Skip to main content
Log in

A stochastic micromechanical model for multiphase composites containing spherical inhomogeneities

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A stochastic micromechanical framework for multiphase composites is proposed to characterize the probabilistic behaviors of effective properties of composite materials. Based on our previous work, the deterministic micromechanical model of the multiphase composites is derived by introducing the strain concentration tensors. By modeling the volume fractions and properties of constituents as stochastic, we extend the deterministic framework to stochastic to incorporate the inherent randomness of effective properties among different specimens. A new simulation framework, consisting of univariate approximation for multivariate function, Newton interpolations, and Monte Carlo simulation, is developed to quantitatively evaluate the stochastic characteristics of the effective properties of composites. Numerical examples including limited experimental validations, comparisons with existing micromechanical models, and the Monte Carlo simulations indicate that the proposed models provide an accurate and computationally efficient framework in characterizing the effective properties of multiphase composites. Finally, the effects of the correlation between the constituents’ material parameters are discussed based on our proposed stochastic micromechanical model, which shows that the negative correlation between Young’s modulus and Poisson’s ratio of the constituents can enhance the effective properties of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torquato S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, Berlin (2001)

    Google Scholar 

  2. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 376–396 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eshelby J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 252, 561–569 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eshelby J.D.: Elastic inclusions and inhomogeneities. Prog. Solid Mech. 2, 89–140 (1961)

    Google Scholar 

  5. Hashin Z., Shtrikman S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10, 335–342 (1962)

    Article  MathSciNet  Google Scholar 

  6. Hashin Z., Shtrikman S.: A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids 10, 343–352 (1962)

    Article  MathSciNet  Google Scholar 

  7. Hashin Z., Shtrikman S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  8. Torquato S.: Random heterogeneous media: microstructure and improved bounds on effective properties. Appl. Mech. Rev. 44, 37–76 (1991)

    Article  MathSciNet  Google Scholar 

  9. Willis J.: On methods for bounding the overall properties of nonlinear composites. J. Mech. Phys. Solids 39, 73–86 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Beran M., Molyneux J.: Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media. Quart. Appl. Math 24, 107–118 (1966)

    MATH  Google Scholar 

  11. Willis J.: Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys. Solids 25, 185–202 (1977)

    Article  MATH  Google Scholar 

  12. Hill R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  13. Roscoe R.: Isotropic composites with elastic or viscoelastic phases: General bounds for the moduli and solutions for special geometries. Rheol. Acta 12, 404–411 (1973)

    Article  Google Scholar 

  14. Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  15. Benveniste Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987)

    Article  Google Scholar 

  16. Christensen R., Lo K.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315–330 (1979)

    Article  MATH  Google Scholar 

  17. Sheng P.: Effective-medium theory of sedimentary rocks. Phys. Rev. B 41, 4507–4512 (1990)

    Article  Google Scholar 

  18. Sheng P., Callegari A.: Differential effective medium theory of sedimentary rocks. Appl. Phys. Lett. 44, 738–740 (1984)

    Article  Google Scholar 

  19. Nguyen N., Giraud A., Grgic D.: A composite sphere assemblage model for porous oolitic rocks. Int. J. Rock Mech. Min. Sci. 48, 909–921 (2011)

    Article  Google Scholar 

  20. Li G., Zhao Y., Pang S.S.: Four-phase sphere modeling of effective bulk modulus of concrete. Cem. Concr. Res. 29, 839–845 (1999)

    Article  Google Scholar 

  21. Wang H., Li Q.: Prediction of elastic modulus and Poisson’s ratio for unsaturated concrete. Int. J. Solids Struct. 44, 1370–1379 (2007)

    Article  MATH  Google Scholar 

  22. Yaman I., Aktan H., Hearn N.: Active and non-active porosity in concrete part II: evaluation of existing models. Mater. Struct. 35, 110–116 (2002)

