Skip to main content
Log in

Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which traditionally required time-consuming repetitive rounds of gene editing. With the development of gene-editing technologies such as meganucleases, TALENs, and the CRISPR/Cas system, multiplex genome editing has entered a period of rapid development to speed up cell factory optimization. Multi-copy insertion and removing bottlenecks in biosynthetic pathways can be achieved through gene integration and knockout, for which multiplexing can be accomplished by targeting repetitive sequences and multiple sites, respectively. Importantly, the development of the CRISPR/Cas system has greatly increased the speed and efficiency of multiplex editing. In this review, the various multiplex genome editing technologies in S. cerevisiae were summarized, and the principles, advantages, and the disadvantages were analyzed and discussed. Finally, the practical applications and future prospects of multiplex genome editing were discussed.

Key points

• The development of multiplex genome editing in S. cerevisiae was summarized.

• The pros and cons of various multiplex genome editing technologies are discussed.

• Further prospects on the improvement of multiplex genome editing are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aouida M, Li LX, Mahjoub A, Alshareef S, Ali Z, Piatek A, Mahfouz MM (2015) Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae. J Biosci Bioeng 120:364–371

  • Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H (2015) Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4:585–594

    Article  CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Sci 326:1509–1512

    Article  CAS  Google Scholar 

  • Bourgeois L, Pyne ME, Martin VJJ (2018) A highly characterized synthetic landing pad system for precise multicopy gene integration in yeast. ACS Synth Biol 7:2675–2685

    Article  CAS  PubMed  Google Scholar 

  • Chen PY, Qian Y, and Del Vecchio D. (2018) A model for resource competition in CRISPR-mediated gene repression. Proc IEEE Conf Decis Control 4333–4338 (IEEE, 2018)

  • Csoergo B, Leon LM, Chau-Ly IJ, Vasquez-Rifo A, Berry JD, Mahendra C, Crawford ED, Lewis JD, Bondy-Denomy J (2020) A compact Cascade-Cas3 system for targeted genome engineering. Nat Methods 17:1183–1190

    Article  Google Scholar 

  • DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Sci 346:1077–1085

    CAS  Google Scholar 

  • Fang C, Wang QH, Selvaraj JN, Zhou YL, Ma LX, Zhang GM, Ma YH (2017) High copy and stable expression of the xylanase XynHB in Saccharomyces cerevisiae by rDNA-mediated integration. Sci Rep 7:1–9

    Article  Google Scholar 

  • Ferreira R, Skrekas C, Nielsen J, David F (2018) Multiplexed CRISPR/Cas9 genome editing and gene regulation using Csy4 in Saccharomyces cerevisiae. ACS Synth Biol 7:10–15

    Article  CAS  PubMed  Google Scholar 

  • Fletcher E, Krivoruchko A, Nielsen J (2016) Industrial systems biology and its impact on synthetic biology of yeast cell factories. Biotechnol Bioeng 113:1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Gan Y, Lin Y, Guo Y, Qi X, and Wang Q (2018) Metabolic and genomic characterisation of stress-tolerant industrial Saccharomyces cerevisiae strains from TALENs-assisted multiplex editing. FEMS Yeast Res 18: foy045–057

  • Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comp Biol 1:474–483

    Article  CAS  Google Scholar 

  • Hou S, Qin Q, Dai J (2018) Wicket: a versatile tool for the integration and optimization of exogenous pathways in Saccharomyces cerevisiae. ACS Synth Biol 7:782–788

    Article  CAS  PubMed  Google Scholar 

  • Hu ZF, Gu AD, Liang L, Li Y, Gong T, Chen JJ, Chen TJ, Yang JL, Zhu P (2019) Construction and optimization of microbial cell factories for sustainable production of bioactive dammarenediol-II glucosides. Green Chem 21:3286–3299

    Article  CAS  Google Scholar 

  • Huang SC, Geng AL (2020) High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration. J Biotechnol 310:13–20

    Article  CAS  PubMed  Google Scholar 

  • Jakounas T, Sonde I, Herrgard M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222

    Article  Google Scholar 

  • Jensen NB, Strucko T, Kildegaard KR, David F, Maury J, Mortensen UH, Forster J, Nielsen J, Borodina I (2014) EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res 14:238–248

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Sci 337:816–821

    Article  CAS  Google Scholar 

  • Kim H, Ji C-H, Je H-W, Kim J-P, Kang H-S (2020) mpCRISTAR: multiple plasmid approach for CRISPR/Cas9 and TAR-mediated multiplexed refactoring of natural product biosynthetic gene clusters. ACS Synth Biol 9:175–180

    Article  PubMed  Google Scholar 

  • Krejci L, Altmannova V, Spirek M, Zhao XL (2012) Homologous recombination and its regulation. Nucleic Acids Res 40:5795–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupiec M (2000) Damage-induced recombination in the yeast Saccharomyces cerevisiae. Mutat Res-Fundam Mol Mech Mutag 451:91–105

