Skip to main content
  • Original Article
  • Published:

Influence of tree species on gross and net N transformations in forest soils

Influence de l’essence forestière sur la minéralisation brute et nette de l’azote du sol

Abstract

We compared N fluxes in a 150-year-old Fagus sylvatica coppice and five adjacent 25-year-old plantations of Fagus sylvatica, Picea abies, Quercus petraea, Pinus laricio and Pseudotsuga menziesii. We measured net N mineralization fluxes in the upper mineral horizon (A1, 0–5 cm) for 4 weeks and gross N mineralization fluxes for two days. Gross rates were measured during the 48-h period after addition of 15NH4 and 15NO3. Mineralization was measured by the 15NH4 dilution technique and gross nitrification by 15NO3 production from the addition of 15NH4, and by 15NO3 dilution. Net and gross N mineralization was lower in the soil of the old coppice, than in the plantations, both on a soil weight and organic nitrogen basis. Gross nitrification was also very low. Gross nitrification measured by NO3 dilution was slightly higher than measured by 15NO3 production from the addition of 15NH4. In the plantations, gross and net mineralization and nitrification from pool dilution were lowest in the spruce stand and highest in the beech and Corsican pine stands. We concluded that: (1) the low net mineralization in the soil of the old coppice was related to low gross rate of mineralization rather than to the concurrent effect of microbial immobilisation of mineral N; (2) the absence of nitrate in the old coppice was not related to the low rate of mineralization nor to the absence of nitrifyers, but most probably to the inhibition of nitrifyers in the moder humus; (3) substituting the old coppice by young stands favours nitrifyer communities; and (4) heterotrophic nitrifyers may bypass the ammonification step in these acid soils, but further research is needed to check this process and to characterize the microbial communities.

Résumé

Nous avons mesuré les flux de minéralisation nette d’azote au cours d’une incubation de quatre semaines et les flux bruts d’azote au cours d’une incubation de deux jours dans 6 sols prélevés dans une comparaison d’espèces forestières. Nous avons comparé les horizons A1 d’un taillis sous futaie (TSF) de Fagus sylvatica et de cinq plantations adjacentes de 25 ans de Fagus sylvatica, Picea abies, Quercus petraea, Pinus laricio et Pseudotsuga menziesii. Les taux bruts ont été mesurés 48 h après l’addition de 15NH4, et 15NO3. La minéralisation brute a été calculée à partir de la dilution de 15NH4 et la nitrification brute à partir de la dilution de 15NO3 mais aussi de la production de 15NO3 à partir de l’apport de 15NH4. La minéralisation brute et nette est la plus basse dans le TSF, exprimée par gramme de sol ou d’azote organique. La nitrification nette et brute mesurée par enrichissement en 15NO3 est très faible, mais la nitrification brute est sensiblement plus élevée lorsqu’on l’évalue par dilution isotopique du 15NO3. Dans les plantations, la minéralisation et la nitrification brute et nette sont plus faibles sous épicéa et plus élevées sous hêtre et pin Laricio. Nous en concluons que (1) la faible minéralisation d’azote dans le TSF est directement liée à une faible minéralisation brute et non à l’expression d’une immobilisation microbienne de l’azote minéral formé; (2) l’absence de nitrate dans le TSF n’est pas liée à l’absence de nitrifiants mais plutôt à l’inhibition de leur activité sous le moder; (3) la coupe rase du TSF et sa plantation entraîne une levée partielle ou totale de cette inhibition; et (4) l’activité de nitrifiants hétérotrophes sans libération intermédiaire de NH4 est possible dans ces sols acides. Des études plus approfondies devraient permettre de vérifier ce point et d’identifier ces populations.

References

  1. Augusto L., Ranger J., Impact of tree species on soil solutions in acidic conditions, Ann. For. Sci. 58 (2001) 47–58.

    Article  Google Scholar 

  2. Barraclough D., The use of mean pool abundances to interpret 15N tracer experiments. I. Theory, Plant Soil 131 (1990) 89–96.

    Google Scholar 

  3. Bengtsson G., Bengtson P., Mansson K.F., Gross nitrogen mineralization, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity, Soil Biol. Biochem. 35 (2003) 143–154.