    Article  Google Scholar 

  23. Zhu H.H., Chen Q., Yan Z.G., Ju J.W., Zhou S.: Micromechanical models for saturated concrete repaired by electrochemical deposition method. Mater. Struct. 47, 1067–1082 (2014)

    Article  Google Scholar 

  24. Yan Z.G., Chen Q., Zhu H.H., Ju J.W., Zhou S., Jiang Z.W.: A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method. Int. J. Solids Struct. 50(24), 3875–3885 (2013)

    Article  Google Scholar 

  25. Yang Q.S., Tao X., Yang H.: A stepping scheme for predicting effective properties of the multi-inclusion composites. Int. J. Eng. Sci. 45, 997–1006 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Garboczi E., Berryman J.: Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations. Mech. Mater. 33, 455–470 (2001)

    Article  Google Scholar 

  27. Chen H.S., Acrivos A.: The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations. Int. J. Solids Struct. 14, 349–364 (1978)

    Article  MATH  Google Scholar 

  28. Ju J., Chen T.M.: Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mech. 103, 103–121 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ju J., Chen T.: Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mech. 103, 123–144 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ju J., Sun L.: A novel formulation for the exterior-point Eshelby’s tensor of an ellipsoidal inclusion. J. Appl. Mech. 66, 570–574 (1999)

    Article  Google Scholar 

  31. Ju J., Zhang X.: Micromechanics and effective transverse elastic moduli of composites with randomly located aligned circular fibers. Int. J. Solids. Struct. 35, 941–960 (1998)

    Article  MATH  Google Scholar 

  32. Ju J., Sun L.: Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I Micromechanics-based formulation. Int. J. Solids Struct. 38, 183–201 (2001)

    Article  MATH  Google Scholar 

  33. Sun L., Ju J.: Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part II: applications. Int. J. Solids Struct. 38, 203–225 (2001)

    Article  Google Scholar 

  34. Sun L., Ju J.: Elastoplastic modeling of metal matrix composites containing randomly located and oriented spheroidal particles. J. Appl. Mech. 71, 774–785 (2004)

    Article  MATH  Google Scholar 

  35. Ju J., Yanase K.: Micromechanics and effective elastic moduli of particle-reinforced composites with near-field particle interactions. Acta Mech. 215, 135–153 (2010)

    Article  MATH  Google Scholar 

  36. Ju J., Yanase K.: Micromechanical effective elastic moduli of continuous fiber-reinforced composites with near-field fiber interactions. Acta Mech. 216, 87–103 (2011)

    Article  MATH  Google Scholar 

  37. Ju J., Yanase K.: Size-dependent probabilistic micromechanical damage mechanics for particle-reinforced metal matrix composites. Int. J. Damage Mech. 20, 1021–1048 (2011)

    Article  Google Scholar 

  38. Yanase K., Ju J.W.: Effective elastic moduli of spherical particle reinforced composites containing imperfect interfaces. Int. J. Damage Mech. 21, 97–127 (2012)

    Article  Google Scholar 

  39. Ferrante F., Graham-Brady L.: Stochastic simulation of non-Gaussian/non-stationary properties in a functionally graded plate. Comput. Methods Appl. Mech. Eng. 194, 1675–1692 (2005)

    Article  MATH  Google Scholar 

  40. Banchs R.E., Klie H., Rodriguez A., Thomas S.G., Wheeler M.F.: A neural stochastic multiscale optimization framework for sensor-based parameter estimation. Integr. Comput. Aided Eng. 14, 213–223 (2007)

    Google Scholar 

  41. Biswal B., Øren P.-E., Held R., Bakke S., Hilfer R.: Stochastic multiscale model for carbonate rocks. Phys. Rev. E 75, 1–5 (2007)

    Article  Google Scholar 

  42. Chakraborty A., Rahman S.: Stochastic multiscale models for fracture analysis of functionally graded materials. Eng. Fract. Mech. 75, 2062–2086 (2008)

