Skip to main content
Log in

Direct analysis of trace elements in crude oils by high-repetition-rate femtosecond laser ablation coupled to ICPMS detection

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

IR-femtosecond pulses were used at high repetition rates (up to 10 kHz) to ablate viscous crude oils for the determination of trace elements by ICPMS. A special internal glass cap was fitted into the ablation cell to minimise oil splashes and remove big particles that would be otherwise spread into the cell. Laser ablation in static and dynamic conditions (i.e. the laser beam being moved rapidly at the surface of the sample) was studied together with some fundamental parameters like repetition rate and fluence. Signal sensitivity and stability were found to be strongly affected by repetition rate and fluence, though not in linear manner, and in some circumstances by the laser beam velocity. Sample transport efficiency was found to decrease with increasing repetition rate, probably due to stronger particle agglomeration when increasing the density of primary particles. ICPMS plasma atomisation/ionisation efficiency was also found to be affected to some extent at the highest repetition rates. Moderate repetition rate (1 kHz), high fluence (24 J cm−2) and fast scanning velocity (100 mm s−1) were preferred taking into account signal intensity and stability. Sample transport elemental fractionation was also evidenced, particularly as regards to carbon due to volatilisation of volatile organic species. Matrix effect occurring when comparing the ablation of transparent (base oil) and opaque (crude oil) samples could not be completely suppressed by the use of IR femtosecond pulses, requiring a matrix matching or a standard addition calibration approach. This approach provided good accuracy and very low detection limits in the crude oil, in the range of ng g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barwise AJG (1990) Role of nickel and vanadium in petroleum classification. Energy Fuels 4(6):647–652

    Article  CAS  Google Scholar 

  2. Lewan MD (1984) Factors controlling the proportionality of vanadium to nickel in crude oils. Geochim Cosmochim Acta 48(11):2231–2238

    Article  CAS  Google Scholar 

  3. Premovic PI, Dordevic DM, Pavlovic MS (2002) Vanadium of petroleum asphaltenes and source kerogens (La Luna Formation, Venezuela): isotopic study and origin. Fuel 81(15):2009–2016

    Article  CAS  Google Scholar 

  4. Lo Mónaco S, Lopez L, Rojas H, Garcia D, Premovic P, Briceno H (2002) Distribution of major and trace elements in La Luna Formation, southwestern Venezuelan basin. Org Geochem 33(12):1593–1608

    Article  Google Scholar 

  5. Dreyfus S (2006) Détermination directe des éléments traces (Ni, V, Cu, Mo, Sn, Ba, Pb) et de leurs rapports isotopiques dans les huiles brutes par ICP/MS. Définition de nouveaux traceurs géochimiques et application à l’étude du système pétrolier du bassin de Potiguar (Brésil). Université de Pau et des Pays de l’Adour Thèse de Doctorat 240

  6. Selby D, Creaser RA (2005) Geochemistry: direct radiometric dating of hydrocarbon deposits using rhenium–osmium isotopes. Science 308(5726):1293–1295

    Article  CAS  Google Scholar 

  7. Furimsky E (1998) Selection of catalysts and reactors for hydroprocessing. Appl Catal, A 171(2):177–206

    Article  CAS  Google Scholar 

  8. Rana MS, Ancheyta J, Maity SK, Rayo P (2005) Maya crude hydrodemetallization and hydrodesulfurization catalysts: an effect of TiO2 incorporation in Al2O3. Catal Today 109(1-4):61–68

    Article  CAS  Google Scholar 

  9. Reynolds JG (2001) Nickel in petroleum refining. Pet Sci Technol 19(7-8):979–1007

    Article  CAS  Google Scholar 

  10. Hausler D (1987) Trace element analysis of organic solutions using inductively coupled plasma-mass spectrometry. Spectrochim Acta B 42(1-2):63–73

    Article  Google Scholar 

  11. Hutton RC (1986) Application of inductively coupled plasma source mass spectrometry (ICP-MS) to the determination of trace metals in organics. J Anal At Spectrom 1(4):259–263

    Article  CAS  Google Scholar 

  12. Hausler D, Carlson R (1991) Application of plasma spectrometry in the petroleum industry. Spectrochim Acta Rev 14:125–140

    CAS  Google Scholar 

  13. Duyck C, Miekeley N, Porto da Silveira CL, Aucélio RQ, Campos RC, Grinberg P, Brandão GP (2007) The determination of trace elements in crude oil and its heavy fractions by atomic spectrometry. Spectrochim Acta B 62(9):939–951

    Article  Google Scholar 

  14. Curiale JA (1987) Distribution and occurrence of metals in heavy crude oils and solid bitumens—implications for petroleum exploration. In: Meyer, RF (Ed), exploration for heavy crude oil and natural bitumen Proc Am Assoc Pet Geol, Symp Heavy Oils, AAPG Stud Geol 25:207-219

