Skip to main content
Log in

Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Soberón-Chávez G, Maier RM. Biosurfactants: a general overview. In: Soberón-Chávez G, editor. Biosurfactants. From genes to applications. Heidelberg: Springer-Verlag; 2011. p. 1–12.

    Google Scholar 

  2. Edwards KR, Lepo JE, Lewis MA. Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Mar Pollut Bull. 2003;46(10):1309–16.

    Article  CAS  Google Scholar 

  3. Poremba K, Gunkel W. Marine biosurfactant, III. Toxicity testing with marine microorganisms and comparison with synthetic surfactants. Z Naturforsch C. 1991;46(3–4):210–6.

    CAS  Google Scholar 

  4. Sekhon Randhawa KK, Rahman PK. Rhamnolipid biosurfactants—past, present, and future scenario of global market. Front Microbiol. 2014;5:454.

    Article  Google Scholar 

  5. Lang S, Wullbrandt D. Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol. 1999;51(1):22–32.

    Article  CAS  Google Scholar 

  6. Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, et al. Rhamnolipids—next generation surfactants? J Biotechnol. 2012;162(4):366–80.

    Article  Google Scholar 

  7. Soberón-Chávez G, Lépine F, Déziel E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2005;68(6):718–25.

    Article  Google Scholar 

  8. Tavares LFD, Silva PM, Junqueira M, Mariano DCO, Nogueira FCS, Domont GB, et al. Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol. 2013;97(5):1909–21.

    Article  CAS  Google Scholar 

  9. Costa SG, Déziel E, Lépine F. Characterization of rhamnolipid production by Burkholderia glumae. Lett Appl Microbiol. 2011;53(6):620–7.

    Article  CAS  Google Scholar 

  10. Hörmann B, Müller MM, Syldatk C, Hausmann R. Rhamnolipid production by Burkholderia plantarii DSM 9509T. Eur J Lipid Sci Technol. 2010;112(6):674–80.

    Article  Google Scholar 

  11. Edwards JR, Hayashi JA. Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys. 1965;111(2):415–21.

    Article  CAS  Google Scholar 

  12. Abdel-Mawgoud AM, Lépine F, Déziel E. Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol. 2010;86(5):1323–36.

    Article  CAS  Google Scholar 

  13. Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, et al. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Factories. 2011;10(1):80.

    Article  CAS  Google Scholar 

  14. Heyd M, Kohnert A, Tan T, Nusser M, Kirschhöfer F, Brenner-Weiss G, et al. Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem. 2008;391(5):1579–90.

    Article  CAS  Google Scholar 

  15. Rikalovic MG, Abdel-Mawgoud AM, Déziel E, Gojgic-Cvijovic GD, Nestorovic Z, Vrvic MM, et al. Comparative analysis of rhamnolipids from novel environmental isolates of Pseudomonas aeruginosa. J Surfactant Deterg. 2013;16(5):673–82.

    Article  CAS  Google Scholar 

  16. Smyth TJ, Perfumo A, Marchant R, Banat IM. Isolation and analysis of low molecular weight microbial glycolipids. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Heidelberg: Springer-Verlag; 2010. p. 3705–23.

    Chapter  Google Scholar 

  17. Li A, Xu M, Sun W, Sun G. Rhamnolipid production by Pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Appl Biochem Biotechnol. 2011;163(5):600–11.

    Article  CAS  Google Scholar 

  18. Lovaglio RB, da Silva VL, Capelini TL, Eberlin MN, Hausmann R, Henkel M, et al. Rhamnolipids production by a Pseudomonas eruginosa LBI mutant: solutions and homologs characterization. Tenside Surfact Det. 2014;51(5):397–405.

    Article  CAS  Google Scholar 

  19. de Oliveira ACDSM, da Silva Bezerra M, de Araujo Padilha CE, Melchuna AM, de Macedo GR, dos Santos ES. Recovery of rhamnolipids produced by Pseudomonas aeruginosa using acidic precipitation, extraction, and adsorption on activated carbon. Sep Sci Technol. 2013;48(18):2852–9.

    Article  Google Scholar 

  20. Reiling HE, Thanei-Wyss U, Guerra-Santos LH, Hirt R, Käppeli O, Fiechter A. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol. 1986;51(5):985–9.

    CAS  Google Scholar 

  21. Abalos A, Pinazo A, Infante MR, Casals M, García F, Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001;17(5):1367–71.

    Article  CAS  Google Scholar 

  22. Haba E, Pinazo A, Pons R, Pérez L, Manresa A. Complex rhamnolipid mixture characterization and its influence on DPPC bilayer organization. Biochim Biophys Acta. 2014;1838(3):776–83.

    Article  CAS  Google Scholar 

  23. Küpper B, Mause A, Halka L, Imhoff A, Nowacki C, Wichmann R. Fermentative Produktion von Monorhamnolipiden im Pilotmaßstab—Herausforderungen der Maßstabsvergrößerung. Chem Ing Tech. 2013;85(6):834–40.

