Skip to main content
Log in

Cloning, heterologous expression and structural characterization of an alkaline serine protease from sea water haloalkaliphilic bacterium

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Cloning and functional attributes of a serine protease gene from haloalkaliphilic bacteria are described. The protease gene of ∼1,600 bp amplified from the genomic DNA was cloned into TA vector followed by the sub-cloning into pUC19 for expression. Growth of the organism and gene expression was studied at 30 and 37 °C in the presence of 0.5–2.0 mM IPTG. Sequencing of the gene and homology search of the sequence revealed that the gene encoded an extracellular alkaline serine protease belonging to superfamily subtilisin-like hydrolases. The amino acid sequence alignment resulted from the BLAST search of the subtilisin exhibited high sequence homology with the Bacillus subtilis ssp. subtilis strain 168 and subtilisins of other Bacillus sp., B. subtilis and B. mojavensis. The deduced amino acid sequence exhibited a mature protease of a 419 amino acid, single-chained monomeric peptide with the large number of the positively charged amino acids suggesting its hydrophilic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22(2):195–201

    Article  CAS  PubMed  Google Scholar 

  • Belin D, Guzman LM, Bost S, Konakova M, Silva F, Beckwith J (2004) Functional activity of eukaryotic signal sequences in E. coli: the ovalbumin family of serine protease inhibitors. J Mol Biol 335:437–453

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis A, Kwan D, Thomas JR (2008) Halophilic adaptations of proteins. In: Khawar SS, Torsten T (eds) Protein adaptation in extremophiles. Nova Science, New York, pp 143–174

    Google Scholar 

  • Bordoli L (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1–13

    Article  CAS  PubMed  Google Scholar 

  • Combet C, Jambon M, Deleage G, Geourjon C (2002) Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18:213–214

    Article  CAS  PubMed  Google Scholar 

  • de Boer AS, Priest FG, Diderichsen B (1994) On the industrial use of Bacillus licheniformis-a review. Appl Microbiol Biotechnol 40:595–598

    Article  Google Scholar 

  • Dodia MS, Bhimani HG, Rawal CM, Joshi RH, Singh SP (2008a) Salt dependent resistance against chemical denaturation of alkaline protease from a newly isolated haloalkaliphilic Bacillus sp. Bioresour Technol 99:6223–6227

    Article  CAS  PubMed  Google Scholar 

  • Dodia MS, Rawal CM, Bhimani HG, Joshi RH, Khare SK, Singh SP (2008b) Purification and stability characteristics of an alkaline serine protease from a newly isolated haloalkaliphilic bacterium sp. AH-6. J Ind Microbiol Biotechnol 35:121–131

    Article  CAS  PubMed  Google Scholar 

  • Duilio A, Madonna S, Tutino ML, Pirozzi M, Sannia G, Marino G (2004) Promoters from a cold-adapted bacterium: definition of a consensus motif and molecular characterization of UP regulative elements. Extremophiles 8:125–132

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press Inc, Totowa, New Jersey, pp 571–607

  • Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 6:681–684

    Google Scholar 

  • Gill SC, Von Hippel PH (1989) Extinction coefficient. Anal Biochem 182:319–328

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Roy I, Patel RK, Singh SP, Khare SK, Gupta MN (2005) One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. J Chromatogr A 1075:103–108

    Article  CAS  PubMed  Google Scholar 

  • Guruprasad K, Reddy BVP, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Prot Eng 4:155–164

    Article  CAS  Google Scholar 

  • Hagihara B (1958) In: Boyer PD, Lardy H, Myrbxck K (eds) The enzymes, vol 4. Academic, New York, p 193

    Google Scholar 

  • Heidari HRK, Ziaee AA, Amoozegar MA, Cheburkin Y, Budisa N (2008) Molecular cloning and sequence analysis of a novel zinc metalloprotease gene from the Salinivibrio sp. strain AF-2004 and its extracellular expression in E. coli. Gene 408:196–203

    Article  Google Scholar 

  • Heidari HRK, Amoozegar MA, Hajighasemi M, Ziaee AA, Ventosa A (2009) Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. J Ind Microbiol Biotechnol 36:21–27

    Article  Google Scholar 

  • Ikai AJ (1980) Thermo stability and aliphatic index of globular proteins. J Biochem 88:1895–1898

    CAS  PubMed  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgin DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen PL, Tangney M, Pedersen PE, Hastrup S, Diderichsen B, Jorgensen ST (2000) Cloning and sequencing of an alkaline protease gene from Bacillus lentus and amplification of the gene on the B. lentus chromosome by an improved technique. Appl Environ Microbiol 66(2):825–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joshi RH, Dodia MS, Singh SP (2008) Production and optimization of a commercially viable alkaline protease from a haloalkaliphilic bacterium. Biotechnol Bioproc 13:552–559

    Article  CAS  Google Scholar 

  • Kamekura M, Onishi H (1974) Protease formation by a moderately halophilic Bacillus strain. Appl Microbiol 27:809–810

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaneko R, Koyama N, Tsai YC, Juang RY, Yoda K, Yamasaki M (1989) Molecular cloning of the structural gene for alkaline elastase YaB, a new subtilisin produced by an alkalophilic Bacillus strain. J Bacteriol 171(9):5232–5236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karan R, Singh RKM, Kapoor S, Khare SK (2011) Gene identification and molecular characterization of solvent stable protease from a moderately haloalkaliphilic bacterium, Geomicrobium sp. EMB2. J Microbiol Biotechnol 21(2):129–135