  15. Laban KL, Atkin BP (1999) The determination of minor and trace element associations in coal using a sequential microwave digestion procedure. Int J Coal Geol 41(4):351–369

    Article  CAS  Google Scholar 

  16. Wondimu T, Goessler W, Irgolic KJ (2000) Microwave digestion of “Residual fuel oil” (NIST SRM 1634b) for the determination of trace elements by inductively coupled plasma-mass spectrometry. Fresenius J Anal Chem 367(1):35–42

    Article  CAS  Google Scholar 

  17. Lord CJ III (1991) Determination of trace metals in crude oil by inductively coupled plasma mass spectrometry with microemulsion sample introduction. Anal Chem 63(15):1594–1599

    Article  CAS  Google Scholar 

  18. Duyck C, Miekeley N, Porto da Silveira CL, Szatmari P (2002) Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions. Spectrochim Acta B 57(12):1979–1990

    Article  Google Scholar 

  19. Botto RI (2002) Trace element analysis of petroleum naphthas and tars using direct injection ICP-MS. Can J Anal Sci Spectros 47(1):1–13

    CAS  Google Scholar 

  20. Kahen K, Strubinger A, Chirinos JR, Montaser A (2003) Direct injection high efficiency nebulizer-inductively coupled plasma mass spectrometry for analysis of petroleum samples. Spectrochim Acta B 58(3):397–413

    Article  Google Scholar 

  21. Caumette G, Lienemann C-P, Merdrignac I, Paucot H, Bouyssiere B, Lobinski R (2009) Sensitivity improvement in ICP MS analysis of fuels and light petroleum matrices using a microflow nebulizer and heated spray chamber sample introduction. Talanta 80(2):1039–1043

    Article  CAS  Google Scholar 

  22. Dreyfus S, Pécheyran C, Magnier C, Prinzhofer A, Lienemann CP, Donard OFX (2005) Direct trace and ultra-trace metals determination in crude oil and fractions by inductively coupled plasma mass spectrometry. In: Kishore-Nadkarni RA (ed) Elemental analysis of fuels and lubricants: recent advances and future prospects. ASTM Special Technical Publication, Tampa, FL, pp 51–58

    Chapter  Google Scholar 

  23. Giusti P, Nuevo Ordóñez Y, Philippe Lienemann C, Schaumlöffel D, Bouyssiere B, Łobiński R (2007) μflow-injection-ICP collision cell ms determination of molybdenum, nickel and vanadium in petroleum samples using a modified total consumption micronebulizer. J Anal At Spectrom 22(1):88–92

    Article  CAS  Google Scholar 

  24. Dreyfus S, Pécheyran C, Lienemann CP, Magnier C, Prinzhofer A, Donard OFX (2007) Determination of lead isotope ratios in crude oils with Q-ICP/MS. J Anal At Spectrom 22(4):351–360

    Article  CAS  Google Scholar 

  25. Bings NH (2002) Direct determination of metals in lubricating oils by laser ablation coupled to inductively coupled plasma time-of-flight mass spectrometry. J Anal At Spectrom 17(8):759–767

    Article  CAS  Google Scholar 

  26. Heilmann J, Boulyga SF, Heumann KG (2009) Development of an isotope dilution laser ablation ICP-MS method for multi-element determination in crude and fuel oil samples. J Anal At Spectrom 24(4):385–390

    Article  CAS  Google Scholar 

  27. Boulyga SF, Heilmann J, Heumann KG (2005) Isotope dilution ICP-MS with laser-assisted sample introduction for direct determination of sulfur in petroleum products. Anal Bioanal Chem 382(8):1808–1814

    Article  CAS  Google Scholar 

  28. Gondal MA, Hussain T, Yamani ZH, Baig MA (2006) Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy. Talanta 69(5):1072–1078

    Article  CAS  Google Scholar 

  29. Fichet P, Mauchien P, Wagner J-F, Moulin C (2001) Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy. Anal Chim Acta 429(2):269–278

    Article  CAS  Google Scholar 

  30. Možná V, Pisonero J, Hola M, Kanicky V, Gunther D (2006) Quantitative analysis of Fe-based samples using ultraviolet nanosecond and femtosecond laser ablation-ICP-MS. J Anal At Spectrom 21(11):1194–1201

    Article  Google Scholar 

  31. Russo RE, Mao X, Gonzalez JJ, Mao SS (2002) Femtosecond laser ablation ICP-MS. J Anal At Spectrom 17(9):1072–1075

    Article  CAS  Google Scholar 

  32. Fernández B, Claverie F, Pécheyran C, Donard OFX, Claverie F (2007) Direct analysis of solid samples by FS-LA-ICP-MS. TrAC, Trends Anal Chem 26(10):951–966

    Article  Google Scholar 

  33. Margetic V, Pakulev A, Stockhaus A, Bolshov M, Niemax K, Hergenröder R (2000) Comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples. Spectrochim Acta B 55(11):1771–1785

