Skip to main content

Advertisement

Log in

Hydro-geochemistry-based appraisal of summer-season groundwater from three different semi-arid basins of northeast Mexico for drinking and irrigation

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Summer-season groundwater from three agricultural basins (i.e., El Potosi, Sandia and Cieneguilla) in drought-prone northeast Mexico was assessed for drinking and irrigation by evaluating their physicochemical parameters with respect to the World Health Organization Guidelines for drinking water quality (WHO, Geneva, 2011) standards, and by estimating water quality indices (DWQI and IWQI). Facies of Ca–Mg–HCO3, Ca–Mg–Cl and Ca–Mg–SO4 mostly reflected the influences of aquifer lithologies. Ca exceeded WHO (2011) maximum allowable limit in most of the samples due to dissolution of gypsum-bearing limestone. Most of the samples (69–93%) were in excellent and good categories (DWQI < 100) for drinking and the samples of poor to very poor categories (7–31%) had salinity above the recommendation of WHO (2011). Fluoride of > 1.5 mg/L in 13% samples from the El Potosi Basin could expose some population to dental and skeletal fluorosis. Similarly, nitrate (> 42 mg/L), mostly from synthetic fertilizers, in 13% samples of the Sandia Basin might affect human health through methemoglobinemia in infants. In the context of irrigation suitability, the samples with > 75% permeability in the Donnen classification are good for irrigation. US Regional Salinity Laboratory classification, however, grouped most groundwater the from El Potosi Basin (medium-salinity hazard) as suitable for irrigation, whereas most samples from the Cieneguilla Basin and half of the samples from Sandia Basin (high-salinity hazard) should only be used to irrigate salt-tolerant plants with enhanced drainage condition. IWQI values also suggested that most samples (low-restriction category) are suitable only for irrigating light texture and moderately permeable soils. The groundwater management in this region should involve practices to increase water holding capacity of the substrate and modify the frequency of watering as per plant demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adimalla N, Li P (2019) Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum Ecol Risk Assess 25(1–2):81–103

    Article  Google Scholar 

  • Adimalla N, Qian H (2019) Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicol Environ Saf 176:153–161

    Article  Google Scholar 

  • Adimalla N, Venkatayogi S (2017) Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana State, South India. Environ Earth Sci 76(1):45

    Article  Google Scholar 

  • Adimalla N, Vasa SK, Li P (2018) Evaluation of groundwater quality, Peddavagu in Central Telangana (PCT), South India: an insight of controlling factors of fluoride enrichment. Model Earth Syst Environ 4(2):841–852

    Article  Google Scholar 

  • Adimalla N, Li P, Qian H (2019) Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: a special emphasis on human health risk assessment (HHRA). Hum Ecol Risk Assess 25(5):1107–1124

    Article  Google Scholar 

  • Adimalla N, Dhakate R, Kasarla A, Taloor AK (2020) Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana, India. Groundw Sustain Dev 10:100334

    Article  Google Scholar 

  • Alaya MB, Saidi S, Zemni T, Zargouni F (2014) Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (Northern Gabes, south-eastern Tunisia). Environ Earth Sci 71(8):3387–3421

    Article  Google Scholar 

  • Arreguin-Cortes FI, López-Pérez M, Korenfeld-Federman D, Ortega-García D (2016) The national drought policy of Mexico. J Energy Chall Mech 3:157–166

    Google Scholar 

  • Bailey JC (1977) Fluorine in granitic rocks and melts: a review. Chem Geol 19(1–4):1–42

    Article  Google Scholar 

  • Berner EK, Berner RA (1987) The global water cycle: geochemistry and environment. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Cai W, Santoso A, Wang G, Yeh S-W, Ann S-I, Cobb KM, Collins M, Guilyardi E, Jin F-F, Kug J-S, Lengaigne M, McPhaden MJ, Takahashi K, Timmermann A, Vecchi G, Watanabe M, Wu L (2015) ENSO and greenhouse warming. Nat Clim Chang 5:849–859

