Skip to main content
Log in

Analysis of Galena Leaching and Maximum Electrodeposition Capacity of Pb Using an Electrochemical Cell

  • Adaptive Metallurgical Processing Technologies for Strategic Metal Recycling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the maximum amount of lead that can be electrodeposited on a graphite cathode during the application of the electro-remediation technique. The lead comes from the reduction of soil contaminated with galena. The project was divided into three sections: the first was an electrochemical study at the microelectrolysis level carried out to evaluate the behavior of galena (lead sulfide, PbS) in the cathodic zone using different electrolytes where the reduction potentials of galena were determined; the second stage consisted of laboratory experiments on the leaching of PbS in mining tailings; finally, the maximum electrodeposition of lead on graphite electrodes was evaluated. Different electrolytes at different concentrations were studied as variables. The microelectrolysis level results show that ferric chloride (FeCl3) is a faster leaching agent than hydrochloric acid (HCl) or sodium chloride. However, in the case of the electrodeposition of lead, the HCl electrolytic medium was the best of the tested solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Tan, Z. Cao, S. Wang, and H. Zhong, Hydrometallurgy 185, 218. (2019).

    Article  Google Scholar 

  2. G. Flora, D. Gupta, and A. Tiwari, Interdiscip. Toxicol. 5, 47. (2012).

    Article  Google Scholar 

  3. P.J. Landrigan Br. J. Ind. Med. 46, 593. (1989).

    Google Scholar 

  4. P. Apostoli, P. Kiss, S. Porru, J.P. Bonde, and M. Vanhoorne, Occup. Environ. Med. 55, 364. (1998).

    Article  Google Scholar 

  5. M.F. Cabral, H.B. Suffredini, V.A. Pedrosa, S.T. Tanimoto, and S.A.S. Machado, Appl. Surf. Sci. 254, 5612. (2008).

    Article  Google Scholar 

  6. C. Ubilla and K. Yohannessen, Rev. Méd. Clín. Las Condes. 28, 111. (2017).

    Article  Google Scholar 

  7. Z. Wanija, S. Wei, H. Yuehua, C. Jian, and G. Zhiyong, Minerals 9, (2019).

  8. M. Makita, M. Esperón, B. Pereyra, A. López, and E. Orrantia, BMC Biotechnol. 4, 22. (2004).

    Article  Google Scholar 

  9. K. Laajalehto, E. Suoninen, and S. Heimala, Int. J. Miner. Process. 33, 95. (1991).

    Article  Google Scholar 

  10. M.C. Fuerstenau, C.C. Chen, K.N. Han, and B.R. Palmer, Metall. Mater. Trans. B 17, 415. (1986).

    Article  Google Scholar 

  11. J.E. Dutrizac, Metall. Mater. Trans. B 17, 5. (1986).

    Article  Google Scholar 

  12. I. Cisneros-González, M.T. Oropeza-Guzmán, and I. González, Electrochim. Acta 45, 2729. (2000).

    Article  Google Scholar 

  13. G. da Silva, Hydrometallurgy 75, 99. (2004).

    Article  Google Scholar 

  14. J.M. Flores-Álvarez, M.A. Elizondo-Álvarez, G.I. Dávila-Pulido, A.D. Guerrero-Flores, and A. Uribe-Salas, Miner. Eng. 111, 158. (2017).

    Article  Google Scholar 

  15. Z. Wu, D.B. Dreisinger, H. Urch, and S. Fassbender, Hydrometallurgy 142, 121. (2014).

    Article  Google Scholar 

  16. S. Wang, Z. Fang, Y. Wang, and Y. Chen, Miner. Eng. 16, 869. (2003).

    Article  Google Scholar 

  17. M.H. Golpayegani and A.A. Abdollahzadeh, Trans. Nonferr. Met. Soc. China 27, 2704. (2017).

    Article  Google Scholar 

  18. A.A. Baba and F.A. Adekola, J. Saudi Chem. Soc. 16, 377. (2012).

    Article  Google Scholar 

  19. T.Z. Sadyrbaeva, Russ. J. Electrochem. 54, 922. (2018).

    Article  Google Scholar 

  20. A.B. Velichenko, D.V. Girenko, and F.I. Danilov, Electrochim. Acta 40, 2803. (1995).

    Article  Google Scholar 

  21. T. Simons, A. Pearson, S. Pas, and D. MacFarlane, Electrochim. Acta 174, 712. (2015).

    Article  Google Scholar 

  22. C.L. Hussey and X. Xu, J. Electrochem. Soc. 138, 1886. (1991).

    Article  Google Scholar 

  23. C.O. Avellaneda, M.A. Napolitano, E.K. Kaibara, and L.O.S. Bulhões, Electrochim. Acta 50, 1317. (2005).

    Article  Google Scholar 

  24. M. Sharon, K.S. Ramaiah, M. Kumar, M. Neumann-Spallart, and C. Levy-Clement, J. Electroanal. Chem. 436, 49. (1997).

    Article  Google Scholar 

  25. R. Antti, HSC chemistry 6 (Outotec Research, Finlandia, 2007)

    Google Scholar 

  26. C. Núnez, F. Espiell, and J. García-Zayas, Metall. Mater. Trans. B 21, 11. (1990).

    Article  Google Scholar 

  27. D.A. Urzúa-Abarca, J.C. Fuentes-Aceituno, A. Uribe-Salas, and J. Lee, Hydrometallurgy 176, 104. (2018).

    Article  Google Scholar 

  28. S. Zhong and M. Skyllas-Kazacos, J. Power Sources 39, 1. (1992).

    Article  Google Scholar 

  29. M.P. Vinod and K. Vijayamohanan, J. Appl. Electrochem. 25, 80. (1995).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CONACYT for the scholarship awarded to the student Sergio Isail Moreno Saldaña.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. J. Martínez-Gómez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Saldaña, S.I., Martínez-Gómez, V.J., Valle-Cervantes, S. et al. Analysis of Galena Leaching and Maximum Electrodeposition Capacity of Pb Using an Electrochemical Cell. JOM 73, 1353–1361 (2021). https://doi.org/10.1007/s11837-021-04627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04627-9

Navigation