Skip to main content

Advertisement

Log in

Aspergillus and Penicillium spores as urban pathogens of the Havana atmosphere, Cuba

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Aspergillus and Penicillium spores occur with considerable frequency in the outdoor air, and their presence is important due to implications in health, agriculture and biodeterioration of cultural heritage. The objective of this research was to study their abundance in the atmosphere of Havana from 2013 to 2017. Two study methods were used, viable method monitoring of the spores with Chirana Aeroscope equipment and the other a non-viable method Lanzoni VPPS 2000. The Aspergillus/Penicillium spores were found to occur with high frequency, their atmospheric concentration varied statistically between climatic seasons, the highest incidence was detected during 2013 and 2015. Aspergillus was more abundant (69%) than Penicillium (31%), with a predominance of the Flavi and Nigri sections, and for Penicillium predominated Penicillium and Furcatum. The viable method, 23 species of Aspergillus and 22 of Penicillium were identified, of which A. flavus, A. niger, P. aurantiogriseum and P. citrinum predominated. A greater degree of similarity was observed in the composition of Aspergillus species, with higher indices (Di,j 0.40-0.73) compared to Penicillium (Di,j 0.30-0.55). The principal component analysis (PCA) showed a high degree of positive association between Aspergillus/Penicillium and relative humidity (non-viable method) and between Aspergillus and Penicillium and maximum and average temperatures (viable method).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Dieyeh, M. H., Barham, R., Abu-Elteen, K., Al-Rashidi, R., & Shaheen, I. (2010). Seasonal variation of fungal spore populations in the atmosphere of Zarqa area, Jordan. Aerobiologia, 26, 263–276.

    Article  Google Scholar 

  • Adhikari, A., Sen, M. M., Gupta-Bhattacharya, S., & Chanda, S. (2004). Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: A 2-year study at five outdoor sampling stations. Science of the Total Environment, 326, 123–141.

    Article  CAS  Google Scholar 

  • Afzal, M., & Mehdi, F. S. (2002). Atmospheric fungi of Karachi City, Pakistan. Journal of Biological Sciences, 5, 707–709.

    Google Scholar 

  • Agrios, G.N. (2005). Plant diseases caused by fungi. In G.N. Agrios (Eds.), Plant Pathology (4th ed., pp 385–614). Academic Press, New York.

  • Ahlström, K., & Käärik, A. (1977). A study of airborne fungal spores with the aid of the FOA slit-sampler. Grana, 16(3), 133–137.

    Article  Google Scholar 

  • Aira, M. J., Rodríguez-Rajo, F. J., Fernández-González, M., Seijo, C., Rendueles, B. E., Abreu, I., Gutiérrez-Bustillo, M., Pérez-Sánchez, E., Oliveira, M., Recio, M., Tormo, R., & Morales, J. (2013). Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993–2009. International Journal of Biometeorology, 57(2), 265–274.

    Article  Google Scholar 

  • Aira, M. J., Rodríguez-Rajo, F. J., Fernández-González, M., Seijo, C., Rendueles, B. E., Gutiérrez-Bustillo, M., Abreu, I., Pérez-Sánchez, E., Oliveira, M., Recio, M., Morales, J., & Muñoz-Rodríguez, A. F. (2012). Cladosporium airborne spore incidence in the environmental quality of the Iberian Peninsula. Grana, 51(4), 293–304.

    Article  Google Scholar 

  • Almaguer, M., Aira, M. J., Rodríguez-Rajo, F. J., & Rojas, T. I. (2013). Study of airborne fungus spores by viable and non-viable methods in Havana Cuba. Grana, 52(4), 289–298.

    Article  Google Scholar 

  • Almaguer, M., & Rojas, T. (2013). Aeromicota viable de la atmósfera de la Habana Cuba. Nova Acta Científica Compostelana, 20, 35–45.

    Google Scholar 

  • Al-Subai, A. A. (2002). Air-borne fungi at Doha. Qatar. Aerobiologia, 18(3–4), 175–183.

    Article  Google Scholar 

  • Anaya, M., Borrego, S. F., Gámez, E., Castro, M., Molina, A., & Valdés, O. (2016). Viable fungi in the air of indoor environments of the National Archive of the Republic of Cuba. Aerobiologia, 32(3), 513–527.

