Skip to main content
Log in

Resolving SSM/I-ship radar rainfall discrepancies from AIP-3

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The third algorithm intercomparison project (AIP-3) involved rain estimates from more than 50 satellite rainfall algorithms and ground radar measurements within the Intensive Flux Array (IFA) over the equatorial western Pacific warm pool region during the Tropical Ocean Global Atmosphere coupled Ocean-Atmosphere Response Experiment (TOGA COARE). Early results indicated that there was a systematic bias between rainrates from satellite passive microwave and ground radar measurements. The mean rainrate from radar measurements is about 50% underestimated compared to that from passive microwave-based retrieval algorithms. This paper is designed to analyze rain patterns from the Florida State University rain retrieval algorithm and radar measurements to understand physically the rain discrepancies. Results show that there is a clear range-dependent bias associated with the radar measurements. However, this range-dependent systematical bias is almost eliminated with the corrected radar rainrates. Results suggest that the effects from radar attenuation correction, calibration and beam filling are the major sources of rain discrepancies. This study demonstrates that rain retrievals based on satellite measurements from passive microwave radiometers such as the Special Sensor of Microwave Imager (SSM/I) are reliable, while rain estimates from ground radar measurements are correctable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical convective and strati form rainfall.J. Appl. Meteor.,27, 30–51.

    Article  Google Scholar 

  • Adler, R. F., A. J. Negri, P. R. Keehn, and I. M. Hakkarinen, 1993: Estimation of monthly rainfall over Japan and sounding waters from a combination of low-orbit microwave and geosynchronous IR data.J. Appl. Meteor.,32, 335–356.

    Article  Google Scholar 

  • Adler, R. F., G. J. Huffman, D. T. Bolvin, S. Curtis, and E. J. Nelkin, 2000: Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information.J. Appl. Meteor.,39, 2007–2023.

    Article  Google Scholar 

  • Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M. Goodman, 2001: Intercomparison of global precipitation products: The Third Precipitation Intercomparison Project (PIP-3).Bull. Amer. Meteor. Soc.,7, 1377–1396.

    Article  Google Scholar 

  • Arkin, P. A., 1979: The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array.Mon. Wea. Rev.,107, 1382–1387.

    Article  Google Scholar 

  • Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982–84.Mon. Wea. Rev.,115, 51–74.

    Article  Google Scholar 

  • Arkin, P. A., and P. Xie, 1994: The global Precipitation Climatology Project: First Algorithm Intercomparison Project.Bull. Amer. Meteor. Soc.,75, 401–419.

    Article  Google Scholar 

  • Atlas, D., D. Rosenfeld, and D. A. Short, 1990: The estimation of convective rainfall by area integral. Part I. The theoretical and empirical basis.J. Geophys. Res.,95, 2153–2160.

    Article  Google Scholar 

  • Barrett, E. C., and Coauthors, 1994: The first WetNet Precipitation Intercomparison Project (PIP-1): Intercompasion of results.Remote Sensing Review,11, 303–373.

    Google Scholar 

  • Brandes, E., and D. Sirmans, 1976: Convective rainfall estimation by radar: Experimental results and proposed operational analysis technique. Preprints,Conf. Hydro-meteorol. 1976, 54–59.

  • Carbone, R. E., and L. D. Nelson, 1978: The evolution of raindrop spectra in warm-based convective storms as observed and numerically modeled.J. Atmos. Sci.,35, 2302–2314.

    Article  Google Scholar 

  • Ebert, E. E., M. J. Manton, P. A. Arkin, R. J. Allam, G. E. Holpin, and A. Gruber, 1996: Results from the GPCP algorithm intercomparison programme.Bull. Amer. Meteor. Soc.,77, 2875–2887.

    Article  Google Scholar 

  • Ebert, E. E., and M. J. Manton, 1998: Performance of satellite rainfall estimation algorithms during TOGA COARE.J. Atmos. Sci.,55, 1537–1557.

    Article  Google Scholar 

  • Farrar, M. R., and E. A. Smith, 1992: Spatial resolution enhancement of terrestrial features using deconvolved SSM/I microwave brightness temperature.IEEE Trans. Geosci. Remote Sens.,30, 349–355.

    Article  Google Scholar 

  • Farrar, M. R., E. A. Smith, and X. Xiang, 1994: The impact of spatial resolution enhancement of SSM/I microwave brightness temperature on rainfall retrieval algorithms.J. Appl. Meteor.,33, 313–333.

    Article  Google Scholar 

  • Haddad, Z. S., E. A. Smith, C. D. Kummerow, T. Iguchi, M. R. Farrar, S. L. Durden, M. Alves, and W. S. Olson, 1997: The TRMM “Day-1” radar/radiometer combined rain-profiling algorithm.J. Meteor. Soc. Japan,75, 799–809.

    Google Scholar 

  • Hinton, B. B., W. S. Olson, D. W. Martin, and B. Auvine, 1992: A passive microwave algorithm for tropical oceanic rainfall.J. Appl. Meteor.,31, 1379–1395.

    Article  Google Scholar 

  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar.J. Appl. Meteor.,39, 2038–2052.

    Article  Google Scholar 

  • Kummerow, C., R,. A. Mack, and I. M. Hakkarinen, 1989: A self-consistency approach to improve microwave rainfall estimates from space.J. Appl. Meteor.,28, 869–884.

