emission.
When r in Eq. (33) is considered a wavelength, the source of this wavelength, λ, is

the fluctuation energy gap, which is related to an e-neutrino self-energy [3]. The
e-neutrino self-energy is expressed by the following equation [3]:

2Δe,ν ¼ 0:025eV ¼ 4:0� 10�21J, (124)

where Δe,ν implies the energy level for an e-neutrino. Therefore, it is necessary to
obtain a photon from this energy level. In this case, the product of α and this energy
level creates photon energy gap ħω:

2 Δe,ν � αð Þ ¼ 2 ħωð Þ ¼ 4:0� 10�21α: (125)

Thus, ω and λ are calculated as.

ω ¼ 1:9� 1013 � 1
137
¼ 1:3� 1011 rad=s (126)

and

λ ¼ c
ω
¼ 2:3� 10�3m: (127)

The derived λ is substituted in Eq. (33) to obtain

T0 ¼ ħc
ffiffiffiffiffiffi
4π
p

kBλ
≈ 3:7K, (128)

which agrees with the CMB temperature provided in [15, 16].

3.3 Depiction of a gravitation wave (chirp signal)

The derived equations from the theory section are again

hmax ¼ tc
Δt

45ð Þ

and

up ¼ tc
Δt

cos ωt00ð Þ, 46ð Þ

where t00 is defined as a constant of 1[s] because ω is dependent on Δt.
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Figure 5 shows the result of this analytical calculation of the gravity wave, which
agrees with measurements provided in [11]. Considering that the strain hmax implies
quantized space–time tc, the gravity wave is a universal phenomenon. Moreover, hmax

was derived with z = 0 of the QEG equation solution and, thus, the gravity wave has
an anisotropic property [17].

3.4 Laws of electromagnetism derived from the QEG equation solution

3.4.1 Coulomb interaction and Poisson equations

Let us consider the Coulomb interaction and the satisfaction of the continuity
equation regarding charge density and current density. The Poisson equations derived
in the Theory section were

d2Φ
dr2
¼ �1

ε0

c4

16πG
1
v

e
meωc

1
n
r: 60ð Þ

Thus, the charge density is

ρ ¼ c4

16πG
1
v

e
meωc

1
n
r: (60-2)

Eq. (60) can then be expressed as

d2Φ
dr2
¼ �1

ε0

c4

16πG
e

meω2
c

1
n
: 62ð Þ

For a vector potential,

Figure 5.
Analytical calculation for the gravity wave. This figure was cited from [10]. The critical point indicates 10�21

order and the timescale is 0.1 s. The calculation agrees well with measurements and was obtained from the QEG
equation solution.

88

Gravitational Waves – Theory and Observations



d2Aφ

dr2
¼ μ0

c4

16πG
1
n

e
meωc

r: 69ð Þ

From Eq. (62), the Poisson equation for the electrostatic potential is given by

ρ0 ¼
c4

16πG
e

meω2
c
� β0e, (129)

where n = 1.
Generally,

dQ
dv
¼ β0e, (130)

where dv denotes the volume difference and

dQ � e: (131)

Thus,

β0 ¼
1
dv
¼ δ r!
� �

: (132)

Therefore, considering Eq. (62) and, as every elementary physics text states, the
standard Coulomb potential forms as:

Φ ¼ e
4πεor

: (133)

Note that r here is the relative distance between two charged particles because of
the introduction of the Dirac function with position vector r.

Next, we consider the satisfaction of the continuity equation by first considering
the following elementary equation,

v � dr
dt

: (134)

From Eq. (69), the current density is

i ¼ �c
4

16πG
1
n

e
meωc

r: (135)

Thus, the following equation is satisfied:

dρ
dt
þ di
dr
¼ 0: (136)

Eq. (136) can be generalized to three dimensions as

∂ρ

∂t
þ div ι! ¼ 0: (137)

89

Analytical Description of Unified Field Theory for Electromagnetic and Gravity Fields…
DOI: http://dx.doi.org/10.5772/intechopen.1000573



Considering the satisfaction of both Eqs. (133) and (137), the Poisson equation for
a vector potential is automatically proved. This is because the charge density and
continuity equations have been proved. The current density, i.e., the Poisson equation
for a vector potential as in Eq. (69), has also been proved.

3.4.2 Newtonian equation

Let us consider the energy of quantized space time in terms of the magnetic field
(or gravity field).

In the Theory section, we derived

ΦG=2 ¼ �18π
1

16πG
c2

me
g
1
r
: 78ð Þ

Note that the 1/2 implies the symmetry of the flux direction of the magnetic field is
broken, as considered in Figure 1. Using Eq. (78), we can calculate the gravity energy
of a quantized space time in terms of magnetic or gravity field. If ΦG has the unit [J],
then parameter g has the unit J ∙m6

� �
. Thus, for Figure 1 and considering the flux of

the central circle,

g � 1 ∙ λ6c ≈ 1 ∙ λ60 (138)

and in Eq. (78)

r � λc ≈ λ0: (139)

Because we are now calculating the energy of the magnetic field quantized space
time in Figure 1 (i.e., not the quantized space–times in terms of electric fields having
embedded electrons, which have rest energy), the remaining energy among factor g is
assumed to be the unit number one, which indirectly implies the existence of dark
energy. Then, the potential is.

ΦG ¼ �5:8� 10�10 J (140)

which is approximately equal to UB in Eq. (117).
Using Eq. (118),

Mτ ¼ 1:8GeV=c2: (141)

Thus, Eq. (141) is approximately the remaining energy of a τ-particle [9] and also
implies the energy of a quantized space time in terms ofmagnetic or gravity field. This
value agreeswith reportedmeasurements and does not contradict the theory of this paper.

Note that the above Newtonian equation has a different shape from the standard
Newtonian gravity equation usually taught in high school. However, although the
standard Newtonian gravity equation is applied in the scale of the solar system, it is
unnatural to consider that it can be applied on the quantum scale because every
physics equation generally has application scales. For example, the equation ma = F is
well applied in macroscopic scales but cannot be applied in scales less than an atomic
one. Thus, the success of Schrodinger’s equation in application to the H atom comes

90

Gravitational Waves – Theory and Observations



not from the fact that the value of the standard Newtonian gravity equation is too
small but from the fact that it is already considered inapplicable to the atomic scale.

3.4.3 Derivation of the time-dependent Maxwell’s equations

Using the solution of the QEG equation,

r2i � �2ð Þ 8πG
c4

1
2 ħωi

λ3c
þ c

2π
ω

� �2

, 30ð Þ

we converted divisions of quantized space–times λc and tc into standard differen-
tials [1] to ensure the mathematical equation in the Theory section. Considering the
Lorentz conservation regarding differentials, we derived the following equations:

rotH
! ¼ ∂D

!

∂t
101ð Þ

and

∂B
!

∂t
¼ �rotE!: 116ð Þ

Therefore, we claim that the above two equations are the same.

4. Discussion

4.1 Summary of the key points of this study

By introducing quantized space times derived from the zero-point energy, elec-
tromagnetic and gravity fields, including dark energy, are analytically well explained
using the QEG equation. To this point, the only relevant concepts are zero-point
energy and conservation of angular momentum of quantized space times.

4.2 Analytical solution to the QEG equation

The analytical solutions of the QEG equation resulted in various significant results.
First, quantizing Einstein’s gravity equation enables us to obtain the analytical (not
numerical) solution that describes every electromagnetic and gravity field uniformly.
According to our previous paper [1, 2], weak and strong interactions are essentially
equal to static electromagnetic fields with consideration of the zero-point energy.
Thus, this paper reinforces the results of our previous paper [1, 2], which describes
unified field theory in terms of particle physics while indicating that the only source of
every field is the zero-point energy. Moreover, the QEG equation solutions effectively
describe existing phenomena in terms of the universe.

4.3 CMB emission

The analytical solution of the QEG equation also describes CMB emission. This
result implies that we are not employing the standard big-bang model. We derived
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CMB emission and a unique angular frequency that is a result of the QEG equation
solution. The significance is that emission and absorption of CMB photons occur
everywhere in our universe, and these emissions are directly related to the e-neutrino
self-energy, which fluctuates in the energy level of the vacuum. Thus, CMB can be
described without the standard big-bang model, and we thus claim that the measured
CMB does not have the meaning of the initial time of birth of the universe.

4.4 Unified field in terms of electromagnetic and gravity fields

The analytical solution of the QEG equation also describes the unified field in terms
of electromagnetic and gravity fields. This solution implies rotation of quantized space
times both in terms of an electric field and a magnetic field (gravity field). The results
lead to the Poisson equations regarding electrostatic, vector, and gravity potentials.
These equations result in the Coulomb equation, Biot-Savart’s law, which is derived
from the Poisson equation for vector potential, and the Newtonian gravity equation.

In terms of the quantized space times, induction from both electric field to mag-
netic field and magnetic field to electric field are derived. Thus, the time-dependent
Maxwell’s equations are described. In short, the existing Einstein’s gravity equation
already contains properties of both electromagnetic and gravity fields. Thus, we claim
that to obtain the unified field theory, it is not necessary to expand the existing
Einstein’s gravity equations, such as in five dimensions.

The most important point of this work is that all equations from electromagnetic
and gravity fields come from the conservation law of angular momentum in terms of
quantized space times. As mentioned in our previous paper [1, 2], weak and strong
interactions are equal to electromagnetic fields and, thus, most microscopic fields and
basic equations stem from the conservation law of angular momentum in terms of
quantized space times. That is, only the zero-point energy is the source needed to
create most fields.

Furthermore, the result of the analytical solution of the QEG equation automati-
cally leads to the analytical derivation of gravity waves. The significance of this is that,
although thus far gravity waves have only been obtained from numerical analysis of
the existing Einstein’s gravity equation, we have now derived them from the pure
analytical solution of the QEG equation. This comes from the fact that we succeeded
in the quantization of Einstein’s gravity equation.

4.5 Three generations of leptons

Considering the basic configuration, including quantized space times in terms of
both electric field and magnetic (gravity) field and the collapse of this configuration,
we derived rest energies of both τ- and μ-particles that agree with measurement
values. Considering that the real electron is the result of the collapse of the quantized
spacetime configuration, we have now succeeded in providing the reason why leptons
have three generations. The concept of quantized space times, in terms of electric,
magnetic, or gravity field with zero-point energy, can be proven by comparison with
measurements. In our previous paper regarding neutrinos [3], we described the three
generations of neutrino, i.e., the oscillation of neutrinos and their self-energy, under
the assumption that the masses of the three leptons are known in advance. However,
we have now clarified all masses of the three leptons without assumption, and the
most important mystery of why elementary particles have three generations was
uncovered.
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5. Conclusion

With the introduction of quantized space times derived from the zero-point
energy and their conservation of angular momentum, i.e., the analytical solution of
the QEG equation, we have created most laws and equations in terms of electromag-
netic and gravity fields. Moreover, the configuration of quantized space times
provides the reason why leptons have three generations.

The solution of the QEG equation also resulted in what is referred to as dark energy
and the analytical derivation of gravity waves, which all agree well with reported
measurements.

Conclusively, in this chapter, the gravitational wave was obtained using analytical
calculations. Until now, this was only obtained using numerical or fitting methods.

With the combination of the results from our previous paper [1, 2], we have
reinforced a unified field theory in terms of particle physics that indicates that con-
cepts of zero-point energy and quantized space times describe most fields (i.e., elec-
tromagnetic field, gravity field, weak interaction, strong interaction, leptons,
neutrinos, quarks, protons, neutrons, and so on). We selected the zero-point energy
(i.e., the basic configuration of quantized spacetimes) as the basic source that
describes almost all fields, including the masses of W and Z bosons. However, there is
also the Higgs boson, which has not been described here or in our previous work. As a
follow-up, it is necessary to achieve a consistent description that includes this boson.
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Chapter 4

New Conservation Law as to
Hubble Parameter, Squared
Divided by Time Derivative of
Inflaton in Early and Late Universe,
Compared with Discussion of HUP
in Pre Planckian to Planckian
Physics, and Relevance of Fifth
Force Analysis to Gravitons and GW
Andrew Walcott Beckwith

Abstract

We use as given by Li and Koyama, as to using their idea of a fifth force. In doing
so, we are assuming a force which is minus the spatial derivative of a scalar field. The
scalar field we are using is one from Padmanabhan, and the problem is that the scalar
field in the Padmanabhan representation is initially only dependent on time. The time
component is stated to be in the Pre Planckian regime is proportional to a radial
distance divided by the speed of light. The rephrasing of time as justified by stating
that time in its initial configuration does not exist before the expansion of the
universe and that we reintroduce time separately from a radial component divided by
the speed of light upon entrance into Planckian space–time. In doing this we also refer
to a new assumed conservation law which will give new structure as to inflationary
expansion and its immediate aftermath. That of the Hubble “constant” divided by the
‘time derivative’ of the scalar field in the inflation regime and then a long time
afterwards.

