Skip to main content
  • Original Article
  • Published:

Cold hardiness and transplant response of Juglans nigra seedlings subjected to alternative storage regimes

Endurcissement au froid et réponse des semis de Juglans nigra transplantés après exposition à différentes modalités de stockage

Abstract

  • • Effects of overwinter storage regimes on seedling cold hardiness and physiological vigor are relatively unexplored, particularly for temperate deciduous forest tree species.

  • • We evaluated influence of storage duration (0, 66, 119, or 175 d) on electrolyte leakage of stem and root collar tissues following exposure to a series of freeze-test temperatures in black walnut (Juglans nigra L.) seedlings sampled from cold (3 °C) or freezer (−2 °C) storage. Seedlings were subsequently transplanted into a controlled growth chamber environment for two months.

  • • Regardless of storage temperature, mean LT50 was lowest for seedlings stored for 66 d (≤ −34 °C) and increased dramatically after 119 d (≥ −13 °C).

  • • Root collar tissue had lower LT50 than stem tissue after 119 d for cold-stored seedlings, reflecting importance of evaluative tissue type. Days to bud break shortened with increasing storage duration up to 119 d and stabilized thereafter for both storage regimes. Root growth potential was maximized after 119 d of storage, and subsequently declined for cold-stored seedlings. Height growth increased following storage, regardless of duration.

  • • To promote stress resistance and transplant growth response, we recommend that black walnut seedlings from this genetic source be outplanted after approximately 66–119 d of storage.

Résumé

  • • Les effets de différentes modalités de stockage hivernal sur la résistance au froid des semis et sur leur vigueur physiologique ont été relativement inexplorés, en particulier pour les arbres forestiers décidus tempérés.

  • • Nous avons évalué l’influence de la durée de stockage (0, 66, 119 ou 175 jours) sur la perte d’électrolyte de la tige et des tissus du collet racinaire exposés à une série de tests (témoin 4 %C, −10 °C, −20 °C, −40 °C) de température de congélation de semis de noyer noir (Juglans nigra L.), après stockage au froid (3 °C) ou au gel (−2 °C). Les semis étaient ensuite transplantés dans une chambre climatisée pour une durée de deux mois. Indépendamment de la température de stockage, la moyenne de LT50 (température létale correspondant à un endommagement de 50 % des plants) a été plus basse pour les semis stockés pendant 66 jours (≤ −34 °C) et s’est accrue de façon spectaculaire après 119 jours (≥ −13 °C).

  • • Les tissus du collet racinaire avaient un plus bas LT50 que les tissus de la tige, après 119 jours pour les semis stockés au froid, reflétant l’importance du type de tissu pour l’évaluation. Le nombre de jours jusqu’au débourrement a été raccourci avec l’accroissement de la durée de stockage jusqu’à 119 jours et s’est stabilisé par la suite pour les deux modalités de stockage. Le potentiel de croissance racinaire a été maximisé après 119 jours de stockage et a décliné par la suite, pour les semis stockés au froid. La croissance en hauteur s’est accrue à la suite du stockage, indépendamment de sa durée.

  • • Pour promouvoir une résistance élevée au stress et une forte reprise de croissance des semis transplantés, nous recommandons que les semis de noyer noir de cette source génétique soient plantés après approximativement 66 à 119 jours de stockage.

References

  • Ameglio T., Cochard H., Lacointe A., Vandame M., Bodet C., Cruiziat P., Sauter J., Ewers F., Martignac M., and Germain E., 2001. Adaptation to cold temperature and response to freezing in walnut free. Acta Hortic. 544: 247–254.

    Google Scholar 

  • Beineke W.F., 1989. Twenty years of black walnut genetic improvement at Purdue University. North J. Appl. For. 6: 68–71.

    Google Scholar 

  • Bigras F.J., 1997. Root cold tolerance of black spruce seedlings: viability tests in relation to survival and regrowth. Tree Physiol. 17: 311–318.