    Article  CAS  Google Scholar 

  • Li ZH, Liu M, Wang FQ, Wei DZ (2018) Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. Biotechnol Lett 40:1253–1261

    Article  CAS  PubMed  Google Scholar 

  • Li L, Liu XC, Wei KK, Lu YH, Jiang WH (2019) Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnol Adv 37:730–745

    Article  PubMed  Google Scholar 

  • Lian JZ, Jin R, Zhao HM (2016) Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration. Biotechnol Bioeng 113:2462–2473

    Article  CAS  PubMed  Google Scholar 

  • Lian JZ, HamediRad M, Hu SM, Zhao HM (2017) Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nat Commun 8:9–17

    Article  Google Scholar 

  • Mak ANS, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Sci 335:716–719

    Article  CAS  Google Scholar 

  • Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:1–26

    Article  Google Scholar 

  • Makarova K, Zhang F, Koonin E (2017) SnapShot: Class 2 CRISPR-Cas Systems. Cell 168:328–328

    Article  CAS  PubMed  Google Scholar 

  • Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NGA, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJA, Daran JMG (2015) CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 15:15

    Article  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–149

    Article  CAS  PubMed  Google Scholar 

  • Molina R, Besker N, Marcaida MJ, Montoya G, Prieto J, D'Abramo M (2016) Key players in I-Dmol endonuclease catalysis revealed from structure and dynamics. ACS Chem Biol 11:1401–1407

    Article  CAS  PubMed  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Sci 326:1501–1501

    Article  CAS  Google Scholar 

  • Park SH, Hahn JS (2019) Development of an efficient cytosolic isobutanol production pathway in Saccharomyces cerevisiae by optimizing copy numbers and expression of the pathway genes based on the toxic effect of alpha-acetolactate. Sci Rep 9:1740–1747

    PubMed  PubMed Central  Google Scholar 

  • Pereira R, Wei Y, Mohamed E, Radi M, Malina C, Herrgard MJ, Feist AM, Nielsen J, Chen Y (2019) Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metab Eng 56:130–141

    Article  CAS  PubMed  Google Scholar 

  • Qiu ZQ, Deng ZJ, Tan HM, Zhou SN, Cao LX (2015) Engineering the robustness of Saccharomyces cerevisiae by introducing bifunctional glutathione synthase gene. J Ind Microbiol Biotechnol 42:537–542

    Article  CAS  PubMed  Google Scholar 

  • Raschmanova H, Weninger A, Glieder A, Kovar K, Vogl T (2018) Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: current state and future prospects. Biotechnol Adv 36:641–665

    Article  CAS  PubMed  Google Scholar 

  • Ronda C, Maury J, Jakociunas T, Jacobsen SA, Germann SM, Harrison SJ, Borodina I, Keasling JD, Jensen MK, Nielsen AT (2015) CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb Cell Factories 14:97–107

  • Sakai A, Shimizu Y, Hishinuma F (1990) Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a delta sequence of yeast retrotransposon Ty. Appl Microbiol Biotechnol 33:302–306

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Mitsui R, Yamada R, Ogino H (2019) Secretory overexpression of the endoglucanase by Saccharomyces cerevisiae via CRISPR-delta-integration and multiple promoter shuffling. Enzym Microb Technol 121:17–22

    Article  CAS  Google Scholar 

  • Shi SB, Valle-Rodriguez JO, Siewers V, Nielsen J (2014) Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol Bioeng 111:1740–1747

    Article  CAS  PubMed  Google Scholar 

  • Shi SB, Liang YY, Zhang MZM, Ang EL, Zhao HM (2016) A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng 33:19–27

    Article  CAS  PubMed  Google Scholar 

  • Si T, Chao R, Min YH, Wu YY, Ren W, Zhao HM (2017) Automated multiplex genome-scale engineering in yeast. Nat Commun 8:12

    Article  Google Scholar 

  • Stoddard BL (2005) Homing endonuclease structure and function. Q Rev Biophys 38:49–95

    Article  CAS  PubMed  Google Scholar 

  • Storici F, Resnick M (2006) The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol 409:329–345

    Article  CAS  PubMed  Google Scholar 

  • Strucko T, Buron L, Jarczynska Z, Nødvig C, Mølgaard L, Halkier B, Mortensen U (2017) CASCADE, a platform for controlled gene amplification for high, tunable and selection-free gene expression in yeast. Sci Rep 7:41431–41442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun HY, Zang XN, Liu YT, Cao XF, Wu F, Huang XY, Jiang MJ, Zhang XC (2015) Expression of a chimeric human/salmon calcitonin gene integrated into the Saccharomyces cerevisiae genome using rDNA sequences as recombination sites. Appl Microbiol Biotechnol 99:10097–10106