    Article  Google Scholar 

  • Cantor KP (1997) Drinking water and cancer. Cancer Causes Control 8(3):292–308

    Article  Google Scholar 

  • Carrillo-Rivera JJ, Cardona A, Edmunds WM (2002) Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosı basin, Mexico. J Hydrol 261(1–4):24–47

    Article  Google Scholar 

  • Carrizales-Aguilar A, Loaeza-García JP, Zárate-Barradas RG, Rosales-Rodríguez E, Rodríguez-Castro MaG, Martínez-Rodríguez L, Aranda-Osorio JN, Lemus-Bustos O (2008) Carta Geológico Minera Ciudad Victoria F14-2, Tamps., N.L. y S.L.P. Scale 1: 250,000 (in Spanish)

  • Chandrasekar N, Selvakumar S, Srinivas Y, John Wilson JS, Simon Peter T, Magesh NS (2014) Hydrogeochemical assessment of groundwater quality along the coastal aquifers of southern Tamil Nadu, India. Environ Earth Sci 71(11):4739–4750. https://doi.org/10.1007/s12665-013-2864-3

    Article  Google Scholar 

  • Cheng J, Liu Z, Zhang S, Liu W, Dong L, Liu P, Li H (2016) Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming. Proc Natl Acad Sci 113:3175–3178

    Article  Google Scholar 

  • Christensen JH, Hewiston B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña-Rueda V, Means L, Menémdez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the forth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 847–940

    Google Scholar 

  • Chung SY, Rajesh R, Venkatramanan S, Selvam S, Ranganathan PC, Oh YY, Hussam EE (2020) Processes and characteristics of hydrogeochemical variations between unconfined and confined aquifer systems: a case study of the Nakdong River Basin in Busan City, Korea. Environ Sci Pollut Res 27:10087–10102

    Article  Google Scholar 

  • Comly HH (1987) Cyanosis in infants caused by nitrates in well water. JAMA 257(20):2788–2792

    Article  Google Scholar 

  • Doneen LD (1962) The influence of crop and soil on percolating water. In: Proceedings of the biennial conference on ground water recharge, pp 156–163

  • Doneen LD (1964) Notes on water quality in agriculture. Department of Water Science and Engineering, University of California, , Davis

    Google Scholar 

  • Eaton FM (1950) Significance of carbonates in irrigation waters. Soil Sci 69(2):123–134

    Article  Google Scholar 

  • Eguiluz S, Aranda G, Marret R (2000) Tectónica de la Sierra Madre Oriental, México. Bol Soc Geol Mex LIII:1–26

    Article  Google Scholar 

  • Fan AM, Willhite CC, Book SA (1987) Evaluation of the nitrate drinking water standard with reference to infant methemoglobinemia and potential reproductive toxicity. Regul Toxicol Pharmacol 7(2):135–148

    Article  Google Scholar 

  • Feng SH, Krueger AB, Oppenheimer M (2010) Linkages among climate change, crop yields and Mexico–US cross-border migration. PNAS 107:14257–14262

    Article  Google Scholar 

  • Flores-Aguillón G, Chiapa-García R, Guel-Díaz LA, Martínez-Macías PR, Torres-Aguilera JM, Orozco-Villaseñor F, Rivera-Mendoza O, Cham-Amaral C, Alvarado-Valdez G, Mayer-Tanguma M (1999) Carta Geológico-Minera Ciudad Mante F14-5, S.L.P., Tamps., y Ver. Scale 1: 250,000 (in Spanish)

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Ganyaglo SY, Banoeng-Yakubo B, Osae S, Dampare SB, Fianko JR (2010) Water quality assessment of groundwater in some rock types in parts of the eastern region of Ghana. Environ Earth Sci. https://doi.org/10.1007/s12665-010-0594-3