Keywords: inflaton, fifth force, gravitational waves, gravitons, Hubble parameter

1. Introduction

Our idea is to regularize inflation and its aftermath by a Hubble parameter divided
by the derivative of a scalar field, as being about the same ratio in Planckian space
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time and then say in the time frame within a billion years of the present. The benefits
of such an interpretation is to regularize how we obtain GW frequency, in the initial
phase of the universe expansion to near the present era. In addition we use a fifth
force as to explain how we would have almost an infinite expansion rate in the
beginning of inflation. The almost infinite expansion rate is due to the fifth force
which triggers rapid expansion. We then conclude as to a regime of black hole physics,
with a table as to a pre present universe well before our big bang super massive black
hole, which would then be through a nonsingular start to the universe break up from
pre big bang configuration into millions of micro sized black holes. The way to do this
assumes a variant of the Penrose cyclic conformal cosmology model, with a pre
universe giant sized black holes broken up into tiny black holes by the uncounted
millions [1, 2].

2. How we will obtain scalar field behavior we want which yields input
into a fifth force

Using

a tð Þ ¼ ainitialtν (1)

Which will lead to

H2

_ϕ
≈

ffiffiffiffiffiffiffiffiffi
4πG
ν

r
� t � T4 � 1:66ð Þ2 � g ∗

m2
P

≈ 10�5 (2)

The Eq. (2) is a conservation law which is considered to be true in the initial
expansion, Planck regime of space–time.

This of course makes uses of Eq. (3) for the Hubble parameter, the Padmabhan
value of the scalar field due to Eq. (1) and this is all assuming a value of

H ¼ 1:66
ffiffiffiffiffiffi
g ∗
p � Ttemperature

2

mP
(3)

We will make the following calculation [3, 4].

V0 ¼ :022ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qNefolds

q

0
B@

1
CA

4

¼ ν ν� 1ð Þλ2
8πGm2

P
(4)

λ as a dimensionless parameter which we refer to later. From [3], page 17 we have
ae\ Chamelon mechanism for fifth force as

F5th�force ¼ �
~β � ∇

!
ϕ

� �

mP
(5)

Eq. (5) equals zero of we have a scalar field solely dependent upon time. i.e. we
need to have a re set of time as initially spatial divided by the speed of light.
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3. Pre-Planckian to Planckian regime of space-time reset so Eq. (5) for
fifth force does not vanish

To do this we will assume in an initial “bubble’ of space–time of which we have
spatial r value and a speed of light given by c

t ¼ r
ϖc

(6)

The term of ϖ is a dimensionless value and never negative.
If so, Eq. (5) will yield [3, 4].

F5th�force ¼ �
~β � ∇

!
ϕ

� �

mP
≈ �

~β

2mPr
�
ffiffiffiffiffiffiffi
ν

πG

r
(7)

4. What is the power of production of gravitons due to fifth force?

The easiest way is to look at power expressions for GW and to make them linked to
Eq. (7).

First Power = Force, time velocity.

P ¼ Power ¼ F forceð Þ � v velocityð Þ (8)

Compare Eq. (8) for Power in terms of gravitational waves using [5–7].
See [7],

PGW ≈
GMmassω2

gw

c2
(9)

Usually, we want to look at GW quadrupoles, [6], page 312

€Q
2
≈

ω2
gw

c2

 !
� r2
� �" #2

(10)

Keep in mind that we are using GW power which is given by

PGW ≈
Gc � Mmassð Þ2ω6

gw r2
� �2

c6
(11)

Eq. (7) times c (speed of light) will alter Eq. (11) to be read as

PGW ≈
Gc � Mmassð Þ2ω6

gw r2
� �2

c6

≈ c� jF5th�forcej ¼ j�c�
~β � ∇

!
ϕ

� �

mP
j≈ c�

~β

2mPr
�
ffiffiffiffiffiffiffi
ν

πG

r (12)

This leads to
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ω6
gw ≈ c7 �

~β

2mPr
�
ffiffiffiffiffiffiffi
ν

πG

r
� 1

Gc � Mmassð Þ2 r2h i2

) ωgw ≈
ffiffiffiffiffiffiffiffiffi
ν

4πG

r
�

~β � c6
G � Mmassð Þ2mPr � r2h i2

 !1=6
(13)

In terms of Planck Units

ω6
gw ≈ c7 �

~β

2mPr
�
ffiffiffiffiffiffiffi
ν

πG

r
� 1

Gc � Mmassð Þ2 r2h i2

) ωgw ≈G,mP,r≈ℓp�������������!
Planck�normalization

1

Mmass ≈ ς �mP�������������!
Planck�normalization

ς

r2
� �2 ≈ℓ4

p�������������!Planck�normalization
1

∴ωgw�������������!
Planck�normalization

ffiffiffiffiffiffi
ν

4π

r
�

~β

ςð Þ2
 !1=6

(14)

We find then we have at the immediate beginning of inflation, an almost Planck
frequency value of 1.855 times 10^43 Hertz, we would need ν be 10^502 which would
be factored into Eq. (1) and the scale factor value for the term ν. This would mean for
the fifth force argument that we would have an almost infinitely quick expansion in
the neighborhood of Planck length for the start of inflation.

What this means is that coefficient ν in the initial genesis of GW which will be in
Planckian space–time to be

ν������������!
Planck�normalization

4π � ωgw
� �12 � ςð Þ4

~β
2 (15)

If we are looking at Planck time, in the Planck era, ν∝ ωPlanckð Þ12, meaning that the
rate of expansion in the early universe is commensurate with inflation.

5. Interpreting force assumed in terms of Ehrenfests theorem

Gasiorowitz, [5] gives this Ehrenfests Theorem as

F ¼ d ph i
dt
¼ � dV

dr

� �

t
(16)

We re write Eq. (16) as yielding in our procedure

ph i ¼ �
~β

2mP
�
ffiffiffiffiffiffiffi
ν

πG

r
� ln t
ϖc

(17)
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For sufficiently small time step, t, use the ideas given in, [5] which leads to

If ph i≈Δp≈
~β

2mP
�
ffiffiffiffiffiffiffi
ν

πG

r
� j ln ε

þj
ϖc

ΔpΔx≈ℏ) Δx≈
ℏ

~β

2mP
�
ffiffiffiffiffiffiffi
ν

πG

r
� j ln ε

þj
ϖc

≤ lP
(18)

Meaning we will be obtaining to enormous energy values, for time smaller than
Planck time.

6. Energy values, and the degrees of freedom initially

In an earlier paper, initial mass [8] is written as a huge value, namely

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffiffiffiffiffiffi
g ∗
p � 1:66ℏ

64π2mPG2k2B

s
�
ffiffiffi
t
γ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NGravitons

p
�mPlanck

��������!
Planck�Units

≈ ffiffiffiffiffiffi
g ∗4
p �

ffiffiffiffiffiffiffiffiffiffi
1:66
64π2

r
�mPlanck ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NGravitons

p
�mPlanck

≈ 1060 �mPlanck

(19)

If so then

ffiffiffiffiffiffi
g ∗4
p �

ffiffiffiffiffiffiffiffiffiffi
1:66
64π2

r
≈ 1060 (20)

i.e. the initial degrees of freedom, would be

g ∗ ≈ 10240 � 64π2

1:66

� �2

≈ 10240 � 144791∝ 10245 (21)

The magnitude of Eq. (21) is a ten to the 245 value, whereas degrees of freedom, is
10 to the 61st power.

Why we pay attention to this value. By [8].

mgraviton ≈ 10�60mP ) NGravitons ≈ 10120

) NGravitons ≈ 10120 ≈ Sentropy

⇔g ∗ ≈ 10240 � 64π2

1:66

� �2

≈ 10240 � 144791∝ 10245

(22)

This is directly due, if assuming, an initial value of t ¼ r
ϖc that Eq. (5) would be a

large negative value, and

ϕ
r
ϖc

� �
¼

ffiffiffiffiffiffiffiffiffi
ν

4πG

r
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGV0

ν ν� 1ð Þ

s
� r

ϖc

� � !
(23)

We will next discuss the fifth force in terms of the Dilaton model.
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7. Dilaton model versus the general relativity theory. Can we extend
general relativity?

In [3], page 17, the NON relativistic geodestic equation for a ‘test particle’

€x
!¼ �∇!Ψ�

~β � ∇
!
ϕ

� �

mP
(24)

The first term is gravitational potential Ψ. The second term is the fifth force. For
Pre Planck to Plank

€x
!¼ �∇!Ψ�

~β � ∇
!
ϕ

� �

mP
������!
Pre�Planck

€x
!¼ �

~β � ∇
!
ϕ

� �

mP
(25)

We assume

�∇!Ψ������!
Pre�Planck

0

�
~β � ∇

!
ϕ

� �

mP
������!
Pre�Planck

NOTzero

t������!
Pre�Planck

t ¼ r
ϖc

t��!
Planck

t 6¼ r
ϖc

�
~β � ∇

!
ϕ

� �

mP
���!
Planck

Very� small� value

�∇!Ψ���!
Planck

Not� zero

(26)

In addition [1–4] we assume where we are using the values of an inflation potential
given in [2] if we have Eq. (1) for the scale factor compared with another similar
scalar potential

V ϕð Þ ¼ V0 exp � λϕ

mP

� �
$ V0 exp �

ffiffiffiffiffiffiffiffiffiffiffi
16πG
ν

r
� ϕ

 !
(27)

In Pre Planck physics, Eq. (5) would be enormous, whereas the fifth force for
Plank regime and beyond would be small. Also the Gravitational physics term due to a
gravitational potential Ψ would be the largest term in Eq. (24).

8. Review of what our presumption of pre Planck to plank physics have
gained us, before Gravimagnetism

We deviate from standard relativity and Newtonian physics by the existence of a
fifth force in Pre Planckian to Planckian space–time physics.

102

Gravitational Waves – Theory and Observations



We are considering what if Eq. (5) and Eq. (6) insert fifth force physics into cosmol-
ogy What has to be determined are experimental verifications of Eq, (23) and Eq. (24).
This is a test and a way to obtain falsifiable models. Furthermore we are presuming a
nonsingular start to the universe. And these ideas need experimental verification.

Finally themodel included in by use of references [9, 10] need to be seriously reviewed.

9. Gravimagnetism and an invariance model considered

We revisit Gravimagnetism and its links to this problem [11].
Note on page 48 of [11].

dv*

dt
� �gradϕþ 2Ω

! � v!

$ Lorentz� force

¼ K
! ¼ q � E

! þ v!

c
� B
!

 ! (28)

In Electromagnetic theory we note we have exact correspondences. However in
GR the first line of Eq. (28) is approximate.

In the Pre Planck regime of space–time we use the following

dv*

dt
� �gradϕþ 2Ω

! � v! (29)

In the Pre Planckian regime we will have

dv*

dt
� �gradϕþ 2Ω

! � v!��������!
Pre�Planckian

dv*

dt
� �gradϕ≈ � ∂rϕ (30)

Whereasweuse this substitution to obtain anonzero fifth force inPrePlanckianphysics

ϕ tð Þ�������!
Pre�Planckian

ϕ
r
ϖc

� �
(31)

If this is done, then the Graviton condensate relationship as argued by the author
before, should also be examined as far as experimental verification, It would be
optimal if we find that the Pre Planckian to Planckian physics regime would have a lot
of black holes, as given in [12].

m≈
MPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ngravitons
p

MBH ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ngravitons

q
�MP

RBH ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ngravitons

q
� lP

SBH ≈ kB �Ngravitons

TBH ≈
TPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ngravitons
p

(32)
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Having a change in initial conditions from Pre Planckian physics to Planckian phys-
ics would be enough if we find that m in Eq. (32) is actually the mass of a graviton.

If so, by Novello [13] we then scale mass m as given in Eq. (32) to the mass of a
graviton, as in Eq. (33)

mg ¼ ℏ � ffiffiffiffi
Λ
p

c
(33)

In a word, the next step to ascertain would be how Eq. (31), as given breaks down,
and we have then application of Eq. (32) with m set with m becoming the mass of a
graviton as given in Eq. (33).

Confirming these details should be the object of future research as can also be seen
in [13].

In addition we have the [14] as to the choice of the Starobinsky potential as well
use of radial acceleration as a way of confirming the cosmological constant.

The way indicated in [14] may fix the value of m, after determining M, as an input
into Eq. (32).

Then use the right hand side of Eq.(33) whereas in [8], we will be determining the
right hand side of Eq. (33), namely Λ and then after doing that, assuming Eq. (33) to
work backwards into the M of Eq. (32).

That is how to reconcile the [8] and [14] references whereas we will be using this
current document to ascertain the existences of a Fifth force which would be a bridge
between Pre Planckian to Planckian physics,. Finally though what is implicitly
assumed is [15] which is an application of Klauder enhanced quantization.

Finally is the imponderable, i.e. the generalization of Penrose CCC theory which is
in [8] which is a generalization of what is in Penrose single universe recycling of
universes which may be seen in [16].

All these steps need to be combined and rationalized. Also remember [17].

10. Now for the invariance model

Also the Hawking argument as to the probability of finding a universe with Λ
being a given value [18, 19].