    Article  Google Scholar 

  • Beltrán Rodríguez, N., San Juan-Galán, J. L., Fernández Andreu, C. M., Yera, D. M., Barrios Pita, M., Perurena Lancha, M. R., Velar Martínez, R. E., Illnait Zaragozí, M. T., & Martínez Machín, G. F. (2019). Chronic pulmonary aspergillosis in patients with underlying respiratory disorders in Cuba—A Pilot Study. Journal of Fungi, 5(1), 18.

    Article  Google Scholar 

  • Bezerra, G. F. B., Gomes, S. M., da Silva, C. A. N., dos Santos, R. M., Muniz Filho, W. E., Viana, G. M. C., & Nascimento, M. D. S. B. (2014). Diversity and dynamics of airborne fungi in São Luis, State of Maranhão, Brazil. Revista Da Sociedade Brasileira De Medicina Tropical, 47(1), 69–73.

    Article  Google Scholar 

  • Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs, 27, 325–349.

    Article  Google Scholar 

  • Bustillo, M., Badia, R., & Morales, P. (2015). Aerobiología: Redes de polen y esporas aerovagantes. Revista De Salud Ambiental, 15(2), 155–156.

    Google Scholar 

  • Calderón, C., Lacey, J., McCartney, A., & Rosas, I. (1997). Influence of urban climate upon distribution of air- borne Deuteromycete spore concentrations in Mexico City. International Journal of Biometeorology, 40, 71–80.

    Article  Google Scholar 

  • Dames, J. F., & Cadman, A. (1994). Air-spora of Durban: A sub-tropical, coastal South African city II. Fungal Spore Component. Grana, 33, 346–348.

    Google Scholar 

  • Díaz Rodríguez, A., Fabré Ortiz, D. E., Coutin Marie, G., & González Méndez, T. (2010). La sensibilización a hongos ambientales y su relación con enfermedades atópicas en escolares. Revista Cubana De Medicina General Integral, 26(4), 647–655.

    Google Scholar 

  • Fang, Z., Ouyang, Z., Hu, L., Wang, X., Zheng, H., & Lin, X. (2005). Culturable airborne fungi in outdoor environments in Beijing China. Science of the Total Environment, 350(1–3), 47–58.

    Article  CAS  Google Scholar 

  • Fernández-Rodríguez, S., Tormo-Molina, R., Maya-Manzano, J. M., Silva-Palacios, I., & Gonzalo-Garijo, Á. (2014). Outdoor airborne fungi captured by viable and non-viable methods. Fungal Ecology, 7, 16–26.

    Article  Google Scholar 

  • Flores, M. E. B., Medina, P. G., Camacho, S. P. D., Beltrán, D. J. U., & M., De La Cruz Otero, M.D.C., Ramírez, I.O., Hernández, M.E.T. . (2014). Fungal spore concentrations in indoor and outdoor air in university libraries, and their variations in response to changes in meteorological variables. International Journal of Environmental Research, 24(4), 320–340.

    CAS  Google Scholar 

  • Frisvad, J. C., & Samson, R. A. (2004). Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Studies in Mycology, 49, 1–173.

    Google Scholar 

  • Galán, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., Fernandez-González, D., Frenguelli, G., Gehrig, R., Isard, S., et al. (2017). Recommended terminology for aerobiological studies. Aerobiologia, 33, 293–295.

    Article  Google Scholar 

  • Galán, C., Cariñanos, P., Alcázar, P., & Domínguez, E. (2007). Manual de calidad y gestión de la Red Española de Aerobiología. Servicio de Publicaciones de la Universidad de Córdoba, Spain.

    Google Scholar 

  • Grinn-Gofrón, A. (2011). Airborne Aspergillus and Penicillium in the atmosphere of Szczecin, (Poland) (2004–2009). Aerobiologia, 27(1), 67–76.

    Article  Google Scholar 

  • Grishkan, I., Schlesinger, P., & Mamane, Y. (2012). Influence of dust storms on concentration and content of fungi in the atmosphere of Haifa Israel. Aerobiologia, 28(4), 557–564.

    Article  Google Scholar 

  • Guarro, J., Xavier, M.O., Severo, L.C. (2009). Differences and similarities amongst pathogenic Aspergillus species. In: Aspergillosis: From diagnosis to prevention, ed.; Comarú Pasqualotto A.; Springer, Dordrecht.

