Skip to main content
Log in

Identification of weak transitions using moving-window two-dimensional correlation analysis: treatment with scaling techniques

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present study, the theory of the data treatment with scaling techniques for moving-window two-dimensional (scaling-MW2D) correlation analysis was first proposed. This new analytical method of spectroscopy can significantly enhance the resolving capacity of the moving-window two-dimensional (MW2D) correlation infrared spectroscopy in the direction of the perturbation variable. So, it strengthened the ability of MW2D to highlight the weak transitions. The in situ infrared spectra of four common polymers, including polyamide 66 (PA66), polystyrene-block-polybutadiene-block-polystyrene block copolymer (SBS), isotactic polypropylene (iPP), and polyoxymethylene (POM), were employed to illustrate the advantages of scaling-MW2D. In the applications of the present study, the conventional autocorrelation MW2D can only distinguish the melting point of PA66, the maximum crystallization temperature of POM, and the primary oxidation of SBS. However, the autocorrelation scaling-MW2D not only can more easily determine the above transitions, but also can identify PA66 brill transition, the dissociation of adsorbed water in PA66, POM secondary crystallization, the glass transition of hard blocks in SBS, and the generation of the aldehyde and hydroxyl groups during SBS oxidation. Our further study found that the selection of the scaling factor α was very important. The golden point α = 0.618 was the best value, and satisfactory application results can be achieved. The slice scaling-MW2D was also investigated. The scaling-MW2D method of spectroscopy can be used elsewhere. The application of this analytical method should not be limited to the infrared spectra, and it also should not be limited to transitions in polymers. This method can be easily extended and applied to other materials and spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Noda I (1993) Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl Spectrosc 47(9):1329–1336

    Article  CAS  Google Scholar 

  2. Noda I (2006) Progress in two-dimensional (2D) correlation spectroscopy. J Mol Struct 799:2–15

    Article  CAS  Google Scholar 

  3. Noda I (2008) Recent advancement in the field of two-dimensional correlation spectroscopy. J Mol Struct 883–884:2–26

    Article  Google Scholar 

  4. Noda I (2010) Two-dimensional correlation spectroscopy—biannual survey 2007–2009. J Mol Struct 974:3–24

    Article  CAS  Google Scholar 

  5. Noda I (2012) Close-up view on the inner workings of two-dimensional correlation spectroscopy. Vib Spectrosc 60:146–153

    Article  CAS  Google Scholar 

  6. He Y, Wang GF, Cox J, Geng L (2001) Two-dimensional fluorescence correlation spectroscopy with modulated excitation. Anal Chem 73(10):2302–2309

    Article  CAS  Google Scholar 

  7. Huang H, Malkov S, Coleman M, Painter P (2003) Application of two-dimensional correlation infrared spectroscopy to the study of miscible polymer blends. Macromolecules 36(21):8156–8163

    Article  CAS  Google Scholar 

  8. Tang B, Wu P, Siesler HW (2008) In situ study of diffusion and interaction of water and mono- or divalent anions in a positively charged membrane using two-dimensional correlation FT-IR/attenuated total reflection spectroscopy. J Phys Chem B 112(10):2880–2887

    Article  CAS  Google Scholar 

  9. Shi J, Wu P, Yan F (2010) Further investigation of the intermolecular interactions and component distributions in a [Bmim][BF4]-based polystyrene composite membranes using two-dimensional correlation infrared spectroscopy. Langmuir 26(13):11427–11434

    Article  CAS  Google Scholar 

  10. Zhang LP, Noda I, Wu YQ (2010) Concatenated two-dimensional correlation analysis: a new possibility for generalized two-dimensional correlation spectroscopy and its application to the examination of process reversibility. Appl Spectrosc 64(3):343–350

    Article  CAS  Google Scholar 

  11. Lai H, Chen G, Wu P, Li Z (2012) Thermoresponsive behavior of an LCST-type polymer based on a pyrrolidone structure in aqueous solution. Soft Matter 8:2662–2670