P Λð Þ � exp �2SE Λð Þð Þ≈ exp
3πM2

P

Λ

� �
(34)

We get combining Eq. (32), Eq. (33) and Eq. (34) to realize having

P Λð Þ���������!
Eq 1ð Þ,Eq: 2ð Þ,Eq: 3ð Þ

exp
3πc2Ngraviton

ℏ2

� �

�������������!
Eq 1ð Þ,Eq: 2ð Þ,Eq: 3ð Þ,ℏ¼c!1

exp 3πNgraviton
� � (35)

11. Now putting in the detail about the universe being treated as a giant
black hole, of sorts

First sign in the mass m in Eq. (32) as being the same as the mass of a graviton, in
Eq. (33).
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We then would have

m! mg ≈
MPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ngraviton

p ) Ngraviton ≈ 10122 (36)

In addition the radius of the “particle” would be of the form given by

R! Runiverse ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ngraviton

q
� ℓP ≈ 1061 � ℓP (37)

Also the overall mass M would scale as

M! Muniverse ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ngraviton

q
�MP ≈ 1061 �MP (38)

Whereas the entropy

S! Suniverse gravitonsð Þ≈ kB � 10122��!
kB!1

10122 (39)

And the final temperature

T ! Tuniverse gravitonsð Þ≈ TPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ngraviton

p ≈ 10�61 � TP (40)

In this case, we have that the mass of the graviton, allowing for this scaling is given
by [5, 6, 20, 21].

12. Consequences. We have a starting point determined by the following

From Eq. (1) and Eq. (2) of this manuscript we have the DNA for the working out
of the coefficient of the scale factor, and this is in the end what we end up with.

If we are looking at Planck time, and assuming we have Plank frequency, this
means in the Planck era

ν∝ ωPlanckð Þ12, (41)

This enormous initial coefficient to the scale factor time coefficient, would be put
in initially in the last part of Eq. (41) which would subsequently, be invariant, namely
from the beginning of inflation, to its near present day conditions, the following
would be invariant, so the following would be approximately a constant

H2

_ϕ
≈ 10�5

�

initial�conditions
���������������!
Evolution�to�near�present

H2

_ϕ
≈ 10�5

�

present�conditions
(42)

This would somehow have to be confirmed via data sets but the coefficients in the
initial conditions to final, in ratio would be similar, in ratio value, but the magnitude
of the H term, and the magnitude of the derivative of the scalar field would be vastly
different, just their ratios would likely have a similar value [22–25]. And this leads us
to the final question to raise. What would it take to come up with the initial frequency
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as given in Eq. (41) leading to an initially extremely high rate of expansion of the scale
factor? To see this let us conclude about energy initially,

13. So do we have something (space time) from nothing? Conclusion with
speculations as to answer

To answer this, we look at the following. Namely the crazy geometry in the Pre
Planckian regime of space time.

Let us first recall the Shalyt-Margolin and Tregubovich (2004, p.73) [26].

Δt≥
ℏ
ΔE
þ γt2P

ΔE
ℏ
) ΔEð Þ2 � ℏΔt

γt2P
ΔEð Þ1 þ ℏ2

γt2P
¼ 0

) ΔE ¼ ℏΔt
2γt2P
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ℏ2

γt2P � ℏΔt
2γt2P

� �2

vuuut

0
BB@

1
CCA ¼

ℏΔt
2γt2P
� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16ℏ2γt2P

ℏΔtð Þ2
s ! (43)

For sufficiently small γ.

ΔE≈
ℏΔt
2γt2P
� 1� 1� 8ℏ2γt2P

ℏΔtð Þ2
 ! !

) ΔE≈ either
ℏΔt
2γt2P
� 8ℏ

2γt2P
ℏΔtð Þ2 ,or

ℏΔt
2γt2P
� 2� 8ℏ2γt2P

ℏΔtð Þ2
 ! (44)

would lead to a minimal relationship between change in E and change in time as

ΔE≈
ℏΔt
2γt2P
� 8ℏ

2γt2P
ℏΔtð Þ2 �

4ℏ
Δt

(45)

Or

ΔEΔt≈4ℏ (46)

In doing so, we will refer to Eq. (46) as the pre inflaton state of energy being
delivered due to a non conserved interjection of energy into the new universe.

Doing so would be a way to have the frequency so alluded to given in [27–29] and
this is what we conjecture as to the evolution of the change in energy if we have the
inflaton included which would be in Planckian space–time

δguv
� �2 T̂uv

� �2D E
≥

ℏ2

V2
Volume

����!
uv!tt

δgtt
� �2 T̂tt

� �2D E
≥

ℏ2

V2
Volume

&δgrr � δgθθ � δgϕϕ � 0þ

(47)

δtΔE≥
ℏ
δgtt
6¼ ℏ

2

Unlessδgtt � O 1ð Þ
(48)
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δgtt � a2 tð Þ � ϕ< < 1 (49)

This version of uncertainty would be for inclusion of energy once we are in the
specific Planckian regime of space time and may be what is needed for sufficient
energy imput from the fifth dimension, leading to a fifth force argument as given by
[30] which may be from the work given by Wesson in [27]. This fifth force, in
addition to fitting in the HUP in the Pre Planckian to Planckian physics regime would
be encouraging us for an unbelievably high initial change in energy, as stated in
Eq. (48), whereas once we are in the Planckian regime of the present universe we
would be using Eq. (46) so as to specify a very high initial initial frequency, and this
would be in tandeum with [27] being directly employed

ð
pαdx

α ¼ � h
c
� L
ℓ
¼ � h

c
�
ffiffiffiffi
3
Λ

r
mparticle

h

¼ r
mpl
� 1� log

r
ϖ � c
h i� �

⇔ r≈ εþ

(50)

This is linkable to z, as to red shift showing up in [27–29] and it shows how to
obtain a very small radial value namely in a tiny scale factor due to an enormous z red
shift as given in [29].

Quote.
If z≈ 1055thena≈ 10�55 so we do not have a space – time singularity.
End of quote.
The Eq. (46) would be for specifying, via the frequency being the inverse of change

in time, after the Planckian regime of space time, whereas Eq. (47) would be the Pre
Planckian to Planckian uncertainty principle used when Eq. (50) would be considered.

The application of the fifth force to the geometry of space–time in the beginning of
expansion of the universe would employ Eq. (50) and Eq. (48) in the Planckian
regime, whereas Eq. (47) would be just before Planckian space time.

All these details need to be worked out and given more foundation in future research.

14. Linkage to GW and their importance as to GW astronomy by making
an analogy to black holes explicit for GW generation, and this has to
be confirmed experimentally

We will for the sake of linkages to GW treat this problem as related to black holes,
and gravitons and subsequent GW generation.

The Eq. (42) so mentioned, is an invariance procedure as far as space–time and its
scaling may lead to black hole production’.

Assuming our BEC condensate argument leads to scaling as far as black hole pro-
duction, we will make the following assumption, namely the following grouping leads to

M! Muniverse ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ngraviton

q
�MP ≈ 1061 �MP

M! several ~m ¼ 8πR radius� of � ~mð Þ3~ρ
3

H2

_ϕ
≈ 10�5

�

initial�conditions
�������������!
Evolution�to�near�present

H2

_ϕ
≈ 10�5

�

present�conditions

(51)
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I estimate that this together leads to about 10^20 to 10^21 effective Planck mass s
sized mini black holes in the beginning of the cosmos at the cosmos. Making use of
page 46 of [31] we have that 1/1000 of a 3 + 1 dimensional mini black hole would, if
not considered rotating contribute to graviton emission.

Using that rule, we could assume 10^`122 gravitons, as actually being generated
from primordial conditions with say of this number, say at most about 10^21 Planck
sized black holes being formed.

Then

EBEC�Graviton ≈
kBTBH

2
≈

kB � 10�5 � TP

2

) ωBEC�Graviton ∝ 10�5 � 1043Hz≈ 1038Hz

) ωBEC�Graviton�to�CMBR ≈ 1038 � 10�3Hz

(52)

We could see Primordial black holes as about z≈ 1025. Leading to present Gravita-
tional wave signals from the primordial black holes today of about 1 Hertz, by massive
red shifting.

Whereas we can consider what would be gained by looking at the contribution
near the CMBR, i.e. z � 1100 or so for the CMBR,

whereas this would mean roughly that we would be looking in the regime of the
CMBR generated processes

ωsignal�from�Planck�to�CMBR ∝
3
2

� �1=γ

� 10 25=γð Þ � 10�3Hz (53)

Also

ΔEΔt≈ℏ � ℏωΔt≈ℏω � 2
3amin

� �1=γ

) ω≈ℏ�1 � 2
3amin

� ��1=γ
(54)

We claim that if we take the energy as consistent with a change in value as given by
Eq. (45) and Eq. (48) that this will lead to a frequency which may, if amin ≈ 10�25 �
10�20 (range from 10^-25 to 10^-20) lead to initial primordial production of Fre-
quencies as to emergence from a near singularity along the lines of an initial value of

ω≈ℏ�1 � 3
2

� �1=γ

� 1025=γ ∝
3
2

� �1=γ

� 1025=γHz (55)

Whereas as from [32] we assume the following table as given in that publication
for say a huge number of initial primordial black holes.

This would lead to about an energy release initially of the order of say

_E ¼ GW � change� in� energy ¼ 32 M1M2

� �2 M1 þM2

� �

5 � R2M5
Planck

��������!
M1¼M2¼MPlanck

64
5 � R2 Planck� lengthð Þ

� Change� in� power� from� Rotating � binary� blackholes

(56)
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We of course would be wanting to compare this with the change in energy as given
in Eq. (45) and Eq. (48).

Table 1 from [32] assuming Penrose recycling of the Universe as stated in that
document.

Now for the sake of primordial black holes.
The formula in page 16 of reference [32] that two black holes emit GWwith a wave

frequency 2 times the rotation frequency of the orbit of the two black holes to each
other.

If we assume that we are still using this approximation above, from [33].

R separationð Þ≃ reffg ¼
M1 þM2

� �

MPlanckð Þ2
�����������!

M1¼M2¼MPlanck����!
MPlanck¼1

1 � R Planck� lengthð Þ
(57)

I.e. this means that the primordial black holes, presumably of Planck size would be
separated about 1 Planck length from each other, that their recombination would be
quick and that the frequency range would likely be of the magnitude of about 10^25
Hz in terms of GRAVITATIONAL waves which would then be massively red shifted
downward to about `1 Hz in an Earth bound detector system.

I.e. a huge downward red shifting from 10^25 Hz to about a 1 Hz value in Earth
orbit.
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End of Prior Universe time frame Mass (black hole):
super massive end of
time BH
1.98910^+41 to about
10^44 grams

Number (black holes)
10^6 to 10^9 of them usually from
center of galaxies

Planck era Black hole formation
Assuming start of merging of micro
black hole pairs

Mass (black hole)
10^-5 to 10^-4 grams

Number (black holes)
10^40 to about 10^45,

Post Planck era black holes Mass (black hole)
Up to 10^6 grams per
black hole

Number (black holes)
10^20 to at most 10^25

Table 1.
Black hole production per cosmological era.
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Chapter 5

Kantowski-Sachs Barrow
Holographic Dark Energy Model
in Saez-Ballester Theory
of Gravitation
Yendamuri Sobhanbabu, Y. Jnana Prasuna
and G. Satyanarayana

Abstract

In this chapter, we have studied a spatially homogeneous and anisotropic
Kantowski-Sachs universe in the presence of Barrow Holographic Dark Energy in the
background of Saez-Ballester scalar-tensor theory of gravitation. To find the exact
solution of the SB field equations, we have assumed that the shear scalar is directly
proportional to the expansion scalar. This assumption leads to relation between metric
potentials of the models. We have discussed non-interacting and interacting cosmo-
logical models. Moreover, we have discussed several cosmological parameters such as
energy densities of DM and DE (ρm & ρb), deceleration qð Þ, equation of state (ωb) and
skewness (α) parameters, squared sound speed (v2s ), ωb-ωb0 plane statefinders and
Om-diagnostics parameters through graphical representation for both the interacting
models. Also, we have observed that the current values of deceleration and EoS
parameters of our constructed models coincide with the recent observational data.

Keywords: Kantowski-Sachs, Barrow holographic, scalar-tensor theory,
dark energy model, theory of gravitation

1. Introduction

The modern cosmological evidence [1–4] indicated that there is an accelerated
expansion. The responsible cause behind this accelerated expansion is a miscellaneous
element having exotic negative pressure termed as Dark Energy (DE). The nature and
the cosmological origin of DE are still enigmatic. To describe the phenomenon of DE,
several models have been presented. According to several findings, DE should behave
like a fluid with ‘negative pressure, counterbalancing the action of gravity, and
speeding up the universe’ [5, 6]. The general methodology is to define the dynamics of
the universe by assuming the source of DE is represented as a non-zero “cosmological
constant Λ,” connected to “vacuum quantum field fluctuations” [7, 8]. One proposed
solution to DE is the cosmological constant Λ. However, there are difficulties related
to its theoretically predicted order of magnitude relative to that of the observed
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vacuum energy [9]. Other solutions [10–15] go to the idea that cosmic acceleration
may be caused by a modification in gravity, perhaps General Relativity (GR) is not
valid on cosmological scales.

Hooft [16] has proposed a new dark energy model, known as the Holographic Dark
Energy (HDE) model, which was based on the Holographic Principle (HP) and some
features of quantum gravity theory. The holographic principle states that the number
of degrees of freedom of a gravity-dominated system must vary along with the area of
the surface bounding the system [17, 18]. For a system with size L, it is required that
the total energy in a region of size L should not exceed the mass of a black hole of the
same size for the quantum zero-point energy density associated with the UV cutoff,
thus L2ρb ≤M2

p, where ρb is the vacuum energy density caused by UV cutoff,Mp is the

reduced Planck mass given by the relation Mp≈ 1
8πG and L is the IR cutoff. The HDE

model with Hubble horizon as an IR cutoff is not able to explain the current acceler-
ated expansion [19, 20]. However, the HDE models with other IR cutoffs, e.g., particle
horizon, event horizon, apparent horizon, etc. describe the accelerated phenomena of
the evolution of the Universe and are in agreement with the observational data [21–
27]. Sadri and Khurshudyan [28] have analyzed the HDE model with the Hubble
horizon as an IR cutoff in the framework of the flat FRW model while taking into
account the non-gravitational interaction between DM and HDE, which is able to
explain the current accelerated expansion.