  • Guinea, J., Peláez, T., Alcalá, L., & Bouza, E. (2006). Outdoor environmental levels of Aspergillus spp. conidia over a wide geographical area. Sabouraudia, 44(4), 349–356.

    Article  Google Scholar 

  • Haines, J., Escamilla, B., Muilenberg, M., Gallup, J., & Levetin, E. (1999). Mycology of the air: A workshop manual for sampling and identifying airborne fungus spores. Pan-American Aerobiology Association. New York State Museum.

    Google Scholar 

  • Halwagy, H. M. (1994). Fungal airspora of Kuwait City, Kuwait, 1975–1987. Grana, 33, 340–345.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 9.

    Google Scholar 

  • Herrera, L., Carrazana, D., & Quiñones, R. (2003). Los hongos anemófilos de la ciudad de Santa Clara Cuba. Centro Agrícola, 3, 78–83.

    Google Scholar 

  • Herrera, O., Paneque, I., Rodríguez, J. S., Jiménez, M., Otero, L., Ruíz, N., & Linares, L. (2019). Cutaneous sensibility to environments fungus and nasal mycobiota study in respiratory allergic patients. Investigaciones Medicoquirúrgicas, 11(2), 1–15.

    Google Scholar 

  • de Hoog, G.S., Guarro, J. (2007). Atlas of clinical fungi. CBS, Baam, Holanda-URV, Reus.

  • Hsieh, K. H. (1984). A study of intracutaneous skin tests and radioallergosorbent tests on 1,000 asthmatic children in Taiwan Asian Pacific. Journal of Allergy and Immunology, 2, 56–60.

    CAS  Google Scholar 

  • Huber, L., Madden, L. V., & Fitt, B. D. (1998). Rain-splash and spore dispersal: A physical perspective. The epidemiology of plant diseases (pp. 348–370). Springer.

    Chapter  Google Scholar 

  • Irga, P. J., & Torpy, F. R. (2016). A survey of the aeromycota of Sydney and its correspondence with environmental conditions: Grass as a component of urban forestry could be a major determinant. Aerobiologia, 32(2), 171–185.

    Article  Google Scholar 

  • Jothish, P. S., & Nayar, T. S. (2004). Airborne fungal spores in a sawmill environment in Palakkad district, Kerala, India. Aerobiologia, 20, 75–81.

    Article  Google Scholar 

  • Kasprzyk, I., Rzepowska, B., & Wasylów, M. (2004). Fungal spores in the atmosphere of Rzeszów (southeast Poland). Annals of Agricultural and Environmental Medicine, 11, 285–289.

    Google Scholar 

  • Khan, Z. U., Khan, M. A., Chandy, R., & Sharma, P. N. (1999). Aspergillus and other moulds in the air of Kuwait. Mycophatologia, 146, 25–32.

    Article  CAS  Google Scholar 

  • Klich, M.A., Pitt,J.I. (1988). A laboratory guide to the common Aspergillus species and their teleomorphs. Commonwealth Scientific and Industrial Research Organization, Division of Food Processing.

  • Klich, M. A. (2006). Identification of clinically relevant aspergilli. Medical Mycology, 44, S127–S131.

    Article  Google Scholar 

  • Larsen, L. S. (1981). A three-year-survey of microfungi in the air of Copenhagen 1977–79. Allergy, 36(1), 15–22.

    Article  CAS  Google Scholar 

  • Larsen, L., & Gravesen, S. (1991). Seasonal variation of outdoor airborne viable microfungi in Copenhagen. Denmark. Grana, 30(2), 467–471.

    Article  Google Scholar 

  • Lecha, L., Paz, L., Lapinel, B. (1994). El clima de Cuba. Editorial Academia, La Habana. Cuba, pp. 5–118.

  • Levetin, E., Horner, W. E., Scott, J. A., Barnes, C., Baxi, S., Chew, G. L., & Phipatanakul, W. (2016). Taxonomy of allergenic fungi. Journal of Allergy and Clinical Immunology; in Practice, 4(3), 375–385.

    Article  Google Scholar 

  • Li, D. W., & Kendrick, B. (1995). A year-round outdoor aeromycological study in Waterloo, Ontario, Canada. Grana, 34, 199–207.