    Article  Google Scholar 

  24. Schenk T, Schuphan I, Schmidt B. High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A. 1995;693(1):7–13.

    Article  CAS  Google Scholar 

  25. Abdel-Mawgoud AM, Lépine F, Déziel E. Liquid chromatography/mass spectrometry for the identification and quantification of rhamnolipids. In: Filloux AAM, Ramos JL, editors. Pseudomonas. Methods and protocols, vol. 1149. 30th ed. New York: Humana Press; 2014. p. 359–73.

    Chapter  Google Scholar 

  26. Koch AK, Käppeli O, Fiechter A, Reiser J. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol. 1991;173(13):4212–9.

    CAS  Google Scholar 

  27. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol. 2002;4(12):799–808.

    Article  CAS  Google Scholar 

  28. de Lorenzo V, Eltis L, Kessler B, Timmis KN. Analysis of Pseudomonas gene products using lacI q/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene. 1993;123(1):17–24.

    Article  Google Scholar 

  29. Tiso T, Sabelhaus P, Behrens B, Hayen H, Blank LM. Metabolic Engineering of the central carbon metabolism of Pseudomonas putida driven by demand. Manuscript submitted to Metab Eng Commun.

  30. Wittgens A (2013) Konstruktion neuer Produktionsstämme für die heterologe Rhamnolipidsynthese in dem nicht-pathogenen Wirt Pseudomonas putida KT2440. PhD thesis, Universität Ulm, Germany

  31. Jarvis FG, Johnson MJ. A glyco-lipide produced by Pseudomonas aeruginosa. J Am Chem Soc. 1949;71(12):4124–6.

    Article  CAS  Google Scholar 

  32. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop R, et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene. 1995;166(1):175–6.

    Article  CAS  Google Scholar 

  33. Ishigami Y, Gama Y, Nagahora H, Yamaguchi M, Nakahara H, Kamata T. The pH-sensitive conversion of molecular aggregates of rhamnolipid biosurfactant. Chem Lett. 1987;16(5):763–6.

    Article  Google Scholar 

  34. Lépine F, Déziel E, Milot S, Villemur R. Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy)alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. J Mass Spectrom. 2002;37(1):41–6.

    Article  Google Scholar 

  35. Řezanka T, Siristova L, Sigler K. Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles. 2011;15(6):697–709.

    Article  Google Scholar 

  36. Wei S, Shu-lin Y, Xio-kun L. Electrospray ionization mass spectrometric detection of rhamnolipids and their acid precursors in Pseudomonas sp. BS-03 cultures. China Biotechnol. 2005;25(10):83–7.

    CAS  Google Scholar 

  37. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng. 2003;81(3):316–22.

    Article  CAS  Google Scholar 

  38. Zgoła-Grześkowiak A, Kaczorek E. Isolation, preconcentration and determination of rhamnolipids in aqueous samples by dispersive liquid–liquid microextraction and liquid chromatography with tandem mass spectrometry. Talanta. 2011;83(3):744–50.

    Article  Google Scholar 

  39. Déziel E, Lépine F, Dennie D, Boismenu D, Mamer O, Villemur R. Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta Mol Cell Biol Lipids. 1999;1440(2–3):244–52.

    Article  Google Scholar 

  40. Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv. 2010;28(5):635–43.

    Article  CAS  Google Scholar 

  41. Hori K, Ichinohe R, Unno H, Marsudi S. Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids. Biochem Eng J. 2011;53(2):196–202.

    Article  CAS  Google Scholar 

  42. Noordman WH, Brusseau ML, Janssen DB. Adsorption of a multicomponent rhamnolipid surfactant to soil. Environ Sci Technol. 2000;34(5):832–8.

    Article  CAS  Google Scholar 

  43. Abdel-Mawgoud AM, Lépine F, Déziel E. A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol. 2014;21(1):156–64.

    Article  CAS  Google Scholar 

  44. Harris RA, Joshi M, Jeoung NH, Obayashi M. Overview of the molecular and biochemical basis of branched-chain amino acid catabolism. J Nutr. 2005;135(6):1527S–30S.

    CAS  Google Scholar 

  45. Horning MG, Martin DB, Karmen A, Vagelos P. Synthesis of branched-chain and odd-numbered fatty acids from malonyl-CoA. Biochem Biophys Res Commun. 1960;3(1):101–6.

    Article  CAS  Google Scholar 

  46. Brandl H, Gross RA, Lenz RW, Fuller RC. Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol. 1988;54(8):1977–82.

    CAS  Google Scholar 

  47. Brückner J. Estimation of monosaccharides by the orcinol–sulphuric acid reaction. Biochem J. 1955;60(2):200–5.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Benjamin Küpper and Rolf Wichmann from TU Dortmund, Laboratory of Biochemical Engineering for providing fermentation broth as sample material. TT and LMB gratefully acknowledge financial support by the Deutsche Bundesstiftung Umwelt (DBU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Hayen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(PDF 71.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behrens, B., Engelen, J., Tiso, T. et al. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction. Anal Bioanal Chem 408, 2505–2514 (2016). https://doi.org/10.1007/s00216-016-9353-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9353-y

Keywords

Navigation