    Article  CAS  Google Scholar 

  12. Chen J, Zhou Q, Noda I, Sun S (2009) Discrimination of different genera Astragalus samples via quantitative symmetry analysis of two-dimensional hetero correlation spectra. Anal Chim Acta 649(1):106–110

    Article  CAS  Google Scholar 

  13. Spegazzini N, Siesler HW, Ozaki Y (2012) Sequential identification of model parameters by derivative double two-dimensional correlation spectroscopy and calibration-free approach for chemical reaction systems. Anal Chem 84(19):8330–8339

    Article  CAS  Google Scholar 

  14. Sun S, Zhang W, Zhang W, Wu P, Zhu X (2012) Dynamic self-aggregation behavior of a PNIPAM-based nonlinear multihydrophilic block copolymer revealed by two-dimensional correlation spectroscopy. Soft Matter 8:3980–3987

    Article  CAS  Google Scholar 

  15. Wu YQ, Jiang JH, Ozaki Y (2002) A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy. J Phys Chem A 106(11):2422–2429

    Article  CAS  Google Scholar 

  16. Wu QY, Chen XN, Wan LS, Xu ZK (2012) Interactions between polyacrylonitrile and solvents: density functional theory study and two-dimensional infrared correlation analysis. J Phys Chem B 116(28):8321–8330

    Article  CAS  Google Scholar 

  17. Liu XY, Zhou T, Wang XC, Zhang JH (2010) Investigation of selective molecular interactions using two-dimensional Fourier transform IR spectroscopy. Anal Bioanal Chem 397(1):339–343

    Article  CAS  Google Scholar 

  18. Du HY, Zhou T, Zhang JH, Liu XY (2010) Moving-window two-dimensional correlation infrared spectroscopy study on structural variations of partially hydrolyzed poly(vinyl alcohol). Anal Bioanal Chem 397(7):3127–3132

    Article  CAS  Google Scholar 

  19. Sun S, Wu P (2013) On the thermally reversible dynamic hydration behavior of oligo(ethylene glycol) methacrylate-based polymers in water. Macromolecules 46:236–246

    Article  CAS  Google Scholar 

  20. Thomas M, Richardson HH (2000) Two-dimensional FT-IR correlation analysis of the phase transitions in a liquid crystal, 4'-n-octyl-4-cyanobiphenyl (8CB). Vib Spectrosc 24:137–146

    Article  CAS  Google Scholar 

  21. Morita S, Shinzawa H, Tsenkova R, Noda I, Ozaki Y (2006) Computational simulations and a practical application of moving-window two-dimensional correlation spectroscopy. J Mol Struct 799(1–3):111–120

    Article  CAS  Google Scholar 

  22. Richardson HH, Wang D (2010) Spatial enhancement of Raman scattering images using moving-window two-dimensional auto-correlation spectroscopy. J Mol Struct 974(1–3):52–55

    Article  CAS  Google Scholar 

  23. Sasic S, Katsumoto Y, Sato N, Ozaki Y (2003) Applications of moving window two-dimensional correlation spectroscopy to analysis of phase transitions and spectra classification. Anal Chem 75(16):4010–4018

    Article  CAS  Google Scholar 

  24. Shinzawa H, Morita S, Noda I, Ozaki Y (2006) Effect of the window size in moving-window two-dimensional correlation analysis. J Mol Struct 799(1–3):28–33

    Article  CAS  Google Scholar 

  25. Zhou T, Zhang A, Zhao CS, Liang HW, Wu ZY, Xia JK (2007) Molecular chain movements and transitions of SEBS above room temperature studied by moving-window two-dimensional correlation infrared spectroscopy. Macromolecules 40(25):9009–9017

    Article  CAS  Google Scholar 

  26. Zhou T, Wu ZY, Li YY, Luo JA, Chen ZG, Xia JK, Liang HW, Zhang AM (2010) Order-order, lattice disordering, and order-disorder transition in SEBS studied by two-dimensional correlation infrared spectroscopy. Polymer 51(18):4249–4258

    Article  CAS  Google Scholar 

  27. Luo JA, Zhou T, Fu XL, Liang HW, Zhang AM (2011) Mechanism in brill transition of polyamide 66 studied by two-dimensional correlation infrared spectroscopy. Eur Polym J 47(2):230–237