    Article  Google Scholar 

  • Mandloi, S., Mishra, R., & Varma, R. (2012). A comparative study of viable aeromycospora of four different zones of Bhopal, Madhya Pradesh. Nanobiotechnica Universale, 3, 21–31.

    Google Scholar 

  • Medrela-Kuder, E. (2003). Seasonal variations in the occurrence of culturable airborne fungi in outdoor and indoor air in Cracow. International Biodeterioration & Biodegradation, 52(4), 203–205.

    Article  Google Scholar 

  • Millington, W. M., & Corden, J. M. (2005). Long term trends in outdoor Aspergillus/Penicillium spore concentrations in Derby, UK from 1970 to 2003 and a comparative study in 1994 and 1996 with the indoor air of two local houses. Aerobiologia, 21(2), 105–113.

    Article  Google Scholar 

  • Molina, A., Valdés, O., Borrego, S., Pérez, D., & Castro, M. (2014). Diagnóstico micológico ambiental en depósitos de la Oficina Cubana de la Propiedad Industrial. Nova Acta Cientifica Compostelana, 21, 107–117.

    Google Scholar 

  • Nilsson, S., & Perason, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20, 179–182.

    Article  Google Scholar 

  • O’Gorman, C. M., & Fuller, H. T. (2008). Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air. Atmospheric Environment, 42, 4355–4368.

    Article  CAS  Google Scholar 

  • Oliveira, M., & Caramalho, R. (2014). Aspergillus fumigatus: A mere airborne particle or a powerful biohazard? Nova Acta Cientifica Compostelana, 21, 57–64.

    Google Scholar 

  • Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. International Journal of Biometeorology, 53, 61–73.

    Article  CAS  Google Scholar 

  • Perrone, G., Varga, J., Susca, A., Frisvad, J. C., Stea, G., Kocsubé, S., Tóth, B., Kozakiewicz, Z., & Samson, R. A. (2008). Aspergillus uvarum sp. nov., an uniseriate black Aspergillus species isolated from grapes in Europe. International Journal of Systematic and Evolutionary Microbiology, 58, 1032–1039.

    Article  Google Scholar 

  • Piontelli, E. (2008). Aportes morfotaxonómicos en el género Aspergillus flavus Link: Claves para las especies ambientales y clínicas más comunes. Boletín Micológico, 23, 49–66.

    Article  Google Scholar 

  • Pitt, J.I. (1989). Recent developments in the study of Penicillium and Aspergillus systematics. Journal of Applied Microbiology, 37S-45S.

  • Pitt, J.I. (2000). A laboratory guide to common Penicillium species. Canberra: CSIRO, Food Science.

  • Pitt, J. I. (1979). The genus Penicillium and its teleomorphic states Eupenincillium and Talaromyces. Academic Press.

    Google Scholar 

  • Prospero, J. M., Blades, E., Mathison, G., & Naidu, R. (2005). Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia, 21(1), 1–19.

    Article  Google Scholar 

  • Pyrri, I., & Kapsanaki-Gotsi, E. (2007). A comparative study on the airborne fungi in Athens, Greece, by viable and non-viable sampling methods. Aerobiologia, 23, 3–15.

    Article  Google Scholar 

  • Pyrri, I., & Kapsanaki-Gotsi, E. (2015). Evaluation of the fungal aerosol in Athens, Greece, based on spore analysis. Aerobiologia, 31(2), 179–190.

    Article  Google Scholar 

  • Rodriguez-Rajo, F., Iglesias, I., & Jato, V. (2005). Variation assessment of airborne Alternaria and Cladosporium at different bioclimatical conditions. Mycological Research, 109, 497–507.

    Article  Google Scholar 

  • Rohlf, F. J., & Sokal, R. R. (1981). Biometry: The principles and practice of statistics in biological research. Freeman.

    Google Scholar 

  • Rojas, T. I., Llanes, N., Benitez, M., Aira, M. J., & Malagón, H. (2007). El género Aspergillus en la atmósfera de La Habana (Cuba). Boletín Micológico, 22, 41–46.

    Article  Google Scholar 

  • Rosas, I., Calderon, C., Ulloa, M., & Lacey, J. (1993). Abundance of airborne Penicillium CFU in relation to urbanization in Mexico City. Applied and Environmental Microbiology, 59(8), 2648–2652.