    Article  CAS  Google Scholar 

  4. Berendse F., Effects of dominant plant species on soils during succession in nutrient-poor ecosystems, Biogeochemistry 42 (1998) 73–88.

    Article  Google Scholar 

  5. Bonneau M., Modification de la fertilité des sols sous boisement artificiels de résineux purs, Compte rendu de fin d’étude, 1977, 88 p.

  6. Bonneau M., Evolution of the mineral fertility of an acid soil during a period of ten years in the Vosges mountains (France). Impact of humus mineralization, Ann. For. Sci. 62 (2005) 253–260.

    Article  CAS  Google Scholar 

  7. Brierley E.D.R., Wood M., Shaw P.J.A., Influence of tree species and ground vegetation on nitrification in an acid forest soil, Plant Soil 229 (2001) 97–104.

    Article  CAS  Google Scholar 

  8. Chaussod R., Houot S., Guiraud G., Hetier J.M., Size and turnover of the microbial biomass in agricultural soils: laboratory and field experiments, in: Jenkinson D.S., Smith K.A. (Eds.), Nitrogen efficiency in agricultural soils, Elsevier, Amsterdam, 1987, pp. 323–338.

    Google Scholar 

  9. Colin-Belgrand M., Dambrine E., Bienaimé S., Nys C., Turpault M.P., Influence of tree roots on nitrogen mineralization, Scand. J. For. Res. 18 (2003) 260–268.

    Article  Google Scholar 

  10. De Boer W., Kovalchuk G.A., Nitrification in acid soils: microorganisms and mechanisms, Soil Biol. Biochem. 33 (2001) 853–866.

    Article  Google Scholar 

  11. Gundersen P., Callesen L., de Vries W., Nitrate leaching in forest ecosystems is related to forest floor C/N ratios, Environ. Pollut. 102 (1998) 403–407.

    Article  CAS  Google Scholar 

  12. Hamilton E.W., Frank D.A., Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass, Ecology 82 (2001) 2397–2402.

    Article  Google Scholar 

  13. Jussy J.H., Ranger J., Bienaimé S., Dambrine E., Effects of a clear-cut on the in situ nitrogen mineralisation and the nitrogen cycle in a 67-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation, Ann. For. Sci. 61 (2004) 397–408.

    Article  Google Scholar 

  14. Kirkham D., Bartholemew D.W., Equations for following nutrient transformations in soil utilizing tracer data, Soil Sci. Soc. Am. Proc. 18 (1954) 33–34.

    Article  CAS  Google Scholar 

  15. Lata J.C., Durand J., Lensi R., Abbadie L., Stable coexistence of contrasted nitrification statuses in a wet tropical savannah ecosystem, Funct. Ecol. 13 (1999) 762–768.

    Article  Google Scholar 

  16. Leuschner C., On the niche breadth of Fagus sylvatica: soil nutrient status in 50 Central European beech stands on a broad range of bedrocks types, Ann. For. Sci. 63 (2006) 355–368.

    Article  CAS  Google Scholar 

  17. Luxhoi J., Nielsen N.E., Jensen L.S., Influence of (15NH +4 )-application on gross N turnover rates in soil, Soil Biol. Biochem. 35 (2003) 603–606.

    Article  CAS  Google Scholar 

  18. Matheson F.E., Nguyen M.L., Cooper A.B., Burt T.P., Short-term nitrogen transformation rates in riparian wetland soil determined with nitrogen-15, Biol. Fertil. Soils 38 (2003) 129–136.

    Article  CAS  Google Scholar 

  19. Mary B., Recous S., Measurement of nitrogen mineralisation and immobilisation fluxes in soil as a means of predicting net mineralisation, Eur. J. Agron. 3 (1994) 291–300.

    Google Scholar 

  20. Mary B., Recous S., Robin D., A model for calculating nitrogen fluxes in soil using 15N tracing, Soil Biol. Biochem. 30, (1998) 1–17.

    Article  Google Scholar 

  21. Moukoumi J., Munier-Lamy C., Berthelin J., Ranger J., Effect of tree species substitution on organic matter biodegradability and mineral nutrient availability in a temperate topsoil, Ann. For. Sci. 63 (2006) 763–771.

    Article  CAS  Google Scholar 

  22. Müller C., Stevens R.J., Laughlin R.J., A 15N tracing model to analyse N transformations in old grassland soil, Soil Biol. Biochem. 36 (2004) 619–632.