    Article  Google Scholar 

  • Kummerowc, I. M. Hakkarinen, H. F. Pierce, and J. A. Weinman, 1991: Determination of precipitation profiles from airborne passive microwave radiometric measurements.J. Atmos. Oceanic Technol.,8, 148–158.

    Article  Google Scholar 

  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profile algorithm (GPROF) for rainfall estimation from passive microwave sensors.J. Appl. Meteor.,40, 1801–1820.

    Article  Google Scholar 

  • Mugnai, A., H. J. Cooper, E. A. Smith, and G. J. Tripoli, 1990: Simulation of microwave brightness temperature of an evolving hailstorm at SSM/I frequencies.Bull. Amer. Meteor. Soc.,71, 2–13.

    Article  Google Scholar 

  • Mugnai, A., E. A. Smith, and G. J. Tripoli, 1993: Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part II: Emission-source and generalized weighting-function properties of a time-dependent cloud-radiation model.J. Appl. Meteor.,32, 17–39.

    Article  Google Scholar 

  • Olson, W. S., and Coauthors, 2005: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Method and uncertainties.J. Appl. Meteor. (in press).

  • Short, D. A., and G. R. North, 1990: The beam filling error in the Nimbus 5 Electrically Scanning Microwave Radiometer observations of Global Atlantic Tropical Experiment rainfall.J. Geophys. Res.,95, 2187–2193.

    Article  Google Scholar 

  • Short, D. A., P. A. Kucera, B. S. Ferrier, J. C. Gerlach, S. A. Rutledge, and O. W. Thiele, 1997: Shipboard radar rainfall patterns within the TOGA COARE IFA.Bull. Amer. Meteor. Soc.,78, 2817–2836.

    Article  Google Scholar 

  • Simpson, J., C. Kummerow, W.-K. Tao, and R. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM).Meteorology and Atmospheric Physics,60, 19–36.

    Article  Google Scholar 

  • Smith, E. A., and S. Q. Kidder, 1978: A multispectral satellite approach to rainfall estimates. Tech. Rep., Department of Atmospheric Sciences, Colorado State University, Ft. Collins, CO, 49pp.

    Google Scholar 

  • Smith, E. A., A. Mugnai, H. J. Cooper, G. J. Tripoli, and X. Xiang, 1992: Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness temperature properties of a time dependent cloud-radiation model.J. Appl. Meteor.,31, 506–531.

    Article  Google Scholar 

  • Smith, E. A., C. Kummerow, and A. Mugnai, 1994a: The emergence of inversion-type precipitation profile algorithms for estimation of precipitation from satellite microwave measurements.Remote Sensing Reviews,11, 211–242.

    Google Scholar 

  • Smith, E. A., X. Xiang, A. Mugnai, R. E. Hood and R. W. Spencer, 1994b: Behavior of an inversion-based precipitation retrieval algorithm with high resolution AMPR measurements including a low frequency 10.7 GHz channel.J. Atmos. Oceanic Technol.,11, 858–872.

    Article  Google Scholar 

  • Smith, E. A., X. Xiang, A. Mugnai, and G. Tripoli, 1994c: Design of an inversion-based precipitation profile retrieval algorithm using an explicit cloud model for initial guess microphysics.Meteorlogy and Atmospheric Physics,54, 53–78.

    Article  Google Scholar 

  • Smith, E. A., and Coauthors, 1998: Results of WetNet PIP-2 project.J. Atmos. Sci.,55, 1483–1536.

    Article  Google Scholar 

  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with SSM/I: Identification and characteristics of the scattering signal.J. Atmos. Oceanic Technol,6, 254–273.

    Article  Google Scholar 

  • Wilheit, T. T., and Coauthors, 1994: Algorithms for the retrieval of rainfall from passive microwave measurements.Remote Sensing Review,11, 163–194.

    Google Scholar 

  • Wilheit, T. T., A. T. C. Chang, M. S. V. Rao, E. B. Rodgers, and J. S. Theon, 1977: A satellite technique for quantitatively mapping rainfall rates over the ocean.J. Appl. Meteor.,16, 551–560.

    Article  Google Scholar 

  • Yang, S., 2004: Precipitation and latent heating estimation from passive microwave satellite measurements: A review.Observations, Theory, and Modeling of the Atmospheric and Oceanic Variability. World Scientific Series on Meteorology of East Asia, Vol. 3, World Scientific Publishing Co. Pte. Ltd., Singapore, 484–500.

    Google Scholar 

  • Yang, S., and E. A. Smith, 1999a: Moisture budget analysis of TOGA-COARE using SSM/I retrieved latent heating and large scale Q2 estimates.J. Atmos. Oceanic Technol.,16, 633–655.

    Article  Google Scholar 

  • Yang, S., and E. A. Smith, 1999b: Four dimensional structure of monthly latent heating derived from SSM/I satellite measurements.J. Climate,12, 1016–1037.

    Article  Google Scholar 

  • Yang, S., and E. A. Smith, 2000: Vertical Structure and transient behavior of convective-stratiform heating in TOGA COARE from combined satellite-sounding analysis.J. Appl. Meteor.,39, 1491–1513.

    Article  Google Scholar 

  • Yang, S., W. S. Olson, J.-J. Wang, T. L. Bell, E. A. Smith, and C. D. Kummerow, 2005: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part II: Evaluation of estimates using independent data.J. Appl. Meteor. (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Smith, E.A. Resolving SSM/I-ship radar rainfall discrepancies from AIP-3. Adv. Atmos. Sci. 22, 903–914 (2005). https://doi.org/10.1007/BF02918689

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918689

Key words

Navigation