    Article  CAS  Google Scholar 

  • Samson, R., Hoekstra, E., & Frisvad, J. (2004). Introduction to food and airborne fungi. In Centraal bureau Voor Schimmel cultures (7th ed.). Utrecht.

    Google Scholar 

  • Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S. B., Hubka, V., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Susca, A., Tanney, J. B., Varga, J., Kocsube, S., Szigeti, G., Yaguchi, T., & Frisvad, J. C. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology, 78, 141–173.

    Article  CAS  Google Scholar 

  • Sánchez Espinosa, K. C., Almaguer Chávez, M., Duarte-Escalante, E., Rojas Flores, T. I., Frías-De-León, M. G., & Reyes-Montes, M. D. R. (2021). Phylogenetic Identification, Diversity, and Richness of Aspergillus from Homes in Havana. Cuba. Microorganisms, 9(1), 115.

    Article  CAS  Google Scholar 

  • Sánchez, K. C., Almaguer, M., Pérez, I., Rojas, T. I., & Aira, M. J. (2019). Diversidad fúngica en la atmósfera de La Habana (Cuba) durante tres períodos poco lluviosos. Revista Internacional De Contaminación Ambiental, 35(1), 137–150.

    Article  Google Scholar 

  • Ščevková, J., DuŠička, J., Chrenová, J., & Mičieta, K. (2010). Annual pollen spectrum variations in the air of Bratislava (Slovakia): Years 2002–2009. Aerobiologia, 26, 277–287.

    Article  Google Scholar 

  • Ščevková, J., & Kováč, J. (2019). First fungal spore calendar for the atmosphere of Bratislava, Slovakia. Aerobiologia, 35, 343–356.

    Article  Google Scholar 

  • Shaheen, I. A. (1992). Aeromycology of the Amman area, Jordan. Grana, 31, 223–228.

    Article  Google Scholar 

  • Shen, H. D., Tam, M. F., Chou, H., & Han, S. H. (1999). The importance of serine proteinases as aeroallergens associated with asthma. International Archives of Allergy and Immunology, 119, 259–264.

    Article  CAS  Google Scholar 

  • Silva, D. D. M. C., Marcusso, R. M. N., Barbosa, C. G. G., Gonçalves, F. L. T., & Cardoso, M. R. A. (2020). Air pollution and its impact on the concentration of airborne fungi in the megacity of São Paulo, Brazil. Heliyon, 6(10), e05065.

    Article  Google Scholar 

  • Simon-Nobbe, B., Denk, U., Pöll, V., Rid, R., & Breitenbach, M. (2008). The spectrum of fungal allergy. International Archives of Allergy and Immunology, 145, 58–86.

    Article  Google Scholar 

  • Spieksma, F. T. M. (1991). Regional European pollen calendars. In G. D’Amato, F. T. M. Spieksma, & S. Bonini (Eds.), Allergenic pollen and pollinosis in Europe (pp. 49–65). Blackwell Scientific Publications, UK.

    Google Scholar 

  • Vázquez, L. D., Santana, R. C., Espinosa, K. C. S., & Chávez, M. A. (2020). Caracterización fisiológica de nuevos registros fúngicos de la atmósfera de La Habana Cuba. Revista Del Jardín Botánico Nacional, 41, 37–44.

    Google Scholar 

  • Weiß, C.H. (2007). Statsoft, inc., tulsa, ok.: Statistica, version 8.

  • Wu, PCh., Tsai, JCh., Li, FCh., Lung, ShCh., & Su, H. J. (2004). Increased levels of ambient fungal spores in Taiwan are associated with dust events from China. Atmospheric Environment, 38, 4879–4886.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Osvaldo Cuesta PhD, Javier Bolufé MSc. and Pedro Roura MSc. from the Institute of Meteorology of Cuba (INSMET) for allowing access to meteorological data, as part of National Project P211LH007-017 "Aeromycological characterization of the atmosphere of Havana: its impact on health and agriculture."

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fernández-González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almaguer, M., Fernández-González, M., Díaz, L. et al. Aspergillus and Penicillium spores as urban pathogens of the Havana atmosphere, Cuba. Aerobiologia 37, 767–783 (2021). https://doi.org/10.1007/s10453-021-09721-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-021-09721-8

Keywords

Navigation