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486

    Article  CAS  PubMed  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  CAS  PubMed  Google Scholar 

  • Martin JR, Mulder FAA, Karimi-Nejad Y, van der Zwan J, Mariani M, Schipper D, Boelens R (1997) The solution structure of serine protease PB92 from Bacillus alcalophilus presents a rigid fold with a flexible substrate-binding site. Structure 5(4):521–532

    Article  CAS  PubMed  Google Scholar 

  • Masui A, Fujiwara N, Imanaka T (1994) Stabilization and rational design of serine protease AprM under highly alkaline and high-temperature conditions. Appl Environ Microbiol 60(10):3579

    PubMed Central  CAS  PubMed  Google Scholar 

  • Patel RK, Dodia MS, Singh SP (2005) Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem 40:3569–3575

    Article  CAS  Google Scholar 

  • Patel RK, Dodia MS, Joshi RH, Singh SP (2006a) Production of extracellular halo-alkaline protease from a newly isolated haloalkaliphilic Bacillus sp. isolated from seawater in Western India. World J Microbiol Biotechnol 22(4):375–382

    Article  CAS  Google Scholar 

  • Patel RK, Dodia MS, Joshi RH, Singh SP (2006b) Purification and characterization of alkaline protease from a newly isolated haloalkaliphilic Bacillus sp. Process Biochem 41:2002–2009

    Article  CAS  Google Scholar 

  • Purohit MK, Singh SP (2013) A metagenomic alkaline protease from saline habitat: cloning, over-expression and functional attributes. Int J Biol Macromol 53:138–143

    Article  CAS  PubMed  Google Scholar 

  • Purohit MK, Singh SP (2014) Cloning, over expression and functional attributes of serine proteases from Oceanobacillus iheyensis O.M.A18 and haloalkaliphilic bacterium O.M.E12. Process Biochem 49:61–68

    Article  CAS  Google Scholar 

  • Ramachandran GN, Ramakrishnan C, Sasisekhran V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  PubMed  Google Scholar 

  • Rawal CM (2012) Cloning, over expression, and characterization of alkaline protease from halophilic/haloalkaliphilic bacteria. PhD thesis, Saurashtra University, Rajkot

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Shirai T, Suzuki A, Yamane T, Ashida T, Kobayashi T, Hitomi J, Ito S (1997) High resolution crystal structure of M-protease: phylogeny aided analysis of the high alkaline adaptation mechanism. Prot Eng 10:627–634

    Article  CAS  Google Scholar 

  • Shirai T, Kobayashi T, Ito S, Horikoshi K (2008) Alkaline adaptations of proteins. In: Khawar SS, Torsten T (eds) Protein adaptation in extremophiles. Nova Science, New York, pp 105–141

    Google Scholar 

  • Tang XM, Shen W, Lakay FM, Shao WL, Wang ZX, Prior BA, Zhuge J (2004) Cloning and over-expression of an alkaline protease from Bacillus licheniformis. Biotechnol Lett 26:975–979

    Article  CAS  PubMed  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) PROSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed Central  PubMed  Google Scholar 

  • Zdobnov EM, Rolf A (2001) Interproscan- an integration platform for the signatures recognition methods in InterPro. Bioinformatics 17:847–848

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Ohta Y, Jordan F (1989) Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339:483–484

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

R.V. is grateful to DBT, New Delhi for Junior and Senior Research fellowships. This work was supported by DBT, New Delhi, as a Multi Institutional Project involving Saurashtra University, Delhi University South Campus and IIT Delhi. We are grateful to Mr. Rajendrakumar D. Joshi and Mr. Harendra Jha, Department of Pharmacology Molecular Biology Division, Piramal Life Sciences Ltd. Mumbai for providing facilities, plasmids and strains for the molecular biology work. The authors acknowledge Dr. Rupal Joshi for her inputs in the isolation of various halophilic and haloalkaliphilic bacteria during her research at Saurashtra University, Rajkot. Infrastructural facilities provided under the DST-FIST Programme to the Department of Biosciences, Saurashtra University, Rajkot are gratefully acknowledged. The facilities and support provided by the Saurashtra University and UGC, New Delhi are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 109 kb)

Fig. S1

Multiple sequence alignment of Ve2-20-91 clone sequence with the known proteases from the database using Clustal X program (DOC 1259 kb)

Fig. S2

InterProscan result showing domain analysis of protein (DOC 609 kb)

Fig. S3

Swiss model work space results showing Q-mean score of query protein (DOC 294 kb)

Fig. S4

Swiss model work space results showing Q-mean score comparison with non-redundant PDB structures (DOC 404 kb)

Fig. S5

PROSA result showing Z-score model quality. The plot displays z-scores of all experimentally determined protein chains in current PDB. In this plot, groups of structures from different sources X-ray (light blue), NMR (dark blue) are distinguished by different colors. It can be used to check whether the Z-score of the input structure is within the range of scores typically found for native proteins of similar size (DOC 609 kb)

Fig. S6

PROSA result showing local model quality by plot of energies as a function of amino acid sequence position i. The positive values correspond to problematic or erroneous parts of the input structure (DOC 436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raval, V.H., Rawal, C.M., Pandey, S. et al. Cloning, heterologous expression and structural characterization of an alkaline serine protease from sea water haloalkaliphilic bacterium. Ann Microbiol 65, 371–381 (2015). https://doi.org/10.1007/s13213-014-0869-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0869-0

Keywords

Navigation