Skip to main content
Log in

Size-induced effect upon the Néel temperature of the antiferro/paramagnetic transition in gadolinium oxide nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate that cubic gadolinium oxide is paramagnetic and follows the Curie–Weiss law from 20 K to room temperature for particles size comprised between 3.5 and 60 nm. The largest particles (60 nm) possess the macroscopic behaviour of Gd oxide with a Néel temperature, T N, close to 18 K (Gd oxide is antiferromagnetic below T N, paramagnetic above). Then size-induced effects can be encountered only for particles smaller than 60 nm. We find that the finite-size scaling model used for describing the size evolution of the antiferro/paramagnetic transition is valid for sizes comprised between 3.5 and 35 nm with parameters in excellent agreement with those usually found for antiferromagnetic materials. The correlation length (3.6 nm) is of the order of magnitude of a few lattice parameters and the critical exponent λ is found equal to 1.3, a value very close to that predicted by the three dimensional Heisenberg model (λ=1.4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Whitesides, Nat. Biotechnol. 21, 1161–1165 (2003)

    Article  Google Scholar 

  2. C. Riviere, S. Roux, O. Tillement, C. Billotey, P. Perriat, Ann. Chim. Sci. Mat. 31, 351 (2006)

    Article  Google Scholar 

  3. M. Lewin, N. Carlesso, C.H. Tung, X.W. Tang, D. Cory, D.T. Scadden, R. Weissleder, Nat. Biotechnol. 18, 410–414 (2000)

    Article  Google Scholar 

  4. C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, O. Tillement, J. Am. Chem. Soc. 130, 5908–5915 (2008)

    Article  Google Scholar 

  5. J.L. Bridot, D. Dayde, C. Riviere, C. Mandon, C. Billotey, S. Lerondel, R. Sabattier, G. Cartron, A. Le Pape, G. Blondiaux, M. Janier, P. Perriat, S. Roux, O. Tillement, J. Mater. Chem. 19, 2328–2335 (2009)

    Article  Google Scholar 

  6. S. Roux, O. Tillement, C. Billotey, J.-L. Coll, G. Le Duc, C.-A. Marquette, P. Perriat, Int. J. Nanotechnol.. 7, 781–801 (2009)

    Article  Google Scholar 

  7. P. Caravan, J.J. Ellison, T.J. McMurry, R.B. Lauffer, Chem. Rev. 99, 2293–2352 (1999)

    Article  Google Scholar 

  8. L.G. Jacobsohn, B.L. Bennett, R.E. Muenchausen, S.C. Tornga, J.D. Thompson, O. Ugurlu, D.W. Cooke, A.L. Lima Sharma, J. Appl. Phys. 103, 104303 (2008)

    Article  ADS  Google Scholar 

  9. P. Mele, C. Artini, A. Ubaldini, G.A. Costa, M.M. Carnasciali, R. Masini, Synthesis, structure and magnetic properties in the Nd2O3-Gd2O3 mixed system synthesized at 1200°C, J. Phys. Chem. Solids 70, 688 (2009)

    Article  Google Scholar 

  10. F. Holtzberg, D.L. Huber, R.A. Lefever, J.M. Longo, T.R. McGuire, S. Methfessel (eds.), Landolt–Börnstein Group III: Magnetic and Other Properties of Oxides and Related Compounds, vol. 4a, (Springer, Berlin, 1970), p 94

    Google Scholar 

  11. T. Ambrose, C.L. Chien, Phys. Rev. Lett. 76, 1743 (1996)

    Article  ADS  Google Scholar 

  12. Z.Q. Qiu, J. Pearson, S.D. Bader, Phys. Rev. Lett. 70, 1006 (1993)

    Article  ADS  Google Scholar 

  13. C.M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J.J. de Miguel, R. Miranda, Phys. Rev. Lett. 64, 1059 (1990)

    Article  ADS  Google Scholar 

  14. R.J. Zhang, R.F. Willis, Phys. Rev. Lett. 86, 2665 (2001)

    Article  ADS  Google Scholar 

  15. E.E. Fullerton, K.T. Riggs, C.H. Sowers, S.D. Badder, A. Berger, Phys. Rev. Lett. 75, 330 (1995)

    Article  ADS  Google Scholar 

  16. E. Weschke, H. Ott, E. Schierle, C. Schubler-Langeheine, D.V. Vyalikh, G. Kaindl, V. Leiner, M. Ay, T. Schmitte, H. Zabel, P.J. Jensen, Phys. Rev. Lett. 93, 157204 (2004)

