Skip to main content
Log in

Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An UV-VIS polarization lidar has been designed and specified for monitoring aerosols in the troposphere, showing the ability to precisely address low particle depolarization ratios, in the range of a few percent. Non-spherical particle backscattering coefficients as low as 5×10−8 m−1⋅sr−1 have been measured and the particle depolarization ratio detection limit is 0.6 %. This achievement is based on a well-designed detector with laser-specified optical components (polarizers, dichroic beamsplitters) summarized in a synthetic detector transfer matrix. Hence, systematic biases are drastically minimized. The detector matrix being diagonal, robust polarization calibration has been achieved under real atmospheric conditions. This UV-VIS polarization detector measures particle depolarization ratios over two orders of magnitude, from 0.6 up to 40 %, which is new, especially in the UV where molecular scattering is strong. Hence, a calibrated UV-VIS polarization-resolved time-altitude map is proposed for urban and free tropospheric aerosols up to altitude of 4 kilometers, which is also new. These sensitive and accurate UV-VIS polarization-resolved measurements enhance the spatial and time evolution of non-spherical tropospheric particles, even in urban polluted areas. This study shows the capability of polarization-resolved laser UV-VIS spectroscopy to specifically address the light backscattering by spherical and non-spherical tropospheric aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Twomey, J. Atmos. Sci. 34, 1149 (1977)

    Article  ADS  Google Scholar 

  2. J. Haywood, O. Boucher, Rev. Geophys. 38, 513 (2000)

    Article  ADS  Google Scholar 

  3. S.S. Gunthe, D. Rose, H. Su, R.M. Garland, P. Achtert, A. Nowak, A. Wiedensohler, M. Kuwata, N. Takegawa, Y. Kondo, M. Hu, M. Shao, T. Zhu, M.O. Andreae, U. Poschl, Atmos. Chem. Phys. 11, 11023 (2011)

    Article  ADS  Google Scholar 

  4. M. Nicolas, M. Ndour, O. Ka, B. D’Anna, C. George, Environ. Sci. Technol. 43, 7437 (2009)

    Article  Google Scholar 

  5. I. El Haddad, N. Marchand, B. Temime-Roussel, H. Wortham, C. Piot, J.L. Besombes, C. Baduel, D. Voisin, A. Armengaud, J.L. Jaffrezo, Atmos. Chem. Phys. 11, 2059 (2011)

    Article  ADS  Google Scholar 

  6. M. Frosch, M. Bilde, P.F. DeCarlo, Z. Juranyi, T. Tritscher, J. Dommen, N.M. Donahue, M. Gysel, E. Weingartner, U. Baltensperger, J. Geophys. Res., Atmos. 116, D22212 (2011)

    Article  ADS  Google Scholar 

  7. O. Favez, I. El Haddad, C. Piot, A. Boreave, E. Abidi, N. Marchand, J.L. Jaffrezo, J.L. Besombes, M.B. Personnaz, J. Sciare, H. Wortham, C. George, B. D’Anna, Atmos. Chem. Phys. 10, 5295 (2010)

    Article  ADS  Google Scholar 

  8. C. Baduel, M.E. Monge, D. Voisin, J.L. Jaffrezo, C. George, I. El Haddad, N. Marchand, B. D’Anna, Environ. Sci. Technol. 45, 5238 (2011)

    Article  Google Scholar 

  9. IPCC, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  10. E. Andrew, J.A. Ogren, P. Bonasoni, A. Marinoni, E. Cuevas, S. Rodriguez, J.Y. Sun, D.A. Jaffe, E.V. Fischer, U. Baltensperger, E. Weingartner, M.C. Coen, S. Sharma, A.M. Macdonald, W.R. Leaitch, N.H. Lin, P. Laj, T. Arsov, I. Kalapov, A. Jefferson, P. Sheridan, Atmos. Res. 102, 365 (2011)