    Article  Google Scholar 

  • Ghandour EIM, Khalil JB, Atta SA (1985) Distribution of carbonates, bicarbonates and pH values in groundwater of the Nile delta region. Egypt Groundw 23:35–41

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanism controlling world water chemistry. Science 170:1088–1090

    Article  Google Scholar 

  • Gorelick SM, Zheng C (2015) Global change and the groundwater management challenge. Water Resour Res 51(5):3031–3051

    Article  Google Scholar 

  • Gupta AK, Ayoob S (2016) Fluoride in drinking water: status, issues, and solutions. CRC Press, Boca Raton

    Book  Google Scholar 

  • Handa BK (1975) Geochemistry and genesis of fluoride-containing ground waters in India. Groundwater 13(3):275–281

    Article  Google Scholar 

  • Iqbal J, Nazzal Y, Howari F, Xavier C, Yousef A (2018) Hydrochemical processes determining the groundwater quality for irrigation use in an arid environment: the case of Liwa Aquifer, Abu Dhabi, United Arab Emirates. Groundw Sustain Dev 7:212–219

    Article  Google Scholar 

  • Karunanidhi D, Aravinthasamy P, Subramani T, Muthusankar G (2020a) Revealing drinking water quality issues and possible health risks based on water quality index (WQI) method in the Shanmuganadhi River basin of South India. Environ Geochem Health. https://doi.org/10.1007/s10653-020-00613-3

    Article  Google Scholar 

  • Karunanidhi D, Aravinthasamy P, Subramani T, Roy PD, Srinivasamoorthy K (2020b) Risk of fluoride-rich groundwater on human health: remediation through managed aquifer recharge in a hard rock terrain, South India. Nat Resour Res 29:2369–2395

    Article  Google Scholar 

  • Kelly WP (1963) Use of saline irrigation water. Soil Sci 95(6):385–391

    Article  Google Scholar 

  • Kelly WP (1957) Adsorbed sodium cation exchange capacity and percentage sodium sorption in alkali soils. Science 84:473–477

    Google Scholar 

  • Kondash A, Redmon JH, Lambertini E, Feinstein L, Weinthal E, Cabrales L, Vengosh A (2020) The impact of using low-saline oilfield produced water for irrigation on water and soil quality in California. Sci Total Environ 733:139392

    Article  Google Scholar 

  • Läuchli A, Epstein E (1990) Plant responses to saline and sodic conditions. Agric Salin Assess Manag 71:113–137

    Google Scholar 

  • Ledesma-Ruiz R, Pastén-Zapata E, Parra R, Harter T, Mahlknecht J (2015) Investigation of the geochemical evolution of groundwater under agricultural land: a case study in northeastern Mexico. J Hydrol 521:410–423

    Article  Google Scholar 

  • Magaña V, Amador JA, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12(6):1577–1588

    Article  Google Scholar 

  • Mahlknecht J, Schneider JF, Merkel BJ, De León IN, Bernasconi SM (2004) Groundwater recharge in a sedimentary basin in semi-arid Mexico. Hydrogeol J 12(5):511–530

    Article  Google Scholar 

  • Mahlknecht J, Horst A, Hernández-Limón G, Aravena R (2008) Groundwater geochemistry of the Chihuahua City region in the Rio Conchos Basin (northern Mexico) and implications for water resources management. Hydrol Process 22(24):4736–4751

    Article  Google Scholar 

  • Meireles ACM, Andrade EMD, Chaves LCG, Frischkorn H, Crisostomo LA (2010) A new proposal of the classification of irrigation water. Revista Ciência Agronômica 41:349–357

    Article  Google Scholar 

  • Mestas-Nuñez AM, Zhang C, Enfield DB (2005) Uncertainties in estimating moisture fluxes over the Intra-Americas Sea. J Hydrometeorol 6(5):696–709