    Article  ADS  Google Scholar 

  17. L. He, C. Chen, N. Wang, W. Zhou, L. Guo, J. Appl. Phys. 102, 103911 (2007)

    Article  ADS  Google Scholar 

  18. L.G. Jacobsohn, B.L. Bennett, R.E. Muenchausen, S.C. Tornga, J.D. Thompson, O. Ugurlu, D.W. Cooke, A.L. Lima Sharma, J. Appl. Phys. 103, 104303 (2008)

    Article  ADS  Google Scholar 

  19. M.A. Fortin, R.M. Petotal Jr, F. Söderlind, A. Klasson, M. Engström, T. Veres, P.-O. Käll, K. Uvdal, Nanotechnology 18, 395501 (2007)

    Article  Google Scholar 

  20. H. Pedersen, L. Ojamae, Nano Lett. 6, 2004–2008 (2006)

    Article  ADS  Google Scholar 

  21. C.-C. Huang, T.-Y. Liu, C.-H. Su, Y.-W. Lo, J.-H. Chen, C.-S. Yeh, Chem. Mater. 20, 3840–3848 (2008)

    Article  Google Scholar 

  22. R. Bazzi, M.A. Flores, C. Louis, K. Lebbou, W. Zhang, C. Dujardin, S. Roux, B. Mercier, G. Ledoux, E. Bernstein, P. Perriat, O. Tillement, J. Colloid Interface Sci.. 273, 191–197 (2004)

    Article  Google Scholar 

  23. M.A. Flores-Gonzales, C. Louis, R. Bazzi, G. Ledoux, K. Lebbou, S. Roux, P. Perriat, O. Tillement, Appl. Phys. A 81, 1385–1391 (2005)

    Article  ADS  Google Scholar 

  24. C. Louis, R. Bazzi, C. Marquette, J.L. Bridot, S. Roux, G. Ledoux, B. Mercier, L. Blum, P. Perriat, O. Tillement, Chem. Mater.. 17, 1673–1682 (2005)

    Article  Google Scholar 

  25. A.-C. Faure, S. Dufort, V. Josserand, P. Perriat, J.-L. Coll, S. Roux, O. Tillement, Small 5, 2565–2575 (2009)

    Article  Google Scholar 

  26. J.B. Langford, Aust. J. Phys. 41, 173 (1988)

    ADS  Google Scholar 

  27. M. Ou, B. Mutelet, M. Martini, R. Bazzi, S. Roux, G. Ledoux, O. Tillement, P. Perriat, J. Colloid Interface Sci. 333, 684–689 (2009)

    Article  Google Scholar 

  28. M. Ou, V. Mauchamp, B. Mutelet, T. Epicier, J.C. Le Bosse, S. Roux, O. Tillement, P. Perriat, J. Phys. Chem. C 113, 4038–4041 (2009)

    Article  Google Scholar 

  29. A. Herpin, Théorie du Magnétisme (Presses Universitaires de France, Paris, 1968)

    Google Scholar 

  30. M.E. Fisher, M.N. Barber, Phys. Rev. Lett. 28, 1516 (1972)

    Article  ADS  Google Scholar 

  31. O. Iglesias, A. Labarta, Phys. Rev. B 63, 184416 (2001)

    Article  ADS  Google Scholar 

  32. K. Chen, A.M. Ferrenberg, D.P. Landay, Phys. Rev. B 48, 3249 (1993)

    Article  ADS  Google Scholar 

  33. P. Perriat, J.C. Niepce, G. Caboche, J. Therm. Anal. 41, 635 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Perriat.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 221 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutelet, B., Keller, N., Roux, S. et al. Size-induced effect upon the Néel temperature of the antiferro/paramagnetic transition in gadolinium oxide nanoparticles. Appl. Phys. A 105, 215–219 (2011). https://doi.org/10.1007/s00339-011-6492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6492-z

Keywords

Navigation