    Article  Google Scholar 

  34. Koch J, Von Bohlen A, Hergenröder R, Niemax K (2004) Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass. J Anal At Spectrom 19(2):267–272

    Article  CAS  Google Scholar 

  35. Gonzalez J, Liu C, Mao X, Russo RE (2004) UV-femtosecond laser ablation-ICP-MS for analysis of alloy samples. J Anal At Spectrom 19(9):1165–1168

    Article  CAS  Google Scholar 

  36. Ballihaut G, Claverie F, Pécheyran C, Mounicou S, Grimaud R, Lobinski R (2007) Sensitive detection of selenoproteins in gel electrophoresis by high repetition rate femtosecond laser ablation-inductively coupled plasma mass spectrometry. Anal Chem 79(17):6874–6880

    Article  CAS  Google Scholar 

  37. Claverie F, Fernández B, Pécheyran C, Alexis J, Donard OFX (2009) Elemental fractionation effects in high repetition rate IR femtosecond laser ablation ICP-MS analysis of glasses. J Anal At Spectrom 24(7):891–902

    Article  CAS  Google Scholar 

  38. Fernández B, Claverie F, Pécheyran C, Alexis J, Donard OFX (2008) Direct determination of trace elements in powdered samples by in-cell isotope dilution femtosecond laser ablation ICPMS. Anal Chem 80(18):6981–6994

    Article  Google Scholar 

  39. Pécheyran C, Cany S, Chabassier P, Mottay E, Donard OFX (2007) High repetition rate and low energy femtosecond laser ablation coupled to ICPMS detection: a new analytical approach for trace element determination in solid samples. J Phys Conf Ser 59(1):112–117

    Article  Google Scholar 

  40. Krupp EM, Pécheyran C, Pinaly H, Motelica-Heino M, Koller D, Young SMM, Brenner IB, Donard OFX (2001) Isotopic precision for a lead species (PbEt4) using capillary gas chromatography coupled to inductively coupled plasma-multicollector mass spectrometry. Spectrochim Acta B 56(7):1233–1240

    Article  Google Scholar 

  41. Claverie F, Pécheyran C, Mounicou S, Ballihaut G, Fernandez B, Alexis J, Lobinski R, Donard OFX (2009) Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins. Spectrochim Acta B 64(7):649–658

    Article  Google Scholar 

  42. Koch J, Schlamp S, Rösgen T, Fliegel D, Günther D (2007) Visualization of aerosol particles generated by near infrared nano- and femtosecond laser ablation. Spectrochim Acta B 62(1):20–29

    Article  Google Scholar 

  43. Koch J, Wälle M, Pisonero J, Günther D (2006) Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at ~265 and ~200 nm. J Anal At Spectrom 21(9):932–940

    Article  CAS  Google Scholar 

  44. González J, Dundas SH, Liu CY, Mao X, Russo RE (2006) UV-femtosecond and nanosecond laser ablation-ICP-MS: internal and external repeatability. J Anal At Spectrom 21(8):778–784

    Article  Google Scholar 

  45. Guillong M, Horn I, Günther D (2003) A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:Yag laser for laser ablation ICP-MS. J Anal At Spectrom 18(10):1224–1230

    Article  CAS  Google Scholar 

  46. Eggins SM, Kinsley LPJ, Shelley JMG (1998) Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci 127-129:278–286

    Article  CAS  Google Scholar 

  47. Imbert JL, Telouk P (1993) Application of laser ablation ICP-MS to elemental analysis of glasses. Mikrochim Acta 110(4-6):151–160

    Article  CAS  Google Scholar 

  48. Horn I, von Blanckenburg F, Schoenberg R, Steinhoefel G, Markl G (2006) In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes. Geochim Cosmochim Acta 70(14):3677–3688

    Article  CAS  Google Scholar 

  49. Fryer BJ, Jackson SE, Longerich HP (1993) The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (u)-Pb geochronology. Chem Geol 109:1–8

    Article  CAS  Google Scholar 

  50. Bouyssiere B, Baco F, Savary L, Garraud H, Gallup DL, Lobinski R (2001) Investigation of speciation of arsenic in gas condensates by capillary gas chromatography with ICP-MS detection. J Anal At Spectrom 16(11):1329–1332

    Article  CAS  Google Scholar 

  51. Bian Q, Garcia CC, Koch J, Niemax K (2006) Non-matrix matched calibration of major and minor concentrations of zn and cu in brass, aluminium and silicate glass using nIR femtosecond laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 21(2):187–191

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank T.K. Kyser for useful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Pécheyran.

Additional information

Published in the special issue Laser Ablation with Guest Editors Detlef Günther and Jan Fietzke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricard, E., Pécheyran, C., Sanabria Ortega, G. et al. Direct analysis of trace elements in crude oils by high-repetition-rate femtosecond laser ablation coupled to ICPMS detection. Anal Bioanal Chem 399, 2153–2165 (2011). https://doi.org/10.1007/s00216-010-4403-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4403-3

Keywords

Navigation