    PubMed  Google Scholar 

  • Burr K.E., 1990. The target seedling concepts: bud dormancy and cold hardiness. In: Rose R., Campbell S.J., Landis T.D. (Eds). Proceedings, Western Forest Nursery Association; U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station Gen. Tech. Rep. RM-200. Fort Collins, Colorado, pp. 79–90.

    Google Scholar 

  • Cabral R. and O’Reilly C., 2005. The physiological responses of oak seedlings to warm storage. Can. J. For. Res. 35: 2413–2422.

    Article  Google Scholar 

  • Calme S., Bigras F.J., Margolis H.A., and Hebert C., 1994. Frost tolerance and bud dormancy of container-grown yellow birch, red oak and sugar maple seedlings. Tree Physiol. 14: 1313–1325.

    PubMed  Google Scholar 

  • Campos P.S., Quartin V., Ramalho J.C., and Nunes M.A., 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J. Plant Physiol. 160: 283–292.

    Article  PubMed  CAS  Google Scholar 

  • Colombo S.J., Zhao S., and Blumwald E., 1995. Frost hardiness gradients in shoots and roots of Picea mariana seedlings. Scand. J. For. Res. 10: 32–36.

    Article  Google Scholar 

  • Davis A.S., Wilson B.C., and Jacobs D.F., 2004. Effect of seed position and media on germination of black walnut and northern red oak: implications for nursery production and direct-seeding. In: Michler C.H. et al. (Eds.), Proceedings of the Sixth Black Walnut Symposium. US Department of Agriculture Forest Service North Central Research Station, Gen. Tech. Rep. NC-243, pp. 31–36.

  • Deans J.D., Billington H.L., and Harvey F.J., 1995. Assessment of frost damage to leafless stem tissues of Quercus petraea: a reappraisal of the method of relative conductivity. Forestry 68: 25–34.

    Article  Google Scholar 

  • Dubey R.S., 1997. Photosynthesis in plants under stressful conditions. In: Pessarakli M. (Ed.), Handbook of Photosynthesis. Marcel Dekker, Inc., New York, NY, pp. 859–875.

    Google Scholar 

  • Duryea M.L., 1984. Nursery Cultural Practices: Impacts on Seedling Quality. In: Duryea M.L. and Landis T.D. (Eds.), Forest Nursery Manual: Production of Bareroot Seedlings. Martinus Nijhoff/Dr W. Junk Publishers, The Hague/Boston/Lancaster, pp. 143–164.

    Google Scholar 

  • Edwards C., 1998. Testing plant quality. Forestry Commission Information Note No. 11 Forestry Commission Forest Research Station, Farnham, UK, 6 p.

    Google Scholar 

  • Fuchigami L.H. and Nee C., 1987. Degree growth stage model and rest-breaking mechanisms in temperate woody plants. HortSci. 22: 836–845.

    Google Scholar 

  • Fuchigami L.H., Weiser C.J., Kobayashi K., Timmis R., and Gusta L.V., 1982. A degree growth stage (°GS) model and cold acclimation in temperate woody plants. In: Li P.H. and Sakai A. (Eds.), Plant Cold Hardiness and Freezing Stress. Vol. 2. Academic Press, New York, pp. 93–116.

    Google Scholar 

  • Garriou D., Girard S., Guehl J.-M., and Généré B., 2000. Effect of desiccation during cold storage on planting stock quality and field performance in forest species. Ann. For. Sci. 57: 101–111.

    Article  Google Scholar 

  • Généré B., Garriou D., Omarzad O., Grivet J.P., and Hagège D., 2004. Effect of a strong cold storage induced desiccation on metabolic solutes, stock quality and regrowth, in seedlings of two oak species. Trees 18: 559–565.

    Article  Google Scholar 

  • Goheen J.R. and Swihart R.K., 2003. Food-hoarding behavior of gray squirrels and North American red squirrels in the central hardwoods region: implications for forest regeneration. Can. J. Zool. 81: 1636–1639.

    Article  Google Scholar 

  • Jacobs D.F., 2003. Nursery production of hardwood seedlings. Purdue University Cooperative Extension Service, FNR-212, 8 p.