    Article  CAS  Google Scholar 

  28. Morita S, Shinzawa H, Noda I, Ozaki Y (2006) Perturbation-correlation moving-window two-dimensional correlation spectroscopy. Appl Spectrosc 60(4):398–406

    Article  CAS  Google Scholar 

  29. Qun Z, Suqin S, Daqi Z, Zhiwu Y (2008) Point-point and point-line moving-window correlation spectroscopy and its applications. J Mol Struct 883–884:109–115. doi:10.1016/j.molstruc.2008.01.019

    Google Scholar 

  30. Noda I (2008) Scaling techniques to enhance two-dimensional correlation spectra. J Mol Struct 883:216–227

    Article  Google Scholar 

  31. Noda I, Ozaki Y (2004) In: two-dimensional correlation spectroscopy-applications in vibrational and optical spectroscopy. Wiley, Chichester, pp 39–41

    Book  Google Scholar 

  32. Goncalves ES, Poulsen L, Ogilby PR (2007) Mechanism of the temperature-dependent degradation of polyamide 66 films exposed to water. Polym Degrad Stab 92(11):1977–1985

    Article  CAS  Google Scholar 

  33. Rastogi S, Terry AE, Vinken E (2004) Dissolution of hydrogen-bonded polymers in water: a study of nylon-4,6. Macromolecules 37(24):8825–8828

    Article  CAS  Google Scholar 

  34. Hernandeza RJ, Giacin JR, Grulkeb EA (1992) The sorption of water vapor by an amorphous polyamide. J Membr Scrence 65:187–199

    Article  Google Scholar 

  35. Skrovanek DJ, Howe SE, Painter PC, Coleman MM (1985) Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide. Macromolecules 18:1676–1683

    Article  CAS  Google Scholar 

  36. Wu P, Siesler HW (2000) Two-dimensional correlation analysis of variable-temperature Fourier-transform mid- and near-infrared spectra of polyamide 11. J Mol Struct 521:37–47

    Article  CAS  Google Scholar 

  37. Cooper SJ, Coogan M, Everall N, Priestnall I (2001) A polarised mu-FTIR study on a model system for nylon 6,6: implications for the nylon Brill structure. Polymer 42(26):10119–10132

    Article  CAS  Google Scholar 

  38. Skrovanek DJ, Painter PC, Coleman MM (1986) Hydrogen bonding in polymers. 2. Infrared temperature studies of nylon 11. Macromolecules 19:699–705

    Article  CAS  Google Scholar 

  39. Vasanthan N, Murthy NS, Bray RG (1998) Investigation of brill transition in nylon 6 and nylon 6,6 by infrared spectroscopy. Macromolecules 31(23):8433–8435

    Article  CAS  Google Scholar 

  40. Liu XH, Wu QJ, Berglund LA (2002) Polymorphism in polyamide 66/clay nanocomposites. Polymer 43(18):4967–4972

    Article  CAS  Google Scholar 

  41. Mehta RH (1999) Physical constants of various polyamides. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer Handbook, 4th edn. Wiley, New York, p V/127

    Google Scholar 

  42. Feldman AY, Wachtel E, Vaughan GBM, Weinberg A, Marom G (2006) The brill transition in transcrystalline nylon-66. Macromolecules 39(13):4455–4459

    Article  CAS  Google Scholar 

  43. Vinken E, Terry AE, Hoffmann S, Vanhaecht B, Koning CE, Rastogi S (2006) Influence of hydrogen bonding on the conformational changes, the brill transition, and lamellae thickening in (co)polyamides. Macromolecules 39(7):2546–2552

    Article  CAS  Google Scholar 

  44. Yan DY, Li YJ, Zhu XY (2000) Brill transition in Nylon 10 12 investigated by variable temperature XRD and real time FT-IR. Macromol Rapid Commun 21(15):1040–1043