    Article  Google Scholar 

  23. Northup R.R., Yu Z., Dahlgren R.A., Vogt K.A., Polyphenol control of nitrogen release from pine litter, Nature 377 (1995) 227–229.

    Article  CAS  Google Scholar 

  24. Paavolainen L., Kitunen V., Somlander A., Inhibition of nitrification in forest soil by monoterpenes, Plant Soil 205 (1998) 147–154.

    Article  CAS  Google Scholar 

  25. Pedersen H., Dunkin K.A., Firestone M.K., The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques, Biogeochemistry 44 (1999) 135–150.

    Google Scholar 

  26. Persson T., Rudebeck A., Jussy J.H., Colin-Belgrand M., Priemé A., Dambrine E., Karlsson P.S., Sjoberg R.M, Soil nitrogen turnover — mineralization, nitrification and denitrification in European forest soils, in: Schulze E.D. (Ed.), Carbon and nitrogen cycling in European forest ecosystems, Ecological Studies 142, Springer, Berlin, 2000, pp. 297–331.

    Google Scholar 

  27. Ranger J., Andreux F., Bienaimé S., Berthelin J., Bonnaud P., Boudot J.P., Bréchet C, Buée M., Calmet J.P., Chaussod R., Gelhaye D., Gelhaye L., Gérard F., Jaffrain J., Lejon D., Le Tacon F., Lévèque J., Maurice J.P., Merlet D., Moukoumi J., Munier-Lamy C, Nourrisson G., Pollier B, Ranjard L., Simonsson M., Turpault M.P, Vairelles D., Zeller B., Effets des substitutions d’essence sur le fonctionnement organo-minéral de l’écosystème forestier, sur les communautés microbiennes et sur la diversité des communautés fongiques mycorhiziennes et saprophytes (cas du dispositif de Breuil — Morvan), Rapport final contrat INRA-GIP Ecofor 2001–24, 2004, 202 p.

  28. Recous S., Aita C., Mary B., In situ changes in gross N transformations in bare soil after addition of straw, Soil Biol. Biochem. 31 (1999) 119–133.

    Article  CAS  Google Scholar 

  29. Référentiel pedologique, Baize D., Girard M.C. (Eds.), Editions INRA, Paris, 1995, 332 p.

    Google Scholar 

  30. Schöttelndreier M., Falkengren-Grerup U., Plant induced alteration in the rhizosphere and the utilization of soil heterogeneity, Plant and Soil 209 (1999) 297–309.

    Article  Google Scholar 

  31. Son Y., Lee I.K., Soil nitrogen mineralization in adjacent stands of larch, pine and oak in central Korea, Ann. Sei. For. 54 (1997) 1–8.

    Article  Google Scholar 

  32. Stark J.M., Hart S.C., High rates of nitrification and nitrate turnover in undisturbed coniferous forests, Nature 385 (1997) 61–64.

    Article  CAS  Google Scholar 

  33. Vance E.D., Brookes P.C., Jenkinson D.S., Microbial biomass measurements in forest soils: The use of the chloroform-fumigation-incubation method in strongly acid soils, Soil Biol. Biochem. 19 (1987) 697–702.

    Article  CAS  Google Scholar 

  34. Verchot L.V., Holmes Z., Mulon L., Groffman P.M., Lovett G.M., Gross vs. net rates of N mineralization and nitrification as indicators of functional differences between forest types, Soil Biol. Biochem. 33 (2001) 1889–1901.

    Article  CAS  Google Scholar 

  35. Wattson C.J., Travers G., Kilpatrick D.J., Laidlaw A.S., Riordan E.O., Overestimation of gross N transformation rates in grassland soils due to non-uniform exploitation of applied and native pools, Soil Biol. Biochem. 32 (2000) 2019–2030.

    Article  Google Scholar 

  36. Zerva A., Mencuccini M., Carbon stock changes in a peaty soil profile after afforestation with Sitka spruce (Picea sitchensis), Ann. For. Sci. 62 (2005) 873–880.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Dambrine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeller, B., Recous, S., Kunze, M. et al. Influence of tree species on gross and net N transformations in forest soils. Ann. For. Sci. 64, 151–158 (2007). https://doi.org/10.1051/forest:2006099

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2006099