    Article  Google Scholar 

  11. J.F. Gayet, O. Crépel, J.F. Fournol, S. Oshchepkov, Ann. Geophys. 15, 451 (1997)

    Article  ADS  Google Scholar 

  12. M. Lang-Yona, Y. Rudich, E. Segre, E. Dinar, A. Abo-Riziq, Anal. Chem. 81, 1762 (2009)

    Article  Google Scholar 

  13. G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.P. Wolf, Appl. Phys. B, Lasers Opt. 78, 535 (2004)

    Article  ADS  Google Scholar 

  14. I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D.N. Whiteman, M. Mishchenko, D. Tanre, J. Geophys. Res. 115, D21203 (2010)

    Article  ADS  Google Scholar 

  15. M. Kacenelenbogen, M.A. Vaughan, J. Redemann, R.M. Hoff, R.R. Rogers, R.A. Ferrare, P.B. Russell, C.A. Hostetler, J.W. Hair, B.N. Holben, Atmos. Chem. Phys. 11, 3981 (2011)

    Article  ADS  Google Scholar 

  16. N. Sugimoto, I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, T. Nakajima, Geophys. Res. Lett. 29 (2002). doi:10.1029/2002GL015112

  17. J. Reichardt, A. Tsias, A. Behrendt, Geophys. Res. Lett. 27, 201 (2000)

    Article  ADS  Google Scholar 

  18. R. Adam de Villiers, G. Ancellet, J. Pelon, B. Quennehen, A. Scharwzenboeck, J.F. Gayet, K.S. Law, Atmos. Chem. Phys. 9, 27791 (2009)

    Article  Google Scholar 

  19. V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Muller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, M. Seefeldner, Tellus 61B, 165 (2009)

    ADS  Google Scholar 

  20. M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption and Emission of Light by Small Particles, 3rd edn. (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  21. M. Kahnert, T. Nousiainen, B. Veihelmann, J. Geophys. Res. 110, D18S13 (2005)

    Article  Google Scholar 

  22. T. Nousiainen, J. Quant. Spectrosc. Radiat. Transf. 110, 1261 (2009)

    Article  ADS  Google Scholar 

  23. N. Kolev, B. Tatarov, B. Kaprielov, I. Kolev, J. Environ. Monit. 19, 834 (2004)

    Article  Google Scholar 

  24. A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, A. Yamazaki, J. Geophys. Res. 109, D19S17 (2004)

    Article  Google Scholar 

  25. K. Sassen, J. Zhu, P. Webley, K. Dean, P. Cobb, Geophys. Res. Lett. 34, L08803 (2007)

    Article  Google Scholar 

  26. Special Issue: Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April–May 2010, Atmos. Environ. 48 (2012). ISBN 1352-2310

    Google Scholar 

  27. A. Miffre, G. David, B. Thomas, P. Rairoux, A.M. Fjaeraa, N.I. Kristiansen, A. Stohl, Atm. Environ. 48, 78–84 (2011). doi:10.1016/j.atmosenv.2011.03.057

    Google Scholar 

  28. A. Miffre, G. David, B. Thomas, M. Abou Chacra, P. Rairoux, J. Atmos. Ocean. Tech. 29, 559–568 (2012)

    Google Scholar 

  29. A. Miffre, G. David, B. Thomas, P. Rairoux, Proc. SPIE 7832 (2010). doi:10.1117/12.869019

  30. A. Miffre, G. David, B. Thomas, P. Rairoux, Geophys. Res. Lett. 38, L16804 (2011)

    Article  ADS  Google Scholar 

  31. A. Miffre, M. Abou Chacra, S. Geffroy, P. Rairoux, L. Soulhac, R.J. Perkins, E. Frejafon, Atmos. Environ. 44, 1152 (2010)