2. Body of the manuscript

Barrow [29, 30] has recently found the possibility that the surface of a black hole
could have a complex structure down to arbitrarily tiny due to quantum-gravitational
effects. The above potential impacts of the quantum-gravitational space-time form on
the horizon region would therefore prompt another black hole entropy relation, the
basic concept of black hole thermodynamics. In particular

SB ¼ A
A0

� �1þΔ
2

, (1)

Here A and A0 stand for the normal horizon area and the Planck area, respectively.
The new exponent Δ is the quantum-gravitational deformation with bound as
0≤Δ≤ 1 [29–33]. The value Δ ¼ 1 gives to the most complex and fractal structure,
while Δ ¼ 0 relates to the easiest horizon structure. Here as a special case, the stan-
dard Bekenstein-Hawking entropy is re-established and the scenario of Barrow Holo-
graphic Dark Energy (BHDE) has been developed. The BHDE models have been
explored and discussed by various authors [34–38] in various other contexts. The
energy density of BHDE is expressed as

ρb ¼ CH2�Δ, (2)

where C is an unknown parameter and Δ>0.
Nandhida and Mathew [39] have considered the Barrow Holographic Dark Energy

as a dynamical vacuum, with Granda-Oliveros (GO) length as IR cut-off and studied
the evolution of cosmological parameters with the best-estimated model parameters
extracted using the combined data-set of supernovae type Ia pantheon (SN-Ia) and
observational Hubble’s data. Bhardwaj et al. [40] have studied statefinder hierarchy
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model for the BHDE. Adhikary et al. [41] have constructed a BHDE in the case of non-
at universe in particular, considering closed and open spatial geometry and observed
that the scenario can describe the thermal history of the universe, with the sequence
of matter and DE epochs. Considering BHDE Sarkar and Chattopadhyay [42] recon-
struct modified gravity as the form of background evolution and point out that the
equation of state can have a transition from quintessence to phantom with the possi-
bility of Little Rip singularity. Saridakis [43] has studied modified cosmology through
spacetime thermodynamics and Barrow horizon entropy. Koussour et al. [44, 45] have
investigated Bianchi type I BHDE model and the stability analysis in symmetric
teleparallel gravity.

Shamir and Bhatti [46] have analyzed anisotropic DE Bianchi type III cosmological
models in Brans-Dicke (BD) theory of gravity. Aditya and Reddy [47] have investi-
gated anisotropic new HDE model in the framework of SB theory of gravitation.
Jawad et al. [48] have discussed cosmological implications of Tsallis DE in modified
BD theory. Santhi and Sobhanbabu [49, 50] have studied anisotropic THDE models in
Scalar tensor theories of gravitation. Sobhanbabu and Santhi [51] have investigated
anisotropic MHDE models with sign-changeable interaction in a scalar-tensor theory
of gravitation. Recently, Sharif and Majid [52] have studied isotropic and complexity-
free deformed solutions in self-interacting in a BD theory of gravitation. Very
recently, Pradhan et al. [53] have studied FRW cosmological models with BHDE in the
background of scalar-tensor theory of gravitation.

3. Metric and SB field equations

We consider a homogeneous and anisotropic KK Universe described by the line-
element

ds2 ¼ dt2 � X2 tð Þdr2 � Y2 tð Þ dθ2 þ sin 2θdϕ2� �
, (3)

where X tð Þ and Y tð Þ are functions of cosmic time t only.
We assume that the Universe is filled by a DM without pressure with energy

density ρmð Þ, and BHDE candidate with energy density (ρb). Here we take more
general Energy Momentum Tensors for DM and BHDE fluid in the following form:

Tν
μ ¼ diag 1,0,0,0½ �ρm and Tν

μ ¼ diag 1,�ωb,� ωb þ αð Þ,� ωb þ αð Þ½ �ρb, (4)

where ωb ¼ pb
ρb
is equation of state (EoS) parameter of BHDE, ρm is energy density

of DM, pb and ρb are pressure and energy density of BHDE, respectively, and α is
skewness parameter is in devitation from EoS parameter ωb on y and z axes, respec-
tively. The SB field equations are

Rμν � 1
2
Rgμν � wϕn ϕ,μϕ,ν �

1
2
gμνϕ,βϕ

,β
� �

¼ � Tμν þ Tμν

� �
, (5)

where Tμν and Tμν are energy-momentum tensors (EMT) for DM and DE, respec-
tively. Scalar field ϕ equation

2ϕnϕ,μ
,μ þ nϕn�1ϕ,βϕ

,β ¼ 0, (6)
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and energy conservation equations are

Tμν þ Tμν

� �
; ν ¼ 0, (7)

where Tμν and Tμν are EMTs for DM and BHDE, respectively.
The SB field Eq. (5), for KK line-element Eq.(3) with the help of Eq.(4), can be

written as

2
€Y
Y
þ

_Y
2

Y2 þ
1
Y2 �

w
2
ϕn _ϕ

2 ¼ �ωb ρb, (8)

€X
X
þ

€Y
Y
þ

_X _Y
XY
�w

2
ϕn _ϕ

2 ¼ � ωb þ αð Þ ρb, (9)

2
_X _Y
XY
þ

_Y
2

Y2 þ
1
Y2 þ

w
2
ϕn _ϕ

2 ¼ � ρm þ ρbð Þ, (10)

€ϕþ
_X
X
þ 2

_Y
Y

� �
_ϕþ n

2

_ϕ
2

ϕ
¼ 0: (11)

We can write the conservation Eq.(7) of the DM and BHDE as

_ρm þ
_X
X
þ 2

_Y
Y

� �
ρm þ _ρb þ

_X
X
þ 2

_Y
Y

� �
1þ ωbð Þρb þ 2α

_Y
Y

� �
ρb ¼ 0, (12)

where overhead dot (.) denotes ordinary differentiation with respect to cosmic
time t.

The SB field eqs. (8)–(11) form a system of four (4) non-linear equations with
seven (7) unknowns; X, Y, ρm, ρb, ωb, α, and ϕ. In order to solve the field equations
explicitly, we need three additional constraints which we will assume in the next
section. Now we will know some of the physical and geometric quantities that we will
need later.

The average scale parameter of the KK Universe is given by

a ¼ XY2� �1
3: (13)

The spatial volume of the universe

V ¼ að Þ3 ¼ XY2: (14)

The average Hubble parameter Hð Þ, expansion scalar (θ), and shear scalar (σ2) of
KK universe are defined as

H ¼ _a
a
, θ ¼ 3H, and σ2 ¼ 1

2

_X
X

� �2

þ 2
_Y
Y

� �2" #
� θ2

6
(15)

The Deceleration Parameter (DP) q of the KK universe is defined as

q ¼ � a€a
_a2

(16)
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4. Solution of the field equations and cosmological models

Hence to find the exact solution of the field equations, we have to use some
physically viable conditions; The shear scalar (σ2Þ is directly proportional to the scalar
expansion (θ) which leads to a relationship between metric potentials [54].

X ¼ Yl, (17)

where l 6¼ 1 is a positive constant and preserves the non-isotropic behavior of the
Universe. Also, we assume that the deceleration parameter (DP) q is a function of the
Hubble parameter (H) [55].

q ¼ �1þ γH, (18)

where γ is an arbitrary constant.
Now using eqs. (16), and (18), we get the exact solution

a ¼ e
1
γ

ffiffiffiffiffiffiffiffiffiffi
2γtþc1
p

, (19)

where c2 is an integration constant and γ arbitrary constant. From Eqs. (13), and
(19), we found the metric potentials

X ¼ e
3l

γ lþ2ð Þ
ffiffiffiffiffiffiffiffiffiffi
2γtþc1
p

, Y ¼ e
3

γ lþ2ð Þ
ffiffiffiffiffiffiffiffiffiffi
2γtþc1
p

(20)

From eq. (2), the energy density of BHDE is

ρb ¼ C
1

2γtþ c1ð Þ
� �2�Δ

2

(21)

Thus, the metric corresponding to the metric potentials (20) can be written as

ds2 ¼ dt2 � e
6l

γ lþ2ð Þ
ffiffiffiffiffiffiffiffiffiffi
2γtþc1
p

dr2 � e
6

γ lþ2ð Þ
ffiffiffiffiffiffiffiffiffiffi
2δtþc2
p

dθ2 þ sin 2θ dϕ2� �
(22)

From eqs. (10), (11), (20), and (21), we found the skewness parameter (α) is

α ¼ 1
C

9 1� l2
� �

H�1 þ 3γ lþ 2ð Þ l� 3ð Þ
lþ 2ð Þ2H�3

2
þ 9 1� lð Þ

lþ 2ð Þ2H�1
2
þ e�

6
γ lþ2ð ÞH

" #
HΔ�2 (23)

The scalar field ϕ is

ϕ ¼ ϕ0
nþ 2
2

� �ð
e
�3
γ

ffiffiffiffiffiffiffiffiffiffi
2γtþc1
p

dt, (24)

where ϕ0 is an integration constant.
The plot of DP (q) against redshift (z) is shown in Figure 1. We have observed that

the DP (q) passes from positive to negative value as the redshift increase and it
approaches to �1 at z ¼ �1. Thus, our model of the Universe goes from an early
deceleration region (q>0) to a current acceleration region (q>0). Also, we have
observed that the current values of q is consistent with recent observational data.
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4.1 Non-interacting BHDE in the SB cosmology

First, we consider that two fluids (DM and BHDE) do not interact with each other.
Hence the conversation eq. (14), of the fluids may be conserved separately. The
conservation eq. (14) of barotropic fluid leads to

_ρm þ 3Hρm ¼ 0, (25)

whereas the conservation eq. (14) BHDE leads to

_ρb þ 3H 1þ ωbð Þρb þ 2αρb
_Y
Y
¼ 0 (26)

From eq. (21) by using eqs. (20), (21), and (23), we get the EoS parameter

ωb ¼ �1� 2� Δ
3H2

� �
_H � 2

lþ 2

� �
α, (27)

where _H ¼ � γffiffiffiffiffiffiffiffiffiffi
2γtþc1
pð Þ32

and α ¼ 1
C

9 1�l2ð ÞH�1þ3γ lþ2ð Þ l�3ð Þ
lþ2ð Þ2H�32

þ 9 1�lð Þ
lþ2ð Þ2H�12

þ e�
6

γ lþ2ð ÞH

� �
HΔ�2.

The evolution of DM and BHDE densities with redshift (z) is depicted in Figures 2
and 3 for various values of Δ, we can see that DM and BHDE densities are positive and
increasing functions of redshift z throughout the evolution of the Universe at the
present epoch.

In Figure 4, we have plotted the behavior of skewness parameter (α) versus
redshift (z). It can be seen that the skewness parameter decreasing with an increase in
redshift (z) but throughout evolution the skewness parameter (α) is positive.

In Figure 5, we observed the dynamics of the EoS parameter (ωb) against redshift
(z) for three various values of Δ ¼ 0:92 0:94 0:96. The EoS parameter classifies the
expansion of the Universe. The EoS parameter ωb of the BHDE for the non-interacting
model completely varies in quintessence region (�1<ωb < � 1

3). The current values of
ωb are consistent with Planck observational data.

Figure 1.
Variation of deceleration parameter q versus redshift (z) for l ¼ 1:995, c2 ¼ 1, w ¼ 1000, and c3 ¼ 1 of all
models.
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4.2 ωb � ωb
0 plane

Caldwell and Linder [56] have pointed out that the quintessence phase of DE can
be separated into two distinct regions, that is, thawing (ωb0 >0, ωb <0) and freezing
ωb0 <0ð , ωb <0Þ regions through ωb-ωb0 plane. Applying the derivative of Eq. (22)
with respect to ln a, we have

ωb
0 ¼

Δ� 2ð Þ H €H � 2 _H
2

� �

3H4 � 2 _α
lþ 2ð ÞH , (28)

where _α ¼ 1
C

1
lþ2ð Þ2 9 l2 � 1

� �
H�

1
2 þ 3

2 9 1� l2
� �

H�1 þ 3γ lþ 2ð Þ l� 3ð Þ� �
H

1
2

� �
þ 9 1�lð Þ

lþ2ð Þ2 H
�1

2þ
h

6H
γ lþ2ð Þ e

�6
γ lþ2ð ÞH2 þ Δ� 2ð Þ 9 1�l2ð ÞH�1þ3γ lþ2ð Þ l�3ð Þ

lþ2ð Þ2H�32
þ e�

6
γ lþ2ð ÞH

� ��
HΔ�3 _H, and €H ¼ 3γ2

2γtþc1ð Þ52
.

Figure 3.
Variation of energy density (ρb) of BHDE versus redshift (z) for.

