Skip to main content
Log in

A portable laser system for high-precision atom interferometry experiments

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a modular rack-mounted laser system for the cooling and manipulation of neutral rubidium atoms which has been developed for a portable gravimeter based on atom interferometry that will be capable of performing high-precision gravity measurements directly at sites of geophysical interest. This laser system is constructed in a compact and mobile design so that it can be transported to different locations, yet it still offers improvements over many conventional laboratory-based laser systems. Our system is contained in a standard 19″ rack and emits light at five different frequencies simultaneously on up to 12 fibre ports at a total output power of 800 mW. These frequencies can be changed and switched between ports in less than a microsecond. The setup includes two phase-locked diode lasers with a phase noise spectral density of less than 1 μrad/Hz1/2 in the frequency range in which our gravimeter is most sensitive to noise. We characterise this laser system and evaluate the performance limits it imposes on an interferometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Carnal, J. Mlynek, Phys. Rev. Lett. 66, 2689 (1991)

    Article  ADS  Google Scholar 

  2. F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. Borde, Phys. Rev. Lett. 67, 177 (1991)

    Article  ADS  Google Scholar 

  3. D. Keith, C. Ekstrom, Q. Turchette, D. Pritchard, Phys. Rev. Lett. 66, 2693 (1991)

    Article  ADS  Google Scholar 

  4. M. Kasevich, S. Chu, Appl. Phys. B 54, 321 (1992)

    Article  ADS  Google Scholar 

  5. H. Mueller, A. Peters, S. Chu, Nature 463, 926 (2010)

    Article  ADS  Google Scholar 

  6. S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, Phys. Rev. D 78, 042003 (2008)

    Article  ADS  Google Scholar 

  7. A. Peters, K. Chung, S. Chu, Metrologia 38, 25 (2001)

    Article  ADS  Google Scholar 

  8. T. Gustavson, A. Landragin, M. Kasevich, Class. Quantum Gravity 17, 2385 (2000)

    Article  ADS  MATH  Google Scholar 

  9. M. Snadden, J. McGuirk, P. Bouyer, K. Haritos, M. Kasevich, Phys. Rev. Lett. 81, 971 (1998)

    Article  ADS  Google Scholar 

  10. M. de Angelis, A. Bertoldi, L. Cacciapuoti, A. Giorgini, G. Lamporesi, M. Prevedelli, G. Saccorotti, F. Sorrentino, G.M. Tino, Meas. Sci. Technol. 20, 022001 (2009)

    Article  Google Scholar 

  11. J. Le Gouet, T.E. Mehlstaeubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, F.P. Dos Santos, Appl. Phys. B 92, 133 (2008)

    Article  ADS  Google Scholar 

  12. G. Stern, B. Battelier, R. Geiger, G. Varoquaux, A. Villing, F. Moron, O. Carraz, N. Zahzam, Y. Bidel, W. Chaibi, F.P. Dos Santos, A. Bresson, A. Landragin, P. Bouyer, Eur. Phys. J. D 53, 353 (2009)

    Article  ADS  Google Scholar 

  13. P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouet, J. Kim, K.T. Therkildsen, A. Clairon, A. Landragin, Appl. Phys. B 84, 643 (2006)

    Article  ADS  Google Scholar 

  14. G.M. Tino, L. Cacciapuoti, K. Bongs, C.J. Borde, P. Bouyer, H. Dittus, W. Ertmer, A. Goerlitz, M. Inguscio, A. Landragin, P. Lemonde, C. Lammerzahl, A. Peters, E. Rasel, J. Reichel, C. Salomon, S. Schiller, W. Schleich, K. Sengstock, U. Sterr, M. Wilkens, Nucl. Phys. B 166, 159 (2007)

    Article  Google Scholar 

  15. S.G. Turyshev, U.E. Israelsson, M. Shao, N. Yu, A. Kusenko, E.L. Wright, C.W.F. Everitt, M. Kasevich, J.A. Lipa, J.C. Mester, R.D. Reasenberg, R.L. Walsworth, N. Ashby, H. Gould, H.J. Paik, Int. J. Mod. Phys. D 16, 2007 (1879)

    Google Scholar 

  16. B. Dubetsky, M.A. Kasevich, Phys. Rev. A 74, 023615 (2006)

    Article  ADS  Google Scholar 

  17. L. Timmen, O. Gitlein, J. Mueller, G. Strykowski, R. Forsberg, ZfV 133/3, 149 (2008)

    Google Scholar 

  18. T. van Zoest, N. Gaaloul, Y. Singh, H. Ahlers, W. Herr, S.T. Seidel, W. Ertmer, E. Rasel, M. Eckart, E. Kajari, S. Arnold, G. Nandi, W.P. Schleich, R. Walser, A. Vogel, K. Sengstock, K. Bongs, W. Lewoczko-Adamczyk, M. Schiemangk, T. Schuldt, A. Peters, T. Koenemann, H. Muentinga, C. Laemmerzahl, H. Dittus, T. Steinmetz, T.W. Haensch, J. Reichel, Science 328, 1540 (2010)

    Article  ADS  Google Scholar 

  19. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, P. Rosenbusch, Opt. Commun. 266, 609 (2006)

    Article  ADS  Google Scholar 

  20. J. Supplee, E. Whittaker, W. Lenth, Appl. Opt. 33, 6294 (1994)

    Article  ADS  Google Scholar 

  21. M. Kasevich, D. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu, Phys. Rev. Lett. 66, 2297 (1991)

    Article  ADS  Google Scholar 

  22. P. Cheinet, B. Canuel, F.P. Dos Santos, A. Gauguet, F. Yver-Leduc, A. Landragin, IEEE Trans. Instrum. Meas. 57, 1141 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M., Prevedelli, M., Giorgini, A. et al. A portable laser system for high-precision atom interferometry experiments. Appl. Phys. B 102, 11–18 (2011). https://doi.org/10.1007/s00340-010-4263-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4263-8

Keywords

Navigation