    Article  Google Scholar 

  • Mestas-Nuñez AM, Enfield DB, Zhang C (2007) Water vapor fluxes over the Intra-Americas Sea: seasonal and interannual variability and associations with rainfall. J Clim 20(9):1910–1922

    Article  Google Scholar 

  • Montañez-Castro A, Ramírez-Gutiérrez JG, Escalante-Martínez JC, López-López M (2000) Carta-Geológico Minera Concepción del oro, Zac., N.L., Coah. y S.L.P. Scale 1: 250,000

  • Mora A, Mahlknecht J, Rosales-Lagarde L, Hernández-Antonio A (2017) Assessment of major ions and trace elements in groundwater supplied to the Monterrey metropolitan area, Nuevo León, Mexico. Environ Monit Assess 189(8):394

    Article  Google Scholar 

  • Nagarajan R, Rajmohan N, Mahendran U, Senthamilkumar S (2010) Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India. Environ Monit Assess 171(1–4):289–308

    Article  Google Scholar 

  • Narsimha A, Rajitha S (2018) Spatial distribution and seasonal variation in fluoride enrichment in groundwater and its associated human health risk assessment in Telangana State, South India. Hum Ecol Risk Assess 24(8):2119–2132

    Article  Google Scholar 

  • National Water Commission (2017) Statistics on water in Mexico. Ministry of Environment and Natural Resources, Mexico City

    Google Scholar 

  • Ochoa-González GH, Carreón-Freyre D, Franceschini A, Cerca M, Teatini P (2018) Overexploitation of groundwater resources in the faulted basin of Querétaro, Mexico: a 3D deformation and stress analysis. Eng Geol 245:192–206

    Article  Google Scholar 

  • Ortega-Guerrero A (2003) Origin and geochemical evolution of groundwater in a closed-basin clayey aquitard, Northern Mexico. J Hydrol 284(1–4):26–44

    Article  Google Scholar 

  • Paliwal KV (1972) Irrigation with saline water, vol 2. Water Technology Centre, Indian Agricultural Research Institute, New Delhi, p 198

    Google Scholar 

  • Piper AM (1944) A graphical procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25:914–928

    Article  Google Scholar 

  • Ragunath HM (1987) Groundwater. Wiley Eastern Ltd, New Delhi

    Google Scholar 

  • Raju NJ (2007) Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India. Environ Geol 52(6):1067–1074

    Article  Google Scholar 

  • Ramesh K, Elango L (2012) Groundwater quality and its suitability for domestic and agricultural use in Tondiar river basin, Tamil Nadu, India. Environ Monit Assess 184(6):3887–3899

    Article  Google Scholar 

  • Rana R, Ganguly R, Gupta AK (2018) Indexing method for assessment of pollution potential of leachate from non-engineered landfill sites and its effect on ground water quality. Environ Monit Assess 190(1):46

    Article  Google Scholar 

  • Rawat KS, Singh SK, Gautam SK (2018) Assessment of groundwater quality for irrigation use: a peninsular case study. Appl Water Sci 8(8):1–24

    Article  Google Scholar 

  • Reddy D, Nagabhushanam P, Sukhija B, Reddy A (2009) Understanding hydrological processes in a highly stressed granitic aquifer in southern India. Hydrol Process 23(9):1282–1294

    Article  Google Scholar 

  • Reyes-Gómez VM, Gutiérrez M, Nájera-Haro B, Núñez-López D, Alarcón-Herrera MT (2017) Groundwater quality impacted by land use/land cover change in a semiarid region of Mexico. Groundw Sustain Dev 5:160–167

    Article  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils Agricultural Handbook. USDA and IBH Pub. Coy Ltd, New Delhi

    Google Scholar 

  • Rojas-Fabro AY, Pacheco-Ávila JG, Esteller-Alberich MV, Cabrera-Sansores SA, Camargo-Valero MA (2015) Spatial distribution of nitrate health risk associated with groundwater use as drinking water in Merida, Mexico. Appl Geogr 65:49–57