    Article  CAS  Google Scholar 

  45. Shimomura M, Iguchi M, Kobayashi M (1988) Vibrational spectroscopic study on trigonal polyoxymethylene and polyoxymethylene-d2 crystals. Polymer 29:351–357

    Article  CAS  Google Scholar 

  46. Hama H, Tashiro K (2003) Structural changes in non-isothermal crystallization process of melt-cooled polyoxymethylene. [I] Detection of infrared bands characteristic of folded and extended chain crystal morphologies and extraction of a lamellar stacking model. Polymer 44(10):3107–3116

    Article  CAS  Google Scholar 

  47. Hama H, Tashiro K (2003) Structural changes in non-isothermal crystallization process of melt-cooled polyoxymethylene[II] evolution of lamellar stacking structure derived from SAXS and WAXS data analysis. Polymer 44(7):2159–2168

    Article  CAS  Google Scholar 

  48. Hama H, Tashiro K (2003) Structural changes in isothermal crystallization process of polyoxymethylene investigated by time-resolved FTIR, SAXS and WAXS measurements. Polymer 44(22):6973–6988

    Article  CAS  Google Scholar 

  49. Li YY, Zhou T, Chen ZG, Hui JT, Li L, Zhang AM (2011) Non-isothermal crystallization process of polyoxymethylene studied by two-dimensional correlation infrared spectroscopy. Polymer 52(9):2059–2069

    Article  CAS  Google Scholar 

  50. Chen ZG, Zhou T, Hui JT, Li L, Li YY, Zhang AM, Yuan TY (2012) Tracing the crystallization process of polyoxymethylene/poly(ethylene oxide) crystalline/crystalline blends by two-dimensional infrared correlation spectroscopy. Vib Spectrosc 62:299–309

    Article  CAS  Google Scholar 

  51. Singh RP, Desai SM, Solanky SS, Thanki PN (2000) Photodegradation and stabilization of styrene-butadiene-styrene rubber. J Appl Polym Sci 75(9):1103–1114

    Article  CAS  Google Scholar 

  52. Allen NS, Barcelona A, Edge M, Wilkinson A, Merchan CG, Quiteria VRS (2004) Thermal and photooxidation of high styrene-butadiene copolymer (SBC). Polym Degrad Stab 86(1):11–23

    Article  CAS  Google Scholar 

  53. Adam C, Lacoste J, Lemaire J (1989) Photo-oxidation of eiastomeric materials: Part II—photo-oxidation of styrene-butadiene copolymer. Polym Degrad Stab 26:269–284

    Article  CAS  Google Scholar 

  54. Serrano E, Zubeldia A, Larranaga M, Remiro P, Mondragon I (2004) Effect of different thermal treatments on the self-assembled nanostructures of a styrene-butadiene-styrene star block copolymer. Polym Degrad Stab 83(3):495–507

    Article  CAS  Google Scholar 

  55. Krimm S (1960) Infrared spectra of high polymers. Adv Polym Sci 2:51–172

    Article  CAS  Google Scholar 

  56. Xu JB, Zhang AM, Zhou T, Cao XJ, Me ZN (2007) A study on thermal oxidation mechanism of styrene-butadiene-styrene block copolymer (SBS). Polym Degrad Stab 92(9):1682–1691

    Article  CAS  Google Scholar 

  57. Pivonka DE (2002) Applications of vibrational spectroscopy to combinatorial chemistry. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy volume 5 (Applications of Vibrational Spectroscopy in Life, Pharmaceutical and Natural Sciences). Wiley, Chichester

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 51003066), the Outstanding Young Scholars Foundation of Sichuan University (grant no. 2011SCU04A13), and the State Key Program of National Natural Science of China (grant no. 50933004). This work was also supported by the Young Scholars Foundation of Sichuan University (grant no. 2008017), and the Supporting Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-08-0368). This work was also supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (IRT1026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2071 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, T., Liu, Y., Peng, L. et al. Identification of weak transitions using moving-window two-dimensional correlation analysis: treatment with scaling techniques. Anal Bioanal Chem 406, 4157–4172 (2014). https://doi.org/10.1007/s00216-014-7788-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7788-6

Keywords

Navigation