Figure 2.
Variation of energy density (ρm) of DM versus redshift (z) for l ¼ 1:995, c2 ¼ 1, w ¼ 1000, and c3 ¼ 1 of all models.
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Figure 6 shows theωb � ωb0 plane for the three various values ofΔ.We have
observed that our non-interacting BHDEmodel lies in the freezing region (ωb <0 and
ωb0 <0). It is noticed that the Universe‘s cosmic expansion accelerates more fastly in this
freezing area.

4.3 Stability analysis

We analyze now the stability of the obtained BHDE (non-interacting and
interacting) models.

v2s ¼ ωb þ ρb
_ρb

_ωb (29)

For our non-interacting BHDE model, squared speed sound v2s is given by

Figure 5.
Variation of equation of state parameter ωb versus redshift (z) for.

Figure 4.
Variation of skewness parameter (α) versus redshift (z) for.
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v2s ¼ �1�
2� Δ
3H2

� �
_H � 2

lþ 2

� �
αþ H _H

2� Δ

� �
_ωb (30)

where _ωb ¼ Δ�2ð Þ H €H�2 _H2
� �
3H3 � 2 _α

lþ2 , here _α ¼ 1
C

1
lþ2ð Þ2
h

9 l2 � 1
� �

H�
1
2 þ 3

2 9 1� 1ð ÞH�1
2 þ 3

2 9 1� l2
� �

H�1
���

þ3γ lþ 2ð Þ l� 3ð ÞÞH1
2Þ þ 9 1�lð Þ

lþ2ð Þ2 H
�1

2 þ 6H
γ lþ2ð Þ e

�6
γ lþ2ð ÞH2 þ Δ� 2ð Þ 9 1�l2ð ÞH�1þ3γ lþ2ð Þ l�3ð Þ

lþ2ð Þ2H�32
þ e�

6
γ lþ2ð ÞH

� ��
HΔ�3 _H

For the non-interacting model, Figure 7 shows the evolution of the SSS in terms of
redshift (z). It is clear that the BHDE non-interacting model is initially unstable
v2s ≤0
�

) and with cosmic expansion it becomes stable (v2s >0).

4.4 Interacting BHDE in the SB cosmology

In this case, we focus on the interaction between two dark fluids. Since the nature
of both BHDE and DM is still unknown, there is no physical argument to exclude the
possible interaction between them. Recently, some observational data shows that

Figure 6.
Variation of ωb versus ωb0 of the non-interacting model.

Figure 7.
Variation of squared sound speed v2s versus redshift (z) of the non-interacting model.
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there is an interaction between dark sectors [57, 58]. Several authors [59–61] have
investigated the signature of interaction between DE and DM by using optical, X-ray,
and weak lensing data from the relaxed galaxy clusters. So, it is reasonable to assume
the interaction between BHDE and DM in cosmology:

_ρm þ 3Hρm ¼ Q, (31)

whereas the conservation eq. (14) BHDE leads to

_ρb þ 3H 1þ ωbð Þρb þ 2αρb
_Y
Y
¼ �Q, (32)

where Q denotes the interaction term between two fluids (DM and BHDE) and we
assume the interaction Q ¼ 3βHρb, where β is coupling parameter:

Now, from eqs. (20), (21), (23), (24), and (32), we found that the EoS parameter is

ωb ¼ �1� β � 2� Δ
3H2

� �
_H � 2

lþ 2

� �
α, (33)

where _H ¼ � γffiffiffiffiffiffiffiffiffiffi
2γtþc1
pð Þ32

and α ¼ 1
C

9 1�l2ð ÞH�1þ3γ lþ2ð Þ l�3ð Þ
lþ2ð Þ2H�32

þ 9 1�lð Þ
lþ2ð Þ2H�12

þ e�
6

γ lþ2ð ÞH

� �
HΔ�2

For interacting BHDE model, the EoS parameter (ωb) versus redshift zð Þ for three
various values of Δ and β are shown in Figures 8–10. We have observed that the EoS
parameter starts from the matter-dominated era, then it moves to the quintessence
region (�1<ωb < � 1

3) and crosses the ΛCDM model (ωb ¼ �1), and finally
approaches to phantom region (ωb < � 1). Further, the current values of the EoS
parameter (ωb) are consistent with recent [62] observational data.

Figures 11–13 show the ωb � ωb0 plane for the three various values of Δ and β. We
have observed that our interacting BHDE model lies in the freezing region (ωb <0 and
ωb0 <0). It is noticed that the Universe‘s cosmic expansion accelerates more rapidly in
this freezing area.

Figure 8.
Variation of ωb versus redshift (z) for interacting model for Δ ¼ 0:92.

124

Gravitational Waves – Theory and Observations



For our interacting BHDE model, Figure 14 shows the evolution of the SSS in
terms of redshift (z). It is clear that the interacting BHDE model is initially unstable
v2s ≤0
�

) and with cosmic expansion it becomes stable (v2s ).

4.5 Statefinder diagnostics

In this section, we focus on the diagnosis of the statefinder. The Hubble parameter
H represents the Universe’s expansion rate and the deceleration parameter q repre-
sents the rate of acceleration or deceleration of the expanding cosmos, which are two
well-known geometrical parameters that characterize the Universe‘s expansion his-
tory. They only depend on the average scale parameter a. This statefinder pairs {r,s}
[63, 64] as follows

Figure 9.
Variation of ωb versus redshift (z) for interacting model for Δ ¼ 0:94.

Figure 10.
Variation of ωb versus redshift (z) for interacting model for Δ ¼ 0:96:
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Figure 11.
Variation of ωb versus ωb0 of the interacting model.

Figure 12.
Variation of ωb versus ωb0 of the interacting model.

Figure 13.
Variation of ωb versus ωb0 of the interacting model.
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r ¼ a⃛
aH3 ¼

€H
H3 þ 3

_H
H2 þ 1 (34)

s ¼ r� 1
3 q� 1

2

� � ¼
€H
H3 þ 3 _H

H2

3 q� 1
2

� � (35)

Figure 15 shows the evolutionary trajectories in r, sf g plane. In the figure, our
constructed model lies in the chaplygin gas ( r> 1, s<0f g) model and also meets ΛCDM
model ( r ¼ 11, s ¼ 0f g). Figure 16 depicts that our model lies in Standard Cold Dark
Matter (SCDM) region ( r> 1, q>0f g)and also meets ΛCDM region ( r ¼ 1, q ¼ 0f g).
4.6 Om-diagnostic

As a complementary to the statefinder parameters r, sf g, a new diagnostic is known
as Om studied by some of the researchers [65, 66]. The Om diagnostic parameter for
our model is

Figure 14.
Variation of squared sound speed (v2s ) versus redshift (z) of the interacting models.

Figure 15.
Variation of statefinder parameters r versus s of the models.
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Om xð Þ ¼ h2 xð Þ � 1
x3 � 1

, (36)

where x ¼ 1þ z and h xð Þ ¼ H xð Þ
H0

.
The trajectory of Om diagnostics versus redshift (z) is shown in Figure 17. The

trajectory reveals that the BHDE model shows initially a positive slope of the trajec-
tory indicating that our model has phantom behavior and the negative slope of the
trajectory indicates that our model behavior is quintessence in late time.

5. Conclusions

In this chapter, we have investigated the accelerated expansion by assuming the
BHDE Universe within the framework of SB scalar-tensor theory of gravity. We have

Figure 16.
Variation of statefinder parameters r versus s of the models.

Figure 17.
Variation of statefinder parameters r versus s of the models.
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investigated various cosmological parameters to analyze the viability of the models
and our conclusions are the following:

The deceleration parameter (q) passes from positive to negative value as the
redshift increase and it approaches to �1 at z ¼ �1. Thus, our model of the Universe
goes from an early deceleration region (q>0) to a current acceleration region
(Figure 1). The parameter (q) of our model consistent with the current observational
data are, Capozziello et al. [67], given as

q ¼ �0:6401� 0:187 BAOþMasersþ TDSLþ PanthelonþH0ð Þ
q ¼ �0:930� 0:218 BAOþMasersþ TDSLþ PanthelonþHzð Þ:

For our non-interacting model, the energy densities of DM and BHDE are positive
and increasing function of redshift z throughout the evolution of the Universe at the
present epoch (Figures 2 and 3). The skewness parameter decreasing with increase in
redshift (z) but throughout evolution the skewness parameter (α) is positive
(Figure 4). The EoS parameter ωb of the BHDE for non-interacting model completely
varies in quintessence region (�1<ωb < � 1

3) for three different values of
Δ ¼ 0:92 0:94 0:96. The current values of ωb are consistent with Planck [62] obser-
vational data (Figure 5). The ωb � ωb0 plane for the three various values of Δ we
observe that our non-interacting BHDE model lies in the freezing region (ωb <0 and
ωb0 <0). It is noticed that the Universe‘s cosmic expansion accelerates more fastly in
this freezing area (Figure 6). The SSS is initially unstable v2s ≤0

�
) and with cosmic

expansion, it becomes stable (v2s ) for non-interacting BHDE model (Figure 7).
For interacting BHDE model, the EoS parameter starts from the matter dominated

era, then it moves to the quintessence region (�1<ωb < � 1
3) and crosses the ΛCDM

model (ωb ¼ �1), and finally approaches to phatom region (ωb < � 1) for three dif-
ferent values of Δ and β. Also, it is worthwhile to mention here that the present values
of the EoS parameter of our BHDE models are in agreement with the modern Plank
observational data given by Aghanim et al. [62]. It gives the constraints on the EoS
parameter of dark energy as follows:

ωb ¼ �1:56þ0:60�0:48 Planckþ TT þ lowEð Þ
ωb ¼ �1:58þ0:52�0:41 Planckþ TT,EEþ lowEð Þ

ωb ¼ �1:57þ0:50�0:40 Planckþ TT,TE,EEþ lowEþ lensingð Þ
ωb ¼ �1:04þ0:10�0:10 Planckþ TT,TE,EEþ lowEþ lensing þ BAOð Þ

It can be observed from Figures 5, 8–10 that the EoS parameter of our models in
both non-interacting and interacting cases lie within the above observational limits
which shows the consistency of our results with the above cosmological data. We have
observed that our interacting BHDE model lies in the freezing region (ωb <0 and
ωb0 <0) for the three various values of Δ and β. It is noticed that the Universe‘s cosmic
expansion accelerates more rapidly in this freezing area (Figures 11–13). The SSS is
initially unstable v2s ≤0

�
) and with cosmic expansion it becomes stable (v2s ). It is

exactly similar to the non-interacting case (Figur 14).
The behavior of r, sf g and r, qf g planes for our model lies in the chaplygin gas

( r> 1, s<0f g) model and meets ΛCDM model ( r ¼ 11, s ¼ 0f g). The r, qf g plane lies
in SCDM region ( r> 1, q>0f g)and also meets ΛCDM region ( r ¼ 1, q ¼ 0f g). The
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trajectory of Om-diagnostics reveals that the BHDE model shows initially our model
has phantom behavior and quintessence behavior in late time (Figures 15–17).

Finally, we can state that some of the preceding conclusions in KK BHDE model
are good agreement with recent observations.
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Chapter 6

Main Experiments for Detection of 
Gravitational Waves at Frequency 
below 3 kHz: A Quick Review
Carlos Frajuca

Abstract

Gravitational Waves were detected at last with a laser-interferometric detector 
in 2015 with a 4 kilometers long laser-interferometric detector. It took more than 
100 years of effort to reach such a goal. This achievement is one more piece to prove 
the Einstein General Theory of Relativity. Besides new detections with these experi-
ments, a lot of effort has been allocated to the current laser-interferometric detector to 
improve its performance and detect signals from sources farther away with the inten-
tion of searching all the known Universe for Gravitational Wave sources. Nevertheless, 
this kind of experiment has a frequency range limited by seismic noise around 10 Hz 
and lower. Efforts are being made for the detection of Gravitational Waves at different 
frequencies, for instance, laser interferometer in space, measurement of pulsar timing 
and deviations of polarization of the microwave background. All these experiments 
are discussed in this chapter as their sources. A very broad frequency range of detec-
tors should be available in the next decade.

Keywords: gravitational waves, gravitational waves detection, pulsar time array,  
pulsar time, laser interferometer

1. Introduction

Gravitational waves (GW) are space–time ripples generated by accelerated 
massive objects, to have a reasonable intensity, these massive objects must be of a 
cosmic origin like compact stars such as Neutron Stars or Black Holes. Considering 
the Einstein General Theory of Relativity, these GW move at the speed of light and 
can accelerate masses or excite quadrupolar normal-modes of elastic bodies as the 
equivalent principle predicts. The potential sources of GWs include binary compact 
star systems composed of white dwarfs, neutron stars and black holes.

The existence of GW is also a consequence of the Lorentz Covariance of Einstein 
General Theory of Relativity. GW does not exist in the Newtonian theory of gravita-
tion, which postulates that physical interactions propagate at infinite speed.

The first detection of GWs came from the inward spiral and merger of the Black 
Hole (BH) binary. The event is called GW150914 [1], and the name is given by the 
Letters GW followed by the year, month and day of the detection, then the detection 
happened on September 14, 2015. In 2017 a simultaneous detection of GW radiation 
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and electromagnetic radiation was made from what is called a hipernova, a binary 
Neutron Star (NS) system that merged. It is called GW170817, which could have started 
the era of multi-messenger astronomy [2], which involves GW, optical radiation, radio, 
gamma-rays and X-rays radiation. Studying the universe with these different types of 
radiation opens a new era for understanding the universe.