  • Jacobs D.F., Ross-Davis A.L., and Davis A.S., 2004. Establishment success of conservation free plantations in relation to silvicultural practices in Indiana, USA. New For. 28: 23–36.

    Article  Google Scholar 

  • Jacobs D.F., Salifu K.F., and Seifert J.R., 2005. Growth and nutritional response of hardwood seedlings to confrolled-release fertilization at outplanting. For. Ecol. Manage. 214: 28–39.

    Article  Google Scholar 

  • Jacobs D.F., Davis A.S., Wilson B.C., Dumroese R.K., Goodman R.C., and Salifu K.F., 2008. Short-day treatment alters Douglas-fir seedling dehardening and transplant root proliferation at varying rhizosphere temperatures. Can. J. For. Res. 38: 1526–1535.

    Article  Google Scholar 

  • King S.L. and Keeland B.D., 1999. Evaluation of reforestation in the Lower Mississippi River Alluvial Valley. Restor. Ecol. 7: 348–359.

    Article  Google Scholar 

  • Li C., Junttila O., Heino P., and Palva H.E., 2003. Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Tree Physiol. 23: 481–487.

    PubMed  CAS  Google Scholar 

  • Lindqvist H., 1998. Effect of lifting date and time of storage on survival and die-back in four deciduous species. J. Environ. Hort. 16: 195–201.

    Google Scholar 

  • Liu T.M., Zhang Z.W., Li H., Ren Z.B., and Zhou C.T., 1998. The hardiness of peach cultivars (Prunus persica (L.) Batsch.). J. Fruit Sci. 15: 107–111.

    CAS  Google Scholar 

  • Mattsson A., 1996. Predicting field performance using seedling quality assessment. New For. 13: 223–248.

    Google Scholar 

  • McGuire M., Stevens J., and Potter-Witter K., 1999. Assessing scarcity of the north central veneer log resource. North. J. Appl. For. 16: 160–166.

    Google Scholar 

  • McKay H.M., 1992. Electrolyte leakage from fine roots of conifer seedlings: a rapid index of plant vitality following cold storage. Can. J. For. Res. 22: 1371–1377.

    Article  Google Scholar 

  • McKay H.M., Jinks R.L., and McEvoy C., 1999. The effect of desiccation and rough-handling on the survival and early growth of ash, beech, birch and oak seedlings. Ann. For. Sci. 56: 391–402.

    Article  Google Scholar 

  • Mortazavi M., O’Reilly C., and Keane M., 2004. Stress resistance levels change little during dormancy in ash, sessile oak, and sycamore seedlings. New For. 28: 89–108.

    Article  Google Scholar 

  • O’Reilly C., Harper C.P., and Keane M., 1999. Influence of physiological status at time of lifting on cold storage tolerance and field performance of Douglas fir and Sitka spruce. Irish Forestry 56: 2–17.

    Google Scholar 

  • O’Reilly C., Harper C.P., and Keane M., 2002. Influence of physiological condition at the time of lifting on the cold storage tolerance and field performance of ash and sycamore. Forestry 75: 1–12.

    Article  Google Scholar 

  • O’Reilly C., Mortazavi M., and Keane M., 2003. Effect of physiological status on the cold storage tolerance and field performance of ash, oak, and sycamore in Ireland. Phyton 43: 335–350.

    Google Scholar 

  • Pardos M., Royo A., Gil L., and Pardos J.A., 2003. Effect of nursery location and outplanting date on field performance of Pinus halepensis and Quercus ilex seedlings. Forestry 76: 67–81.

    Article  Google Scholar 

  • Pinkas L.L.H., Teel M.R., and Swartzendruber D., 1964. A method of measuring the volume of small root systems. Agron. J. 56: 90–91.

    Article  Google Scholar 

  • Radoglou K. and Raftoyannis Y., 2001. Effects of desiccation and freezing on vitality and field performance of broadleaved tree species. Ann. For. Sci. 58: 59–68.

    Article  Google Scholar 

  • Rietveld W.J. and Williams R.D., 1978. Dormancy and root regeneration of black walnut seedlings: Effects of chilling. US Department of Agriculture, Forest Service, North Central Forest Experiment Station Research Note NC-244, St. Paul, Minnesota, 3 p.