    Article  Google Scholar 

  32. H. Adachi, T. Shibata, Y. Iwasaka, M. Fujiwara, Appl. Opt. 40, 6587 (2001)

    Article  ADS  Google Scholar 

  33. R.M. Measures, Laser Remote Sensing, Fundamentals and Applications (Krieger, Melbourne, 1992)

    Google Scholar 

  34. R.B. Miles, W.R. Lempert, J.N. Forkey, Meas. Sci. Technol. 12, R33 (2000)

    Article  Google Scholar 

  35. A. Behrendt, T. Nakamura, Opt. Express 10, 805 (2002)

    ADS  Google Scholar 

  36. D.M. Winker, M.T. Osborn, Geophys. Res. Lett. 19, 171 (1992)

    Article  ADS  Google Scholar 

  37. J.D. Klett, Appl. Opt. 24, 1638 (1985)

    Article  ADS  Google Scholar 

  38. T.L. Anderson, S.J. Masonis, D.S. Covert, R.J. Chalrson, M.J. Rood, J. Geophys. Res. 105, 26907 (2000)

    Article  ADS  Google Scholar 

  39. T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, K. Miura, J. Geophys. Res. 104, 31781 (1999)

    Article  ADS  Google Scholar 

  40. J. Biele, G. Beyerle, G. Baumgarten, Opt. Express 7, 427 (2000)

    Article  ADS  Google Scholar 

  41. J. Reichardt, R. Baumgart, T.J. McGee, Appl. Opt. 42, 4909 (2003)

    Article  ADS  Google Scholar 

  42. J.M. Alvarez, M.A. Vaughan, C.A. Hostetler, W.H. Hunt, D.M. Winker, J. Atmos. Ocean. Technol. 23, 683 (2006)

    Article  ADS  Google Scholar 

  43. I. Mattis, M. Tesche, M. Grein, V. Freudenthaler, D. Muller, Appl. Opt. 48, 2742 (2009)

    Article  ADS  Google Scholar 

  44. M. Del Guasta, E. Valla, Geophys. Res. Lett. 30, 1578 (2003)

    Article  ADS  Google Scholar 

  45. B. Barja, J.C. Antuña, Atmos. Chem. Phys. 11, 8625 (2011) (2011)

    Article  ADS  Google Scholar 

  46. A. Bucholtz, Appl. Opt. 34, 2765 (1995)

    Article  ADS  Google Scholar 

  47. A. Miffre, M. Jacquey, M. Büchner, G. Trénec, J. Vigué, Eur. Phys. J. D 33, 99 (2005)

    Article  ADS  Google Scholar 

  48. G. Roy, N. Roy, Appl. Opt. 47, 6563 (2007)

    Article  ADS  Google Scholar 

  49. B. Tatarov, I. Kolev, Appl. Phys. B 73, 261 (2001)

    Article  ADS  Google Scholar 

  50. B. Tatarov, T. Trifonov, B. Kaprielov, I. Kolev, Appl. Phys. B 71, 593 (2000)

    Article  ADS  Google Scholar 

  51. J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change (Wiley, New York, 2006)

    Google Scholar 

  52. T. Sakai, T. Nagai, Y. Zaizen, Y. Mano, Appl. Opt. 49, 4441 (2010)

    Article  ADS  Google Scholar 

  53. M. Esselborn et al., Appl. Opt. 47, 346 (2008)

    Article  ADS  Google Scholar 

  54. M. Ndour, P. Conchon, B. D’Anna, O. Ka, C. George, Geophys. Res. Lett. 36, 2008GL036662 (2009)

    Article  Google Scholar 

  55. D.D. Duncan, M.E. Thomas, Appl. Opt. 46, 6185 (2007)

    Article  ADS  Google Scholar 

  56. T. Somekawa, C. Yamanaka, M. Fujita, M.C. Galvez, Part. Part. Syst. Charact. 25, 49 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Marc Néri for his help in fine mechanics and Région Rhône-Alpes for the research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Miffre.

Appendices

Appendix A: Depolarization ratio δ in the presence of a dichroic beamsplitter misalignment

In this appendix, we investigate the effect of a misalignment of the dichroic beamsplitter on the measured depolarization ratio δ∗. To parameterize the magnitude and the direction of this misalignment, we introduce an offset angle θ 0 defined in Fig. 1(d) as the angle between the parallel laser linear polarization and the p-axis of the dichroic beamsplitter (defined with respect to the dichroic beamsplitter plane of incidence). The aim of this appendix is to derive the relationship between the measured depolarization δ and the atmosphere depolarization δ as a function of the θ 0 offset angle and the R p, R s-reflectivity coefficients of the dichroic beamsplitter, hence justifying Eq. (9).