    Article  CAS  PubMed  Google Scholar 

  • Swiat MA, Dashko S, den Ridder M, Wijsman M, van der Oost J, Daran JM, Daran-Lapujade P (2017) FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Res 45:12585–12598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szostak JW, Wu R (1979) Insertion of a genetic marker into the ribosomal DNA of yeast. Plasmid 2:536–554

    Article  CAS  PubMed  Google Scholar 

  • Tsai CS, Kong II, Lesmana A, Million G, Zhang GC, Kim SR, Jin YS (2015) Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR. Biotechnol Bioeng 112:2406–2411

    Article  CAS  PubMed  Google Scholar 

  • Tyo KEJ, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27:760–U115

    Article  CAS  PubMed  Google Scholar 

  • Ulaganathan K, Goud S, Reddy M, Kayalvili U (2017) Genome engineering for breaking barriers in lignocellulosic bioethanol production. Renew Sust Energ Rev 74:1080–1107

    Article  CAS  Google Scholar 

  • van den Bosch M, Lohman PHM, Pastink A (2002) DNA double-strand break repair by homologous recombination. Biol Chem 383:873–892

    Article  PubMed  Google Scholar 

  • Wang X, Wang Z, Da Silva NA (1996) G418 Selection and stability of cloned genes integrated at chromosomal delta sequences of Saccharomyces cerevisiae. Biotechnol Bioeng 49:45–51

    Article  CAS  PubMed  Google Scholar 

  • Wang LY, Deng AH, Zhang Y, Liu SW, Liang Y, Bai H, Cui D, Qiu QD, Shang XL, Yang Z, He XP, Wen TY (2018) Efficient CRISPR-Cas9 mediated multiplex genome editing in yeasts. Biotechnol Biofuels 11:1–16

    Article  Google Scholar 

  • Wang X, Yang J, Yang S, Jiang Y (2019) Unraveling the genetic basis of fast l-arabinose consumption on top of recombinant xylose-fermenting Saccharomyces cerevisiae. Biotechnol Bioeng 116:283–293

    Article  CAS  PubMed  Google Scholar 

  • Wijsman M, Swiat MA, Marques WL, Hettinga JK, van den Broek M, Cortes PD, Mans R, Pronk JT, Daran JM, Daran-Lapujade P (2019) A toolkit for rapid CRISPR-SpCas9 assisted construction of hexose-transport-deficient Saccharomyces cerevisiae strains. FEMS Yeast Res 19:107–118

    Article  Google Scholar 

  • Xie WP, Lv XM, Ye LD, Zhou PP, Yu HW (2015) Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng 30:69–78

    Article  CAS  PubMed  Google Scholar 

  • Yamada R, Tanaka T, Ogino C, Kondo A (2010) Gene copy number and polyploidy on products formation in yeast. Appl Microbiol Biotechnol 88:849–857

    Article  CAS  PubMed  Google Scholar 

  • Ye W, Zhang W, Liu T, Tan G, Li H, Huang Z (2016) Improvement of ethanol production in Saccharomyces cerevisiae by high-efficient disruption of the ADH2 gene using a novel recombinant TALEN vector. Front Microbiol 7:1067–1074

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan JF, Ching CB (2014) Combinatorial engineering of mevalonate pathway for improved amorpha-4,11-diene production in budding yeast. Biotechnol Bioeng 111:608–617

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Lin Y, Qi X, Li L, Wang Q, Ma Y (2015) TALENs-assisted multiplex editing for accelerated genome evolution to improve yeast phenotypes. ACS Synth Biol 4:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Zhang YP, Wang J, Wang ZB, Zhang YM, Shi SB, Nielsen J, Liu ZH (2019) A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun 10:1–10

    Google Scholar 

  • Zhang YW, Sun XM, Wang QZ, Xu JQ, Dong F, Yang SQ, Yang JW, Zhang ZZ, Qian Y, Chen J, Zhang J, Liu YM, Tao RS, Jiang Y, Yang JJ, Yang S (2020) Multicopy chromosomal integration using CRISPR-associated transposases. ACS Synth Biol 9:1998–2008

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Nature Science Foundation of Jiangsu Province (No. BK20190706, No. BK20170988), the National Natural Science Foundation of China (No. 21908112, No. 22038007), National Key Research and Development Program of China (No.2019YFA0904900), and the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(TSBICIP-PTJS-003-04).

Author information

Authors and Affiliations

Authors

Contributions

ZXZ, LRW, and WTJ wrote the original manuscript. YSX and TQS contributed the figures and table. XMS and HH revised the whole manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Tian-Qiong Shi or Xiao-Man Sun.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZX., Wang, LR., Xu, YS. et al. Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 105, 3873–3882 (2021). https://doi.org/10.1007/s00253-021-11287-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11287-x

Keywords

Navigation