    Google Scholar 

  • Rink G. and Van Sambeek J.W., 1985. Variation among black walnut seedling families in resistance to competition and allelopathy. Plant Soil 88: 3–10.

    Article  Google Scholar 

  • Ritchie G.A., 1984. Assessing seedling quality. In: Duryea M.L. and Landis T.D. (Eds.), Forest Nursery Manual: Production of Bareroot Seedlings, Martinus Nijhoff/Dr W. Junk Publishers, The Hague/Boston/Lancaster, pp. 243–260.

    Google Scholar 

  • Rose R. and Haase D.L., 2002. Chlorophyll fluorescence and variations in tissue cold hardiness in response to freezing stress in Douglas-fir seedlings. New For. 23: 81–96.

    Article  Google Scholar 

  • Sarvas M., 2001. The influence of physiological activity on the rate of electrolyte leakage from beech and oak planting stock. J. For. Sci. 47: 174–180.

    Google Scholar 

  • Schute G. and Sarvas M., 1999. Measuring of electrolyte losses as a method to determine regrowth potential of oak seedlings (Quercus robur L.). Forstarchiv 70: 133–138.

    Google Scholar 

  • Scifert J.R., Jacobs D.F., and Selig M.F., 2006. Influence of seasonal planting date on field performance of six temperate deciduous forest tree species. For. Ecol. Manage. 223: 371–378.

    Article  Google Scholar 

  • Shifley S.R., 2004. The black walnut resource in the United States. In: Michler C.H. et al., (Eds.), Proceedings of the Sixth Black Walnut Symposium. US Department of Agriculture Forest Service North Central Research Station Gen. Tech. Rep. NC-243, pp. 168–176.

  • Simpson D.G. and Ritchie G.A., 1997. Does RGP predict field performance? A debate. New For. 13: 253–277.

    Article  Google Scholar 

  • Stanturf J.A., Gardiner E.S., Hamel P.B., Devall M.S., Leininger T.D., and Warren M.E., 2000. Restoring bottomland hardwood ecosystems in the Lower Mississippi Alluvial Valley. J. For. 98: 10–16.

    Google Scholar 

  • Timmis R., 1976. Methods of screening tree seedlings for frost hardiness. In: Cannell M.G.R. and Last F.T. (Eds.), Tree physiology and yield improvement, Academic Press, New York, pp. 421–435.

    Google Scholar 

  • Tinus R.W., 1996. Cold hardiness testing to time lifting and packing of container stock: a case history. Tree Planters’ Notes 47: 62–67.

    Google Scholar 

  • Tinus R.W. and Burr K.E., 1997. Cold hardiness measurement to time fall lifting. In: Landis T.D. and Thompson J.R., (Eds.). National Proceedings, Forest and Conservation Nursery Associations, US Department of Agriculture, Forest Service, Pacific Northwest Research Station Gen. Tech. Rep. PNW-GTR-419, Portland, OR, pp. 17–22.

    Google Scholar 

  • Tinus R.W., Burr K.E., Atzmon N. and Riov J., 2000. Relationship between carbohydrate concentration and root growth potential in coniferous seedlings from three climates during cold hardening and dehardening. Tree Physiol. 20: 1097–1104.

    PubMed  CAS  Google Scholar 

  • Williams R.D., 1990. Juglans nigra L., black walnut. In: Burns R.M. and Honkala B.H. (Eds.), Silvics of North America, vol. 2, Hardwoods, US Department of Agriculture Handbook 654, Washington, DC, pp. 391–399.

  • Wilson B.C. and Jacobs D.F., 2006. Quality assessment of temperate zone deciduous hardwood seedlings. New For. 31: 417–433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglass F. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, D.F., Wilson, B.C., Ross-Davis, A.L. et al. Cold hardiness and transplant response of Juglans nigra seedlings subjected to alternative storage regimes. Ann. For. Sci. 65, 606 (2008). https://doi.org/10.1051/forest:2008036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2008036