    Article  Google Scholar 

  • Roy PD, Selvam S, Venkatramanan S, Logesh N, Lakshumanan C, Sánchez-Zavala JL (2021) Identification of sources and groundwater recharge zones from hydrochemistry and stable isotopes of an agriculture-based paleo-lacustrine basin of drought-prone northeast Mexico. Geochemistry. https://doi.org/10.1016/j.chemer.2021.125742

    Article  Google Scholar 

  • Sáenz-Romero C, Rehfeldt GE, Crookston NL, Duval P, St-Amant R, Beaulieu J, Richardson BA (2010) Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Clim Change 102:595–623

    Article  Google Scholar 

  • Saleh A, Al-Ruwaih F, Shehata M (1999) Hydrogeochemical processes operating within the main aquifers of Kuwait. J Arid Environ 42(3):195–209

    Article  Google Scholar 

  • Sarath Prasanth SV, Magesh NS, Jitheshlal KV, Chandrasekar N, Gangadhar K (2012) Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Appl Water Sci 2(3):165–175. https://doi.org/10.1007/s13201-012-0042-5

    Article  Google Scholar 

  • Sawyer CN, McCarty PL (1967) Chemistry for sanitary engineers. Mc-Graw Hill, New York

    Google Scholar 

  • Selvam S, Manimaran G, Sivasubramanian P (2013) Hydrochemical characteristics and GIS-based assessment of groundwater quality in the coastal aquifers of Tuticorin corporation, Tamilnadu, India. Appl Water Sci 3(1):145–159

    Article  Google Scholar 

  • Selvam S, Singaraja C, Venkatramanan S, Chung SY (2018) Geochemical appraisal of groundwater quality in Ottapidaram Taluk, Thoothukudi District, Tamil Nadu using graphical and numerical method. J Geol Soc India 92:313–320

    Article  Google Scholar 

  • Servicio Geológico Mexicano (2000) Carta Geológico-Minera Concepción del Oro, G14-10, Zacatecas, Nuevo León, Coahuila y San Luis Potosí, escala 1: 250 000

  • Sharma DA, Rishi MS, Keesari T (2017) Evaluation of groundwater quality and suitability for irrigation and drinking purposes in southwest Punjab, India using hydrochemical approach. Appl Water Sci 7(6):3137–3150

    Article  Google Scholar 

  • Sharma A, Ganguly R, Kumar Gupta A (2020) Impact assessment of leachate pollution potential on groundwater: an indexing method. J Environ Eng 146(3):05019007

    Article  Google Scholar 

  • Sunkari ED, Zango MS, Korboe HM (2018) Comparative analysis of fluoride concentrations in groundwaters in Northern and Southern Ghana: implications for the contaminant sources. Earth Syst Environ 2(1):103–117

    Article  Google Scholar 

  • Thorne DW, Peterson HB (1954) Irrigated soils. Soil Sci 78(5):406

    Article  Google Scholar 

  • Tiwari AK, Nota N, Marchionatti F, De Maio M (2017) Groundwater-level risk assessment by using statistical and geographic information system (GIS) techniques: a case study in the Aosta Valley region, Italy. Geomat Nat Hazards Risk 8(2):1396–1406. https://doi.org/10.1080/19475705.2017.1337655

    Article  Google Scholar 

  • Todd DK (1980) Groundwater hydrology. Wiley, New York

    Google Scholar 

  • Torres-Martínez JA, Mora A, Knappett PS, Ornelas-Soto N, Mahlknecht J (2020) Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model. Water Res 182:115962

    Article  Google Scholar 

  • Trivedy RK, Goel PK (1984) Chemical and biological methods for water pollution studies. Environmental Publications, Pune

    Google Scholar 

  • USSL (1954) Diagnosis and improvement of saline and alkaline soils. US Department of Agriculture, Washington