In 2017, the Nobel Prize in Physics was awarded to Barry Barish, Kipe Thorne and 
Rainer Weiss for their role in detecting gravitational waves.

Before the first GW detection, there was indirect evidence of these GW. 
Measurements of the Hulse and Taylor binary pulsar system suggested that GW was 
more than a hypothetical concept, at least for the emission of such waves; the authors 
of this measurement won the Nobel prize. This system is one of the potential sources 
of detectable gravitational waves, but because of the frequency with which this 
system operates, a new kind of detector can detect much smaller frequencies than the 
one that detected GW150914. The kind of detector responsible for this detection are 
interferometric ones, whose sensitivity is limited at frequencies close to 10 Hz and 
lower because of seismic noise on the mirrors.

Another option to detect GW radiation is using resonant-mass detectors (this was 
the first kind of detector proposed in the 1960s). From those, the only remaining 
detector is the Mario Schenberg Brazilian GW detector that uses the detection of the 
vibration modes of five quadrupole modes of a spherical resonant-mass of 1124 kg 
with a radius of 32.33 cm made of CuAl6% alloy [3], this mass vibrates when a GW 
passes through it with a resonant frequency. Figure 1 shows a schematic of such a 
detector that operates at a temperature of 4 K.

Figure 1. 
Drawing perspective of Schenberg detector.
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Detectors for GW are the topic of this book chapter and will be addressed in the 
next section. Then, in the following section, a spectrum with the main sources and 
main experiments will be shown.

2. Gravitational waves experiments

2.1 Laser-interferometric detectors

The Interferometry system essentially works by measuring the variations that 
occur in laser light beams, which are arranged along two orthogonal arms, as a normal 
interferometer works, the main difference is the size of these detectors, with arm 
lengths around 3–4 kilometers long. The detection occurs when the variations in the 
interferometer arm’s length cause variations in the interference patterns in the photo-
detectors that are observed because the velocity of the light beams is constant even in 
the presence of GW. This difference could also cause a difference of arriving time in 
the mirrors, but the time difference is too small to be measured. Using arm length of 
kilometer size makes these detectors capable of measurements in length of less than a 
thousandth of a neutron diameter.

A powerful laser beam (with a power of tens of Watts) passes through a beam 
splitter allowing the two generated beams to have the same phase and to be sepa-
rated orthogonally, at the end they are reflected by mirrors that exist in the ends of 
the arms, some are semi-reflective (the power in each laser beam inside the arms 
reach 400 kW). The phases of the reflected laser beams are adjusted to generate a 
destructive interference pattern at the photodetector, so no signal is detected by the 
photodetector in the detector with no GW passing through. For the occasion of a GW 
across it, it causes space–time to expand and contract infinitesimally in orthogonal 
directions, thus changing the interference pattern in the photodetector and a signal is 
detected. Figure 2 shows the schematics of such a detector.

There are two such detectors in operation: the Laser Interferometric Gravitational 
Observatory (LIGO) detector (an American detector [4]) and VIRGO (a Franco-Italian 
detector [5]). A third detector is being built in Japan, the Kagra detector, as can be seen 
in [6]. Efforts are being made to build a fourth detector to complete the sky coverage for 
GW in the range of 10–3000 Hz; the position of this next detector is probably in India.

Also, the existence of more than one of these detectors is a way of preventing 
the possibility of false detections due to small earthquakes, vibrations in the mirror 

Figure 2. 
Schematics of a laser-interferometric GW detector.
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suspensions, some phase variations, or some other local source of noise. When detect-
ing a signal, this signal will be compared with signals detected by other detector or 
detectors, and the signal is only confirmed if signals are measured in more than one 
detector, with a right coincidence time between the detectors and the signals have the 
same characteristics: exactly the same profile in frequencies considering the detector 
characteristics and the arriving time is coherent with the position of the detectors. All 
of these measurements happen in a vacuum, avoiding the possibility of interactions of 
the laser in some molecules that could mimic the effect of a GW signal. The character-
ization of one of these detectors can be seen in [1]. Some of these are: lasers operating 
in higher frequency, mirror suspension made of fused silica to reduce creep noise and 
the improvement of mirror suspension to reduce thermal and seismic noise.

2.1.1 The real laser-interferometric detector

The interferometric GW detectors are very complicated and complex machines. 
As the interferometer must be set in a dark fringe condition, the vibrations acting on 
the mirrors can change the dark fringe condition as the mirrors are somehow con-
nected to the ground and are finite temperature, so they vibrate, which changes the 
dark fringe condition. Then a very good suspension that attenuates the vibrations 
must be used, even adding some active system to lower the vibration. Figure 3 shows 
a schematics of such suspension; this example is about the LIGO detector.

The Italian detector Virgo has a more sophisticated suspension, which makes 
this detector more sensitive at lower frequencies, for each mirror suspension is 
composed of an inverted pendulum and six masses suspended by their centers. As 
it is not enough, add to it a collection of 18 LVDTs (Linear Variable Displacement 
Transducers), five accelerometers, 23 coils, three piezoelectric devices and 21 motor 
drivers for each mirror. All this system is called the supperatenuator [5].

These details show that it is very difficult to keep the GW interferometric detec-
tors locked in a dark fringe condition, even depending on active systems.

Figure 3. 
Schematics side view of the mirror suspension system of the LIGO detector showing the electrostatic actuator 
which is used to keep the detector locked in at a dark fringe condition.
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But how sensitive the interferometer must be to make measurements of GW. For 
a 4 kilometer size GW detector, the first measurement of GW was of a displacement 
of 10−18. As the arm length is 4 kilometer, the variation in length was 4 × 10−15 m. As 
the power inside the arms was 100 kW with an input power of 20 W, the detector 
has a recycling factor of 5000, which makes the real sensitivity of the interferometer 
close to 10−12 m.

2.2 The resonant-mass gravitational wave detector

Figure 4 shows an example of a second-generation resonant-mass GW detector 
which operated for about two decades at Louisiana State University. This detector 
was called Allegro, as can be seen in [7]. This kind of detector operating in their 
quantum limit can be used to calibrate interferometric GW detectors, as can be seen 
in [8, 9], as these detectors are narrowband they cannot give the behavior of the GW 
with the frequency.

When a GW passes through a resonant-mass GW detector, its resonant-mass 
(called antenna) vibrates in resonance with the GW. Then, the antenna surface 
motion is measured by motion sensors which are transducers that transform these 
vibrations into electrical signals. These signals are then analyzed and the intensity of 
such GW can be obtained by modeling the system detection. The transducer is usually 
composed of a mechanical oscillators that increase the coupling of the vibration 
modes of the antenna to the electronic sensor, selecting and filtering the frequency 
of interest [10–13] and (for a spherical detector) the direction of the signal can be 

Figure 4. 
The figure shows the schematics of a bar resonant-mass gravitational wave detector, in this case, the detector called 
Allegro, which operated for two decades in the Louisiana State University.
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obtained, as can be seen in [ 14 – 16 ]. The Brazilian detector uses microwave parametric 
transducers that match the antenna’s 3.2 kHz quadrupolar mode to the electronic 
sensor. This transducer has a superconducting cavity into which a resonant, very-low-
noise monochromatic microwave signal is injected, and changes in this signal as the 
cavity vibrates, allowing the measurement of the GW’s effects on the antenna. Other 
options are capacitive and inductive transducers. 

 When no GW is present in the system, the transducer is never still, as it vibrates 
because of the thermal noise, the noise that usually limits the sensitivity of a reso-
nant-mass GW detector. 

 When GW resonant-mass detectors operated for about two decades and formed 
a worldwide network, this network set upper limits for amplitudes of GW signals 
in their operational frequency range that they covered while refining its sensitivity. 
Figure 5   shows  this worldwide network (when its third-generation antennas were 
operational). Those antennas were cylindrical bars tuned to GW with frequencies 
around 1 kHz.  

 The design of resonant-mass GW detectors did not allow their antennas to vibrate 
frequencies less than 1 kHz [ 17 ]. After the report of direct detections and the follow-
ing direct detections, the frequency range around 128 Hz seems to be a possible range 
for GW detection. One of the reasons these detectors never made a detection was the 
operational frequency chosen because there is no signal in this frequency region. A 
possibility to use these detectors would be to change their design and develop a new 
resonant-mass GW detector with quadrupole modes near the frequency of 128 kHz 
that could operate in coincidence with laser-interferometric detectors. 

 These detectors are easier and cheaper to build. Such massive detectors properly 
designed and positioned near interferometric GW detectors can be used to make coin-
cidence detections of the stochastic GW background, as it can be used to provide data 
for veto procedures (which help identify false detections), helping more accuracy in the 
data analysis. They can also be used to increase calibration, as mentioned before. 

  Figure 5.
  Network of resonant-mass GW detectors that was operational for about two decades.          
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Monolithic sapphire parametric transducers can be used to improve the sensitivity 
of the resonant-mass GW detectors as can be seen in [18].

2.3 Pulsar timing

Pulsar timing is an indirect measurement of GW. Using signals that come from 
pulsars (a neutron star that rotates and sends, like a lighthouse, electromagnetic 
radiation at very regular intervals). Observatories around the world are trying to 
mine these signals to look for some small differences in these regular intervals, as can 
be seen in Figure 6. If a GW passes through this signal, the part of the signal orthogo-
nal to the GW will arrive at Earth with a certain delay. The pulses are folded on top 
of each other, looking for some residuals. The problem is that they only work for big 
periods of time, like some decades. That is because these experiments detect signals 
in the range of nanoHertz. A review of these experiments can be seen in [19]. Some 
results are appearing in the literature, but with no concrete results yet.

There are three major experiments: Parkes Pulsar Timing Array (PPTA, Australia), 
European Pulsar Timing Array (EPTA, Europe) and NanoGrav (American project).

A review of these advanced ground based detectors can be seen in [20].

2.4 Polarization of cosmic microwave background

Another range to explore GW radiation is the ultra-low frequency domain 
around 10−18 Hz. Trying to find the effects of GW radiation imprinted in the cosmic 

Figure 6. 
Signal arriving at Earth coming from a pulsar.

Figure 7. 
Representation of electric and magnetic polarizations of the microwave background.
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microwave background (CMB) when the universe was 300,000 years old. So far, no 
experiment has been able to measure the respective B-modes (magnetic modes) of 
the CMB, and more information can be obtained in [21]. Some researchers believe 
that because of the weakness of the signal, no signal could ever be detected. Figure 7 
shows the E and B-mode polarizations of the CMB.

2.5 Space interferometric detectors

Space interferometric detectors are interferometers mounted in satellites that 
are not affected by seismic noise, and, as they are much bigger, they are sensitive 
to frequencies much lower than their terrestrial relative. Some information about 
them and other future detectors can be found in [22]. As they are built in space, 
they are not limited by the seismic noise that limits the sensitivity of ground 
detectors.

A list of these experiments include: LISA (Laser Interferometer Space 
Antenna, NASA-ESA), DECIGO (Deci-Hertz Interferometric Gravitational Wave 
Observatory–Japan), TianQuin (China) and Taiji (China).

3. Experiments at all the frequency spectrum

Figure 8 summarizes all the expected sources and the expected main detectors 
for the observation of GW radiation in the audio regime (some kHz) and lower. The 
green area is the background of binary sources. Below it, with a lower amplitude, 
there is a region where is expected the presence of the GW relic background, fossil 
radiation from the very beginning of the universe, probably hidden because of the 
binary background.

Figure 8. 
Spectrum for the detection sources and detectors.
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4. Conclusions

We are living in a very exciting moment in the history of science and astronomy, 
a new window for the observation of the universe is opening. With the new experi-
ments coming in operation, all ranges of frequencies could be observed. This is 
for GW astronomy as the observations in visible, infrared, ultraviolet, x-rays and 
gamma-rays are for astronomy.

With all that information, some of the most hidden astrophysical phenomena 
could be finally explored. It will be possible to make gravitational observations 
together with electromagnetic observations. The first one, the kilonova observation 
with gravitational and gamma-rays gave a glimpse of the merge of two neutron stars, 
the gravitational signal gives the masses of the merging objects and the electromag-
netic signal gives information about the electromagnetic emission of the process, a 
much more complete description.

With the new GW detector much more information can be gathered, with the 
space laser-interferometric detectors, the orbits of compact objects can be found, 
objects that do not emit light and are part of binary systems, and white dwarf 
binaries. With the pulsar timing, the merger of galaxies with their central black 
holes can be better understood and if the measurement of the primordial GW can 
be achieved, a glimpse of the very first instants of the universe can make what 
information it can bring.

These are really exciting times.
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Chapter 7

Effects of Gravitational Waves on
Two-Level Atom Moving in a
Quantized Traveling Light Field:
Exact Solution via Path Integral
Hilal Benkhelil

Abstract

We adopt a coherent states path integral formalism to study the system of a
two-level atom moving in a quantized traveling light field and a gravitational field. By
using the phase space and some rotations in the space of coherent states, have enabled
greatly simplify the calculations. The propagator is first written in a standard form,Ð
D pathð Þ exp i=ℏð ÞS pathð Þ, by replacing the spin with a unit vector aligned along the

polar and azimuthal directions. Then, it is determined exactly due to the auxiliary
equation which has a spacial function as a solution. The corresponding wave functions
have been deduced by applying the principles of quantum mechanics. The results
obtained are perfectly identical with those found by other standard methods.