The incident electric field E i on the dichroic beamsplitter can be written in the two involved mathematical bases, namely the (//,⊥)-lidar polarization basis and the \((\mathrm{p,s})\)-dichroic beamsplitter basis. As shown in Fig. 1(d), a θ 0 rotation angle enables to change from one basis to the other. We projected the incident electric field vector E i of backscattered photons on the \((\mathrm{p,s})\)-polarization basis to express the electric field vector E r of the reflected wave:

$$ \left[\begin{array}{c} E_{\mathrm{r},//}\\E_{\mathrm{r},\bot} \end{array}\right] \left[\begin{array}{c@{\quad}c} r_{\mathrm{p}}\cos(\theta_0) & -r_{\mathrm{s}}\sin(\theta_0)\\ r_{\mathrm{p}}\sin(\theta_0) & r_{\mathrm{s}}\cos(\theta_0) \end{array}\right] \left[\begin{array}{c} E_{\mathrm{i,p}}\\E_{\mathrm{i,s}} \end{array}\right]. $$
(13)

In this expression, we have introduced amplitude field reflectivity coefficients r p and r s defined as \(r_{\mathrm{p}} = E_{\mathrm{r,p}}/E_{\mathrm{i,p}}\) and \(r_{\mathrm{s}} = E_{\mathrm{r,s}} / E_{\mathrm{i,s}}\) where E i,p and E i,s are the components of E i in the \((\mathrm{p,s})\)-dichroic beamsplitter basis (the same notation is used for the reflected field E r ). Then, by projecting the incident electric field in the (//,⊥)-polarization basis, Eq. (13) becomes:

(14)

where the m DB -matrix relates the incident and reflected electric fields in the (//,⊥)-polarization basis and the two coefficients, \(a = r_{\mathrm{p}} - r_{\mathrm{s}} = \sqrt{R_{\mathrm{p}}}- \sqrt{R_{\mathrm{s}}}\) and \(b = r_{\mathrm{p}} =\sqrt{R_{\mathrm{p}}}\), are determined by the dichroic beamsplitter R p, R s-reflectivity coefficients. Hence, reflection (or symmetrically transmission) on the dichroic beamsplitter induces a rotation of the linear polarization state of the light. In the ideal case, the dichroic beamsplitter is vertical, so that the p-axis is horizontal and θ 0 is π/2. If we exchange the //- and ⊥-polarization channels, θ 0 is then 0. In both cases (θ 0=0 or π/2), the m DB -matrix is diagonal so that no cross-talk is induced. To derive the measured depolarization ratio δ as a function of δ, we now introduce intensities proportional to the square of the electric field. Hence, Eq. (14) can be written for laser intensities vectors I r and I i . By removing proportionality constants (which disappear in the δ -calculation), we obtain:

(15)

by noting that the (//,⊥)-polarization basis is orthogonal. As expected, the M DB -matrix is diagonal in the absence of offset angle θ 0 (i.e. if θ 0=0 or π/2). By noting that δ =I r,⊥/I r,// while δ=I i,⊥/I i,//, we obtain the following relationship between δ, δ 0 and θ 0, which is identical to Eq. (9):

$$ \delta^* =\frac{a^2\cos^2\theta _0\sin^2\theta _0+\delta _0(b-a\cos^2\theta _0)^2}{(b-a\sin^2\theta _0)^2+\delta _0a^2\cos^2\theta _0\sin^2\theta _0} $$
(16)

where the two coefficients, \(a = r_{\mathrm{p}} - r_{\mathrm{s}} = \sqrt{R_{\mathrm{p}}}- \sqrt{R_{\mathrm{s}}}\) and \(b = r_{\mathrm{p}} =\sqrt{R_{\mathrm{p}}}\), are determined by the dichroic beamsplitter R p, R s-reflectivity coefficients.

Appendix B: Notation and abbreviations used

To ease the reading, the notation and abbreviations used in the article are defined in Table 3.

Table 3 Notation and abbreviations used in the article

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, G., Miffre, A., Thomas, B. et al. Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols. Appl. Phys. B 108, 197–216 (2012). https://doi.org/10.1007/s00340-012-5066-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5066-x

Keywords

Navigation