    Google Scholar 

  • Vasanthavigar M, Srinivasamoorthy K, Rajiv Ganthi R, Vijayaraghavan K, Sarma VS (2010) Characterisation and quality assessment of groundwater with a special emphasis on irrigation utility: Thirumanimuttar sub-basin, Tamil Nadu, India. Arab J Geosci 5(2):245–258

    Article  Google Scholar 

  • Venkatramanan S, Chung SY, Selvam S, Lee SY, Elzain HE (2017) Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS. Environ Sci Pollut Res 24(30):23679–23693

    Article  Google Scholar 

  • Verma A, Yadav BK, Singh NB (2020) Hydrochemical monitoring of groundwater quality for drinking and irrigation use in Rapti Basin. SN Appl Sci 2(3):1–15

    Article  Google Scholar 

  • Wang C, Enfield DB, Lee SK, Landsea CW (2006) Influences of the Atlantic warm pool on Western Hemisphere summer rainfall and Atlantic hurricanes. J Clim 19(12):3011–3028

    Article  Google Scholar 

  • Wang C, Liu H, Lee SK, Atlas R (2011) Impact of the Atlantic warm pool on United States landfalling hurricanes. Geophys Res Lett 38(19):L19702

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  • Wilcox LV (1955) Classification and use of irrigation waters. USDA Circ 969:19

    Google Scholar 

  • Yadav AK, Nayak SK, Acharya BC, Mishra BK (2015) Algal-assisted microbial fuel cell for wastewater treatment and bioelectricity generation. Energy Sources Part A Recovery Util Environ Effects 37(2):127–133. https://doi.org/10.1080/15567036.2011.576422

    Article  Google Scholar 

  • Zaidi FK, Mogren S, Mukhopadhyay M, Ibrahim E (2016) Evaluation of groundwater chemistry and its impact on drinking and irrigation water quality in the eastern part of the Central Arabian graben and trough system, Saudi Arabia. J Afr Earth Sci 120:208–219

    Article  Google Scholar 

  • Zamora-Martínez O, Montaño-Hilario JM, Galindo-Zavala VB, Siebe-Grabach C, Prado-Pano BL (2016) Determinación simultánea de cationes mayoritarios en muestras de agua residual por medio de cromatografía de iones con detección conductimétrica. Revista Internacional De Contaminación Ambiental 32(3):293–301 (in Spanish)

    Article  Google Scholar 

  • Zhang X, Zhang L, He C, Li J, Jiang Y, Ma L (2014) Quantifying the impacts of land use/land cover change on groundwater depletion in Northwestern China—a case study of the Dunhuang oasis. Agric Water Manag 146:270–279

    Article  Google Scholar 

  • Zhou Y, Li P, Xue L, Dong Z, Li D (2020) Solute geochemistry and groundwater quality for drinking and irrigation purposes: a case study in Xinle City, North China. Geochemistry. https://doi.org/10.1016/j.chemer.2020.125609

    Article  Google Scholar 

Download references

Acknowledgements

Data presented were obtained with financial support from Programa de Investigación en Cambio Climático (PINCC) of the National Autonomous University of Mexico (UNAM) through a research grant (2020) to PDR. The authors are thankful to Dr. Jose Luis Sanchez-Zavala, Irma Vargas-Martinez and Guillermo Vera-Vera for the field and laboratory assistances. The suggestions and comments from the reviewers and the editors are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyadarsi D. Roy.

Ethics declarations

Conflict of interest

The authors declare no conflicting interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a Topical Collection in Environmental Earth Sciences on Groundwater quality and contamination and the application of GIS, guest edited by Narsimha Adimalla and Hui Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P.D., Selvam, S., Gopinath, S. et al. Hydro-geochemistry-based appraisal of summer-season groundwater from three different semi-arid basins of northeast Mexico for drinking and irrigation. Environ Earth Sci 80, 529 (2021). https://doi.org/10.1007/s12665-021-09828-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09828-8

Keywords

Navigation