Keywords: path integral, propagator, coherent states, the Jaynes-Cummings model,
gravitational waves

1. Introduction

Gravitational waves are waves of the intensity of gravity generated by the acceler-
ated masses of an orbital binary system that propagate as waves outward from their
source at the speed of light. Gravitational waves transport energy as gravitational
radiation, a form of radiant energy similar to electromagnetic radiation [1].

The effect of gravitational waves on the movement of atoms is important and
cannot be neglected. In atomic optics experiments have made it possible to create
atomic clouds and beams with very small velocity [2]. For atoms moving with a
velocity of a few millimeters or centimeters per second for a time period of several
milliseconds or more, the influence of Earth’s acceleration becomes important and
cannot be neglected [3].

Among the simplest scheme to investigate the interaction between a two-level
atom and a single-mode quantized electromagnetic field is the Jaynes-Cummings
model (JCM) [4]. The JCM has received a great deal of experimental as well as
theoretical attention [5–8]. Over the years, the JCM has been extended and general-
ized in many directions, for example, the effects of finite cavity damping [9, 10],

149



intensity dependent coupling [11, 12] and the introduction of a Kerr-like medium [13].
A very significant and noteworthy generalization of JCM is to include the quantization
of atomic momentum and position [14–16] so that the internal and external dynamics
of the atom could be treated into this model.

For this reason, we are devoted to this model of interaction, we use the path
integral formalism in the bosonic and fermionic coherent states representation to
solve the generalized JCM in the presence of a gravitational field, governed by the
Hamiltonian (ℏ ¼ 1)

H ¼ p2

2m
�mgrþ ω a†aþ 1

2

� �

þωa

2
σz þ λ eþikraσþ þ e�ikra†σ�

� �
:

(1)

Here, a and a† are the atomic flipping operators, ω is the field frequency, λ is the
atom-field coupling constant, ωa is the transition frequency between the levels,
σz, σþ, σ� are the usual Pauli matrices, k is the wave vector of the running wave, p and
r denote, respectively, the momentum and position operators of the atomic center of
mass motion, and g is Earth’s gravitational acceleration.

In this paper, we propose to present an alternative solution to the given problem by
the coherent states path integral representation via the Schwinger’s model of spin. It
should be noted that, in the semi-classical description of two-level atom interacting
with electromagnetic wave, the effect of the gravitational field has been recently
studied using fermionic coherent state path integral [17].

This paper is organized as follows. In Section 2, we give a brief review of the
bosonic and fermionic coherent states path integral representation for our further
computations. In Section 3, after setting up a path integral formalism for the propa-
gator, we perform the direct calculations over the angular variables. Accordingly, the
integration over the bosonic variables is easy to carry out and the result is given as a
perturbation series, which is summed up exactly. The explicit result of the propagator
is directly computed and the wave function is then deduced in Section 4. Finally, we
present our conclusions in the last section, we give a brief review of the bosonic and
fermionic coherent states path integral representation.

2. Coherent state propagator

At this stage, we briefly give the definitions and some properties related to bosonic
and fermionic coherent states in the path integral formalism.

For the coherent states Zj i relative to bosons, the properties are known. These are

• the eigenstate of the annihilation operator a a, a†½ � ¼ 1ð Þ

a Zj i ¼ Z Zj i, (2)

• they can also be created from the vacuum state 0j i by applying a unitary operator
called the displacement operator

Zj i ¼ eZa
†�Z ∗ a 0j i, (3)
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In this case, the scalar product and the projector operator are respectively

ZjZ0h i ¼ exp Z ∗Z0 � 1
2

Zj j2 þ Z0j j2
� �� �

, (4)

ð
d2Z
π

Zj i Zh j ¼ 1: (5)

As for spin interaction, we use the approach whose recipe includes replacing the
Pauli matrices σi by a unit vector n directed along θ,φð Þ

θ,φj i ¼ e�iφSze�iθSy ↑j i (6)

which is obtained by applying two rotations with angles θ and φ around the z and y
axes on the state ↑j i, and whose scalar product and projector are respectively

θ,φh jθ0,φ0i ¼ cos
θ

2
cos

θ0

2
e
i
2 φ�φ0ð Þ þ sin

θ

2
sin

θ0

2
e�

i
2 φ�φ0ð Þ (7)

1
2π

ð
dφd cos θð Þ θ,φj i θ,φh j ¼ I: (8)

Taking into account that

θ,φh jσz θn,φ0j i ¼ cos
θ

2
cos

θ0

2
eþ

i
2 φ�φ0ð Þ � sin

θ

2
sin

θ0

2
e�

i
2 φ�φ0ð Þ, (9)

θ,φh jσþ θn,φ0j i ¼ cos
θ

2
sin

θ0

2
eþ

i
2 φþφ0ð Þ, (10)

θ,φh jσ� θ,φ0j i ¼ sin
θ

2
cos

θ0

2
e�

i
2 φþφ0ð Þ: (11)

According to the habitual construction procedure of the path integral. We consider
the quantum state r,Z, θ,φj i, where Z is a complex variable generating the dynamics
of the field, θ,φð Þ are the polar angles variables generating the dynamics of the spin
and r the real variable describing the atom position, with the corresponding projector

ð
rj i rh jdr3 ¼ 1: (12)

The transition amplitude from the initial state ri,Zi, θi,φij i and the final state

rf ,Zf , θf ,φf

���
E
at ti ¼ 0 to the final state at tf ¼ T is defined with the matrix elements

of the evolution operator

K f , i;Tð Þ ¼ rf ,Zf , θf ,φf jU Tð Þjri,Zi, θi,φi

D E
, (13)

where

U Tð Þ ¼ TD exp � i
ℏ

ðT
0
H tð Þdt

� �
, (14)

with TD the Dyson chronological operator.
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For moving to the path-integral representation, we first subdivide the time interval
0,T½ � into N þ 1 intermediate moments of length ε. Using the Trotter’s formula, we
then introduce in (13) the projectors according to these N intermediate instants,
which are regularly distributed between 0 and T. We obtain the discrete path-integral
form of the propagator

K f , i;Tð Þ ¼ lim
N!∞

m
2πiε

� �3N=2
ðYN

n¼1
d3rn

ðYN
n¼1

d2Zn

π
e�Z

∗
n Zn

�
YNþ1
n¼1

rn,Znje�iεH0 jrn�1,Zn�1
� �

� lim
N!∞

ðYN
n¼1

dφd cos θð Þ
2π

YNþ1
n¼1

Zn, θn,φnje�iεHint jZn�1, θn�1,φn�1
� �

,

(15)

where

rNþ1 ¼ rf ,ZNþ1 ¼ Zf , θNþ1 ¼ θf ,φNþ1 ¼ φf

and

r0 ¼ ri,Z0 ¼ Zi, θ0 ¼ θi,φ0 ¼ φi

8><
>:

, (16)

and the propagator related to our problem takes the form of Feynman path integral

K ¼
ð
Dpathei Actionð Þ: (17)

After having obtained the conventional form, it remains to integrate it, in order to
extract the interesting physical properties. We thus proceed to the calculation of
K f , i;Tð Þ in the next section.

3. The propagator calculation

We note that (15) is written like the following discrete-time form

K f , i;Tð Þ ¼ lim
N!∞

m
2πiε

� �3N=2
ðYN

n¼1
d3rn

YNþ1
n¼1

exp i
m
2ε

rn � rn�1ð Þ2 þ εmgrn
h in o

� lim
N!∞

1
2πi

ðYN
n¼1

dZ ∗
n dZne�Z

∗
n Zn
YNþ1
n¼1

exp
iε
ℏ
ω Z ∗

n Zn�1 þ 1
2

� �� �

� lim
N!∞

ðYN
n¼1

dφd cos θð Þ
2π

YNþ1
n¼1

� cos
θn
2
eþ

i
2φn , cos

θn
2
e�

i
2φn

� �
R rn, tnð Þ cos

θn�1
2

e�
i
2φn�1 sin

θn�1
2

eþ
i
2φn�1

� �
,

(18)
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with

R rn, tnð Þ ¼ e�iε
ωa
2 σz þ iεK Zn, rn, tnð Þ

h i
, (19)

where

K rn, tnð Þ ¼ 0 �λeþikrnZn

�λe�ikrn�1Z ∗
n 0

 !
: (20)

To integrate, it is necessary to eliminate first the inconvenient terms e�ikr, which
appear in the action with the help of the following change

φn ¼ φ0n þ krn: (21)

The new expression we have to calculate is therefore

K f , i;Tð Þ ¼ lim
N!∞

m
2πiε

� �3N=2
ðYN

n¼1
d3rn

YNþ1
n¼1

exp i
m
2ε

rn � rn�1ð Þ2 þ εmgrn
h in o

� lim
N!∞

1
2πi

ðYN
n¼1

dZ ∗
n dZne�Z

∗
n Zn
YNþ1
n¼1

exp
iε
ℏ
ω Z ∗

n Zn�1 þ 1
2

� �� �

� lim
N!∞

ðYN
n¼1

dφ0d cos θð Þ
2π

YNþ1
n¼1

� cos
θn
2
eþ

i
2φ
0
n , cos

θn
2
e�

i
2φ
0
n

� �
R1 rn, tnð Þ

cos
θn�1
2

e�
i
2φ
0
n�1

sin
θn�1
2

eþ
i
2φ
0
n�1

8>>><
>>>:

9>>>=
>>>;
,

(22)

where

R1 rn, tnð Þ ¼
1� iε

ωeg

2

� �
eikΔrn �iελZn

�iελZ ∗
n 1þ iε

ωeg

2

0
B@

1
CA (23)

with,Δrn ¼ rn � rn�1: (24)

We use the following identity

ðþ∞
�∞

d3pn
2πð Þ3 exp

�iε
2m

p2n þ ipnΔrn
� �

¼ m
2πiε

� �3=2
exp

im
2ε

Δrnð Þ2, (25)

Thus, propagator (22) can be rewritten as
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K f , i;Tð Þ ¼ lim
N!∞

ðYN
n¼1

d3rn
ðþ∞
�∞

d3pn
2πð Þ3 exp

XNþ1
n¼1

�iε
2m

p2n þ ipnΔrn þ iεmgrn

� �

� lim
N!∞

1
2πi

ðYN
n¼1

dZ ∗
n dZne�Z

∗
n Zn
YN
n¼1

exp �iεω Z ∗
n Zn�1 þ 1

2

� �� �

� lim
N!∞

ðYN
n¼1

dφ0d cos θð Þ
2π

YNþ1
n¼1

� cos
θn
2
eþ

i
2φ
0
n , cos

θn
2
e�

i
2φ
0
n

� �
R2 pn, tn
� � cos

θn�1
2

e�
i
2φ
0
n�1

sin
θn�1
2

eþ
i
2φ
0
n�1

8>><
>>:

9>>=
>>;
,

(26)

with

R2 pn, tn
� � ¼

1� iε
ωa

2
þ k2

2m
þ kpn

m

 !
�iελZn

�iελZ ∗
n 1þ iε

ωa

2

0
BBB@

1
CCCA: (27)

By integrating over the N variables rn, we clearly get Dirac functions δ _p�mgð Þ,
which means that the particle is only subject to the action of gravitational waves. The
atom impulsion is

pn ¼ mgtn þ p0 where p0 constant
� �

: (28)

The contribution of the time-linear function in the computation of the propagator
has the following result

K f , i;Tð Þ ¼
ð
d3p0
2πð Þ3 e

i mgtþp0ð ÞrjT0 e�i
m
6g

2T3þp2
0

2mTþ1
2gp0T

2

� �

�
ð
dZ ∗

n dZn

2πi
e�Z

∗
n Zn exp i

ðT
0
dt

i
2

_Z
∗
Z � _ZZ ∗

� �
� ωZ ∗Z � ω

2

� �� �

� lim
N!∞

ðYN
n¼1

dφ0d cos θð Þ
2π

YNþ1
n¼1

� cos
θn
2
eþ

i
2φ
0
n , cos

θn
2
e�

i
2φ
0
n

� �
R3 p0, tn
� � cos

θn�1
2

e�
i
2φ
0
n�1

sin
θn�1
2

eþ
i
2φ
0
n�1

8>><
>>:

9>>=
>>;
,

(29)

with

R3 p0, tn
� � ¼

1� iε
ωa

2
þ k2

2m
þ kgtn þ

kp0
m

 !
�iελZn

�iελZ ∗
n 1þ iε

ωa

2

0
BBB@

1
CCCA: (30)
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At this level, let us deal with the integration over the Grassmann variables. We
shall introduce the following change

cos
θn�1
2

e�
i
2φ
0
n�1

sin
θn�1
2

eþ
i
2φ
0
n�1

8><
>:

9>=
>;
¼ e�

i
2

k2
2mtnþ1

2kgt
2
nþ

kp0
m tn

� � cos
θ0n�1
2

e�
i
2φ
00
n�1

sin
θ0n�1
2

eþ
i
2φ
00
n�1

8>><
>>:

9>>=
>>;
, (31)

so the expression of the propagator become

K f , i;Tð Þ ¼
ð
d3p0
2πð Þ3 e

i mgtþp0ð ÞrjT0 e�i
m
6g

2T3þp2
0

2mTþ1
2gp0T

2

� �

�
ð
dZ ∗

n dZn

2πi
e�Z

∗
n Zn exp i

ðT
0
dt

i
2

_Z
∗
Z � _ZZ ∗

� �
� ωZ ∗Z � ω

2

� �� �

� lim
N!∞

ðYN
n¼1

dφ00d cos θ0ð Þ
2π

YNþ1
n¼1

� cos
θ0n
2
eþ

i
2φ
00
n , cos

θ0n
2
e�

i
2φ
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n

� �
R4 p0,Ωn
� � cos

θ0n�1
2

e�
i
2φ
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n�1

sin
θ0n�1
2

eþ
i
2φ
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n�1

8>><
>>:

9>>=
>>;
,

(32)

where

R4 p0,Ωn
� � ¼

1� i
2
εΩ p, g, tð Þ �iελZn

�iελZ ∗
n 1þ i

2
εΩ p, g, tð Þ

0
B@

1
CA, (33)

with

Ω p, g, tð Þ ¼ ωa þ k2

2m
þ kgtn þ

kp0
m

: (34)

We integrate over all variables Zn, 32ð Þ become

K f , i;Tð Þ ¼
ð
d3p0
2πð Þ3 e

i mgtþp0ð ÞrjT0 e�i
m
6g

2T3þp2
0

2mTþ1
2gp0T

2

� �

� lim
N!∞

ðYN
n¼1

dφ00d cos θ0ð Þ
2π

YNþ1
n¼1

� cos
θ0n
2
eþ

i
2φ
00
n , cos

θ0n
2
e�

i
2φ
00
n

� �
K p0,Ωn
� � cos

θ0n�1
2

e�
i
2φ
00
n�1

sin
θ0n�1
2

eþ
i
2φ
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n�1

8>><
>>:

9>>=
>>;
,

(35)
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where

K p0,Ωn
� � ¼ e�

Zfj j2þ Zij j2
2

X∞
j¼0

Z ∗ j
f Zj

i

j!
e
�i jωcTþ1

2ωcTþ1
2

ðT
0
dtΩ p,g,tð Þ

� �8>><
>>:

9>>=
>>;

�
1� iεΔ p, g, tð Þ �iελ ffiffiffiffiffiffiffiffiffiffi

jþ 1
p

�iελ ffiffiffiffiffiffiffiffiffiffi
jþ 1

p
1þ iεΔ p, g, tð Þ

0
@

1
A,

(36)

where

Δ tj
� � ¼ 1

2
ω� ωa þ 3

k2

2m
þ kgtj þ

kp0
m

 !" #
, (37)

is the detuning of the atom-field interaction which depends on both the atomic
momentum and the gravitational field.

Now, to calculate propagator (35) let us introduce the complex variable z [18].

z ¼ tan
θ0

2
eþiφ

00
and ∣θ0,φ00i ¼ cos

θ0n�1
2

e�
i
2φ
00
n�1 sin

θ0n�1
2

eþ
i
2φ
00
n�1

� �
¼ e�

i
2φ
00
n�1 ∣zi

(38)

The propagator in the z representation is

K f , i;Tð Þ ¼
ð
d3p0
2πð Þ3 e

i mgtþp0ð ÞrjT0 e�i
m
6g

2T3þp2
0

2mTþ1
2gp0T

2

� �

�e�
Zfj j2þ Zij j2

2

X∞
j¼0

Z ∗ j
f Zj

i

j!
exp �i jωcT þ 1

2
ωcT þ 1

2

ðT
0
dtΩ p, g, tð Þ

� �� �( )

�eþ i
2φ
00
f e�

i
2φ
00
i zf
� �� exp �i

ðΔ Tð Þ

Δ0

H p0,Δ
� �

dS

" #
∣zii,

(39)

where H p0,Δ
� �

belongs to SU 2ð Þ algebra

H p0,Δ
� � ¼ ΔnS0 þ f nSþ þ f nS� (40)

and

f ¼ λ
ffiffiffiffiffiffiffiffiffiffi
jþ 1

p
: (41)

The computation of propagator 39ð Þ is readily and the results are given by
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K f , i;Tð Þ ¼
ð
d3p0
2πð Þ3 e

i mgtþp0ð ÞrjT0 e�i
m
6g

2T3þp2
0

2mTþ1
2gp0T

2

� �

�e�
Zfj j2þ Zij j2

2

X∞
j¼0

Z ∗ j
f Zj

i

j!
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�eþ i
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i
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1þ zij j2
� �1

2
1þ zf

�� ��2� �1
2

2
64

3
75∣zii,

(42)

where a Δð Þ, and b Δð Þ satisfy
da
dΔ
¼ �ifbeiΔ ,

db
dΔ
¼ �ifae�iΔ (43)

with the boundary conditions

a Δ0ð Þ ¼ 1 , b Δ0ð Þ ¼ 0 , Δ0 ¼ 1
2

ω� ωa þ 3
k2

2m
þ kp0

m

 !" #
: (44)

In terms of the angular variables it becomes

K f , i;Tð Þ ¼
ð
d3p0
2πð Þ3 e

i mgtþp0ð ÞrjT0 e�i
m
6g

2T3þp2
0

2mTþ1
2gp0T

2

� �

�e�
Zfj j2þ Zij j2

2

X∞
j¼0

Z ∗ j
f Zj

i
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� �� �( )

� cos
θ0f
2
eþ

i
2φ
00
f , cos

θ0f
2
e�

i
2φ
00
f

 !
a Tð Þ b Tð Þ
�b ∗ Tð Þ a ∗ Tð Þ

 ! cos
θ0i
2
e�

i
2φ
00
i

sin
θ0i
2
eþ

i
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8>>><
>>>:
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>>>;
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(45)

where

a Tð Þ ¼ eiΔT C 1ð ÞHAj B Tð Þð Þ þ C 2ð Þ1F1 �
Aj

2
;
1
2
;B2 Tð Þ

� �� �
, (46)

b Tð Þ ¼ C 1ð ÞHAjþ1 B Tð Þð Þ þ C 2ð Þ1F1 �
Aj þ 1

2
;
1
2
;B2 Tð Þ

� �� �
, (47)

where Hn xð Þ and 1F1 α; β; γð Þ are the Hermite and the confluent hypergeometric
functions. Furthermore, we have

B tð Þ ¼ iþ 1ð Þ
ffiffiffi
2
p

2
kgt�

ffiffiffi
2
p

4
ffiffiffiffiffi
kg

p Δ0

 !
, and Aj ¼ � 2þ iβð Þ, (48)

with, β ¼
yj p, gð Þ � Δ2

0

2kg

 !
, and, yj p, gð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yj p, 0ð Þ2 þ 2ikg

q
, (49)
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with yj p, 0ð Þ2 ¼ f 2 þ Δ2
0 as the gravity-dependent Rabi frequency. And

C 1ð Þ ¼ c1
c

, C 2ð Þ ¼ c2
c
, (50)

with

c1¼1F1 � 1
2

Aj þ 1
� �

;
1
2
;B2 0ð Þ

� �
, (51)

and

c2 ¼ H Ajþ1ð Þ B 0ð Þð Þ, (52)

and

c ¼ HAj B 0ð Þð Þ1F1 � 1
2

Aj þ 1
� �

;
1
2
;B2 0ð Þ

� �
�H Ajþ1ð Þ B 0ð Þð Þ1F1 �

Aj

2
;
1
2
;B2 0ð Þ

� �
,

(53)

Now we come back to the old Grassmann variables θ,φð Þ. So, the exact expression
of the propagator concerning to our problem is the following

K f , i;Tð Þ ¼
ð
d3p0
2πð Þ3 e

i mgtþp0ð ÞrjT0 e�i
m
6g

2T3þp2
0

2mTþ1
2gp0T
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2
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>>:
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(54)

where

S Tð Þ ¼ e�
i
2

k2
2mTþ1

2kgT
2þkp0

m T
� �

� eikrf 0

0 1

 !
a Tð Þ b Tð Þ
�b ∗ Tð Þ a ∗ Tð Þ

 !
e�ikri 0

0 1

 !
:

(55)

Noting that the angles θ,φ are allowed to vary in the limited domains 0, 2π½ � and
0, 4π½ �, our final result for the propagator is thus the following:

K f , i;Tð Þ ¼
X
n¼�∞

þ∞
K Zf , θf þ 2nπ,φf þ 4nπ,Zi, θi,φi;T
� �

¼ K Zf , θf ,φf ;Zi, θi,φi;T
� �

:

(56)

Our problem is thus solved. We can then determine the corresponding wave
functions.
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4. Wave functions

Let us now eliminate the coherent states by computing the transition amplitudes
between the proper states of the spin. We take as an example the matrix element

K↑↑ Zf ,Zi;T
� � ¼ ↑h jK Zf ,Zi;T

� �
↑j i: (57)

With the help of the completeness relations, this amplitude becomes

ð d cos θf
� �

dφf

2π
θf ,φf

���
E

θf ,φf

D ��� ¼ 1,
ð
d cos θið Þdφi

2π
θi,φij i θi,φih j ¼ 1 (58)

Then
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i mgtþp0ð ÞrjT0 e�i
m
6g
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2
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i
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2
ωcT þ 1

2
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0
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� �� �( )

�
ð d cos θf

� �
dφf

2π
d cos θið Þdφi

2π
↑jθf ,φf

D E S11 Tð Þ S12 Tð Þ
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 !
θi,φij↑h i

(59)

where

↑jθf ,φf

D E
¼ cos

θf
2
e�

i
2φf , and θi,φij↑h i ¼ cos

θi
2
eþ

i
2φi (60)

The integration over polar angles, the propagator matrix element for the up-up
states is finally written

K↑↑ Zf ,Zi;T
� � ¼

ð
d3p0
2πð Þ3 e

i mgtþp0ð ÞrjT0 e�i
m
6g

2T3þp2
0

2mTþ1
2gp0T

2

� �
S11 Tð Þ: (61)

Repeating the calculations and considering all initial and final states of the spin, the
propagator takes the following matrix form

K mf ,mi;T
� � ¼

ð
d3p0
2πð Þ3 e

i mgtþp0ð ÞrjT0 e�i
m
6g

2T3þp2
0

2mTþ1
2gp0T

2

� �

�e�
Zfj j2þ Zij j2

2

X∞
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f Zj

i
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e
�i jωcTþ1
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� �8>><
>>:

9>>=
>>;

�
S11 Tð Þ S12 Tð Þ
S21 Tð Þ S22 Tð Þ

 !
:

(62)

In order to extract the wave functions, it is more convenient to use the basis nj i,
where n is the occupancy number related to Zj i through
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Zj i ¼ exp � Zj j2
2

 !X∞
n¼0

Zn

ffiffiffiffi
n!
p nj i: (63)

Then the evolution operator is

Û p, g;Tð Þ ¼ e�iHt ¼ Λ↑↑ Λ↑↓

Λ↓↑ Λ↓↓

� �
, (64)

which is related to K f , i;Tð Þ through

e�iHt ¼
ð
d2Zf

π

ð
d2Zi

π
Zf
�� �

K Zf ,Zi;T
� �

Zih j: (65)

Performing the integrations yields the matrix elements of the evolution
operator [19].
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2
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2
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jj i jh j, (66)
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�
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2
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2
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jþ 1j i jh j, (67)
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2
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1
2
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where
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ð
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2πð Þ3 e
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m
6g

2T3þp2
0
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�e�i jωcTþ1
2ωcTþ1
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m T
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:

(70)

For the considered atomic system, the wave function is written in the following form

Ψ p, g;Tð Þ ¼
ð
d3pÛ p, g;Tð ÞΨ p, g, 0ð Þ, (71)

where
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Ψ p, g; 0ð Þ ¼
ð
d3pφ pð Þ

X
n¼0

ωn
nj i
0

� �
, (72)

with

ωn ¼ Zn

ffiffiffiffi
n!
p e�

Zj j2
2 , (73)

can be deduced, they become equal to

Ψ p, g;Tð Þ ¼
X
j¼0

X
n¼0

ωnf p, g, tð Þ

�
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2
;
1
2
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jj i jh j nj i
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2
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1
2
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� �� �
jþ 1j i jh j nj i

0
BBB@

1
CCCA:

(74)

As jh jni ¼ δj,n, we finally obtain an exact and explicit expression for the wave
function

Ψ p, g;Tð Þ ¼
X
n¼0

ωnf p, g, tð Þ

�
eik rf�rið ÞeiΔT C 1ð ÞHAn B Tð Þð Þ þ C 2ð Þ1F1 �An

2
;
1
2
;B2 Tð Þ
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nj i

e�ikri C 1ð ÞHAnþ1 B Tð Þð Þ þ C 2ð Þ1F1 �An þ 1
2

;
1
2
;B2 Tð Þ

� �� �
nþ 1j i

0
BBB@

1
CCCA:

(75)

This result coincides with that of Ref [20].

5. Conclusions

In this work, we have succeeded in calculating exactly the propagator of the two-
level atom interacting with single-mode quantized electromagnetic field and submit-
ted to gravitation using the path integral formalism in the coherent states representa-
tion. Thanks to the two angular variables replacing the spin, the propagator has been
written, first in the conventional form

Ð
D pathð Þ exp i=ℏð ÞS pathð Þ, then determined

exactly. The exactness of the results is displayed in the evaluation of the
corresponding wave function. The influence of gravitational waves are reflected in
our results.
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