    Article  Google Scholar 

  43. Chakraborty A., Rahman S.: A parametric study on probabilistic fracture of functionally graded composites by a concurrent multiscale method. Probab. Eng. Mech. 24, 438–451 (2009)

    Article  Google Scholar 

  44. Ganapathysubramanian B., Zabaras N.: A stochastic multiscale framework for modeling flow through random heterogeneous porous media. J. Comput. Phys. 228, 591–618 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  45. Liu W.K., Siad L., Tian R., Lee S., Lee D., Yin X., Lindgen L.E.: Complexity science of multiscale materials via stochastic computations. Int. J. Numer. Methods Eng. 80, 932–978 (2009)

    Article  MATH  Google Scholar 

  46. Rahman S.: Multi-scale fracture of random heterogeneous materials. Ships Offshore Struct. 4, 261–274 (2009)

    Article  Google Scholar 

  47. Yin X.L., Lee S., Chen W., Liu W.K., Horstemeyer M.F.: Efficient random field uncertainty propagation in design using multiscale analysis. J. Mech. Des. 131, 1–10 (2009)

    Article  Google Scholar 

  48. Ferrante F.J., Brady L.L.G., Acton K., Arwade S.R.: An overview of micromechanics—based techniques for the analysis of microstructural randomness in functionally graded materials. AIP Conf. Proc. 973, 190–195 (2008)

    Article  Google Scholar 

  49. Rahman S., Chakraborty A.: A stochastic micromechanical model for elastic properties of functionally graded materials. Mech. Mater. 39, 548–563 (2007)

    Article  Google Scholar 

  50. Xu X., Graham-Brady L.: A stochastic computational method for evaluation of global and local behavior of random elastic media. Comput. Methods Appl. Mech. Eng. 194, 4362–4385 (2005)

    Article  MATH  Google Scholar 

  51. Qu J., Cherkaoui M.: Fundamentals of Micromechanics of Solids. Wiley, New York (2006)

    Book  Google Scholar 

  52. Mura T.: Micromechanics of Defects in Solids. Kluwer, Dordrecht (1987)

    Book  Google Scholar 

  53. Ma L.H., Yang Q.S., Yan X.H., Q Q.H.: Elastoplastic mechanics of porous materials with varied inner pressures. Mech. Mater. 73, 58–75 (2014)

    Article  Google Scholar 

  54. Weng G.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22, 845–856 (1984)

    Article  MATH  Google Scholar 

  55. Weng G.: The theoretical connection between Mori–Tanaka’s theory and the Hashin–Shtrikman–Walpole bounds. Int. J. Eng. Sci. 28, 1111–1120 (1990)

    Article  MATH  Google Scholar 

  56. Xu H., Rahman S.: Decomposition methods for structural reliability analysis. Probab. Eng. Mech. 20, 239–250 (2005)

    Article  Google Scholar 

  57. Cohen L., Ishai O.: The elastic properties of three-phase composites. J. Compos. Mater. 1, 390–403 (1967)

    Article  Google Scholar 

  58. Parameswaran V., Shukla A.: Processing and characterization of a model functionally gradient material. J. Mater. Sci. 35, 21–29 (2000)

    Article  Google Scholar 

  59. Asmani M., Kermel C., Leriche A., Ourak M.: Influence of porosity on Young’s modulus and Poisson’s ratio in alumina ceramics. J. Eur. Ceram. Soc. 21, 1081–1086 (2001)

    Article  Google Scholar 

  60. Zhang J.J., Bentley L.R.: Factors determining Poisson’s ratio. CREWES Res. Rep. 17, 1–15 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhu, H.H., Ju, J.W. et al. A stochastic micromechanical model for multiphase composites containing spherical inhomogeneities. Acta Mech 226, 1861–1880 (2015). https://doi.org/10.1007/s00707-014-1278-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1278-y

Keywords

Navigation