Skip to main content

Advertisement

Log in

Harmless Treatment and Valuable Metals Recovery of Tungsten Leaching Residues: A Thermodynamic and Experimental Study

  • Pyrometallurgical Processing of Secondary Resources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Tungsten leaching residues are industrial wastes that are largely generated during commercial tungsten production. The residues have been classified as hazardous solid wastes due to the presence of toxic elements. On the other hand, the residues contain valuable elements, such as W, Mn, and Fe which can be recovered for economic benefit. To utilize the residue, a carbothermic reduction process was studied to achieve the effective utilization of the residue and sustainable development of the tungsten industry. Fe-W-Mn alloys and nontoxic slags were obtained successfully at 1450°C, and can be used to produce wear-resisting iron materials and glass–ceramics, respectively. The more effective metal–slag separation was achieved by controlling the MnO concentration of the slag, which impacted the liquidus temperature and the viscosity of the slag. This study confirmed a method for utilizing the tungsten residues, which could be a step toward practical industrial-scale techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Liu, H. Liu, C. Nie, J. Zhang, B.-M. Steenari, and C. Ekberg, J. Environ. Manag. (2020). https://doi.org/10.1016/j.jenvman.2020.110927.

    Article  Google Scholar 

  2. D.R. Leal-Ayala, J.M. Allwood, E. Petavratzi, T.J. Brown, and G. Gunn, Resour. Conserv. Recycl. (2015). https://doi.org/10.1016/j.resconrec.2015.07.003.

    Article  Google Scholar 

  3. L. Shen, X. Li, D. Lindberg, and P. Taskinen, Miner. Eng. (2019). https://doi.org/10.1016/j.mineng.2019.105934.

    Article  Google Scholar 

  4. K. Chu Ngoc, N. Van Nguyen, B. Nguyen Dinh, S. Le Thanh, S. Tanaka, Y. Kang, K. Sakurai, and K. Iwasaki, Water Air Soil Pollut. (2009). https://doi.org/10.1007/s11270-008-9792-y.

    Article  Google Scholar 

  5. E. Moreno-Jiménez, E. Esteban, and J.M. Peñalosa, The Fate of Arsenic in Soil-Plant Systems.Reviews of Environmental Contamination and Toxicology, ed. D.M. Whitacre (New York: Springer, 2012), pp. 1–37.

    Google Scholar 

  6. Z. Zhao, J. Li, S. Wang, H. Li, M. Liu, P. Sun, and Y. Li, Hydrometallurgy (2011). https://doi.org/10.1016/j.hydromet.2011.03.004.

    Article  Google Scholar 

  7. US DoD. Strategic and critical materials 2013 report on stockpile requirements, US Department of Defense, Office of the Under Secretary of Defense, p. 189. (2013).

  8. EC. (2014) Report on critical raw materials for the EU, European Commission. (2015).

  9. R.G. Skirrow, D.L. Huston, T.P. Mernagh, J.P. Thorne, H. Duffer, and A. Senior, Critical commodities for a high-tech world: Australia’s potential to supply global demand (Geoscience Australia: Canberra, CAN, 2013).

    Google Scholar 

  10. S.M. Fortier, N.T. Nassar, G.W. Lederer, J. Brainard, J. Gambogi and E.A. McCullough. Draft critical mineral listSummary of methodology and background informationUS Geological Survey technical input document in response to Secretarial Order No. 3359. U.S. Geological Survey. (2018).

  11. J. Li, D. He, K. Zhao and D. Gong. Conservation and Utilization of Mineral Resources, (2019) https://doi.org/10.13779/j.cnki.issn1001-0076.2019.03.020.

  12. European Commission. Report on critical raw materials and the circular economy. Comm Staff Work Doc. (2018).

  13. Y. Dai, H. Zhong and H. Zhong. Guilin Ligong Daxue Xuebao. (2008) https://doi.org/10.3969/j.issn.1674-9057.2008.02.008.

  14. S. Xiang, B. Huang, X. Wang, and S. Zheng, Nonferrous Metals Engineering & Research. (2012). https://doi.org/10.3969/j.issn.1004-4345.2012.02.002.

    Article  Google Scholar 

  15. X. Wang, X. Ma, K. Su, C. Liao, and B. Zhao, Tungsten. (2020). https://doi.org/10.1007/s42864-020-00064-4.

    Article  Google Scholar 

  16. X. Wang, X. Ma, C. Liao, and B. Zhao, Miner. Metal. Mater. Ser. (2020). https://doi.org/10.1007/978-3-030-36540-0_26.

    Article  Google Scholar 

  17. T. Makanyire, S. Sanchez-Segado, and A. Jha, Adv. Manuf. (2016). https://doi.org/10.1007/s40436-015-0132-3.

    Article  Google Scholar 

  18. M.H. Rodriguez, G.D. Rosales, E.G. Pinna, and D.S. Suarez, Hydrometallurgy (2015). https://doi.org/10.1016/j.hydromet.2015.05.006.

    Article  Google Scholar 

  19. W. Fan, B. Liu, X. Luo, J. Yang, B. Guo, and S. Zhang, Rare Met. (2019). https://doi.org/10.1007/s12598-017-0976-8.

    Article  Google Scholar 

  20. A. Rincón, D. Desideri, and E. Bernardo, J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2018.03.065.

    Article  Google Scholar 

  21. P. Alfonso, D. Castro, M. Garcia-Valles, M. Tarragó, O. Tomasa, and S. Martínez, J. Therm. Anal. Calorim. (2016). https://doi.org/10.1007/s10973-016-5332-y.

    Article  Google Scholar 

  22. K. Peng, C. Lv, and H. Yang, Ceram. Int. (2014). https://doi.org/10.1016/j.ceramint.2014.02.121.

    Article  Google Scholar 

  23. R. Cheng, H. Zhang, and H. Ni, Processes (2019). https://doi.org/10.3390/pr7100754.

    Article  Google Scholar 

  24. R. Cheng, H. Ni, H. Zhang, X. Zhang, and S. Bai, Int J Miner Metall Mater. (2017). https://doi.org/10.1007/s12613-017-1414-5.

    Article  Google Scholar 

  25. Q. Wang, Q. Wang, Q. Tian, and X. Guo, Processes (2020). https://doi.org/10.3390/pr8040385.

    Article  Google Scholar 

  26. V.T. Witusiewicz, F. Sommer, and E.J. Mittemeijer, J. Phys. Equil. Diff. (2004). https://doi.org/10.1007/s11669-004-0152-3.

    Article  Google Scholar 

  27. D. Djurovic, B. Hallstedt, J.V. Appen, and R. Dronskowski, Calphad (2011). https://doi.org/10.1016/j.calphad.2011.08.002.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Jie Yu for laboratory assistance in the high-temperature experiments, and are grateful for financial support from Jiangxi University of Science and Technology through the joint laboratory on high-temperature processing. The authors acknowledge the facilities, and scientific and technical assistance of the Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojun Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, K., Ma, X. & Zhao, B. Harmless Treatment and Valuable Metals Recovery of Tungsten Leaching Residues: A Thermodynamic and Experimental Study. JOM 73, 1937–1946 (2021). https://doi.org/10.1007/s11837-021-04682-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04682-2

Navigation