Skip to main content
Log in

Observations on the abundance of nitrogen in the primary cosmic radiation

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

New measurements of the intensity and spectrum of cosmic ray nitrogen nuclei made by instruments flown on balloons and on the Pioneer-8 space probe are reported. The nitrogen spectrum is found to be identical with that of the other medium nuclei, carbon and oxygen, over the range of measurement from 100 MeV/nuc to > 22 GeV/nuc. The ratio of N to all M nuclei is found to be =0.125, constant to within 10% over this energy range. This ratio is extrapolated to the cosmic-ray source using the most recently obtained abundances of oxygen and heavier nuclei and fragmentation parameters for the production of nitrogen from these nuclei. Taking an average material path length of 4 g/cm2 of hydrogen constant with energy, as required to make the abundance of L nuclei →0 at the cosmic-ray source, the resulting N/M source ratio is ≤0.03. In other words, to the same degree that the so-called L nuclei are absent in the cosmic-ray sources, N nuclei are also absent. This nitrogen abundance is therefore different from the estimated solar atmospheric abundance of ∼0.10 for the N/M ratio which is believed to represent the integrated effects of nucleo-synthesis in the galaxy at the time of the formation of the sun. Nevertheless under certain conditions in the CNO bi-cycle that operates for the production of nitrogen in stellar objects a negligible production of nitrogen might be expected. It is suggested that these conditions exist in the cosmic-ray sources. The C/O ratio of 0.9 deduced for cosmic-ray sources is compatible with the observed low nitrogen abundance arising in this CNO bi-cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adouze, J., Epherre, M., and Reeves, H.: 1967, Internal Report I.P.N. 91, Orsay.

  • Anand, K. C., Biswas, S., Lavakare, P. J., Ramaduri, S., Sreenivasan, N., Bhatia, U. S., Chohan, U. S., and Pabbi, S. D.: 1966,J. Geophys. Res. 71, 4687.

    Google Scholar 

  • Balasubrahmanyan, V. K., Hagge, D. E., Ludwig, G. H., and McDonald, F. B.: 1966,J. Geophys. Res. 71, 1177.

    Google Scholar 

  • Bashkin, S.: 1965, inStars and Stellar Systems, Vol. 8, University of Chicago Press, Chicago.

    Google Scholar 

  • Beck, F. and Yiou, F.: 1968,Astrophys. Letters 1, 75.

    Google Scholar 

  • Biswas, S. and Fichtel, C. E.: 1965,Space Sci. Rev. 4, 709.

    Google Scholar 

  • Caughlan, G. R.: 1965,Astrophys. J. 141, 688.

    Google Scholar 

  • Caughlan, G. R. and Fowler, W. A.: 1962,Astrophys. J. 136, 452.

    Google Scholar 

  • Comstock, G. M., Fan, C. Y., and Simpson, J. A.: 1969,Astrophys. J. 155, 609.

    Google Scholar 

  • Daniel, R. R. and Durgaprasad, N.: 1962,Nuovo Cimento 23, 82.

    Google Scholar 

  • Davis, R. Jr., Harmer, D. S., and Hoffman, K. C.: 1968,Phys. Rev. Letters 20, 1205.

    Google Scholar 

  • Durgaprasad, N., Fichtel, C. E., Guss, D. E., and Reames, D. V.: 1968,Astrophys. J. 154, 307.

    Google Scholar 

  • Fan, C. Y., Gloeckler, G., and Simpson, J. A.: 1968,Can. J. Phys. 46, S548.

    Google Scholar 

  • Fichtel, C. E.: 1969, Private Communication.

  • Fichtel, C. E. and Reames, D. V.: 1968,Phys. Rev. 175, 1564.

    Google Scholar 

  • Hagge, D. E., Balasubrahmanyan, V. K., and McDonald, F. B.: 1968,Can. J. Phys. 46, S539.

    Google Scholar 

  • Kristiansson, K.: 1966,Arkiv för Fysik 32, 285.

    Google Scholar 

  • Lambert, D.: 1968,Monthly Notices Roy. Astron. Soc. 138, 143.

    Google Scholar 

  • Lezniak, J. A. and Webber, W. R.: 1969,Astrophys. J. (in press).

  • O'Dell, F. W., Shapiro, M. M., and Stiller, B.: 1962,J. Phys. Soc. Japan, Suppl.17, A-III, 23.

    Google Scholar 

  • Pottasch, S. R.: 1965, inIAU Symposium on Chemical Abundances in Astrophysics, Utrecht, p. 200.

  • Reames, D. V. and Fichtel, C. E.: 1967,Phys. Rev. 162, 1291.

    Google Scholar 

  • Rudstam, G.: 1966,Naturforschung 21a, 1027.

    Google Scholar 

  • Shapiro, M. M. and Silberberg, R.: 1967,High Energy Nuclear Reactions in Astrophysics, Benjamin, New York, N.Y.

    Google Scholar 

  • von Rosenvinge, T. T., Ormes, J. F., and Webber, W. R.: 1969,Astrophys. Space Sci. 3, 80.

    Google Scholar 

  • von Rosenvinge, T. T.: 1969, Ph.D. Thesis, University of Minnesota.

  • Waddington, C. J.: 1969,Astrophys. Space Sci. 5, 3.

    Google Scholar 

  • Webber, W. R.: 1967,Handbuch der Physik 46-2, 181.

    Google Scholar 

  • Webber, W. R. and Ormes, J. F.: 1967,J. Geophys. Res. 72, 5957.

    Google Scholar 

  • Yiou, F., Dufaure de Citres, Frehel, F., Gradsztajn, E., and Bernas, R.: 1968,Can. J. Phys. 46, S557.

    Google Scholar 

  • Zwicky, F.: 1965, inStars and Stellar Systems, Vol. 8, University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

NRC-NASA Resident Research Associate at Goddard Space Flight Center.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lezniak, J.A., Ormes, J.F., von Rosenvinge, T.T. et al. Observations on the abundance of nitrogen in the primary cosmic radiation. Astrophys Space Sci 5, 103–112 (1969). https://doi.org/10.1007/BF00653942

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00653942

Keywords

Navigation