Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 23, 2021

Modulation of recombinant human alpha 1 glycine receptor by flavonoids and gingerols

  • Ulrike Breitinger ORCID logo EMAIL logo , Heinrich Sticht ORCID logo and Hans-Georg Breitinger ORCID logo
From the journal Biological Chemistry

Abstract

The inhibitory glycine receptor (GlyR) is a principal mediator of fast synaptic inhibition in mammalian spinal cord, brainstem, and higher brain centres. Flavonoids are secondary plant metabolites that exhibit many beneficial physiological effects, including modulatory action on neuronal receptors. Using whole-cell current recordings from recombinant human α1 GlyRs, expressed in HEK293 cells, we compared the flavonols kaempferol and quercetin, the flavanone naringenin, the flavones apigenin and nobiletin, the isoflavone genistein, and two gingerols, 6-gingerol and 8-gingerol for their modulation of receptor currents. All compounds were inhibitors of the GlyR with IC50 values ranging between 9.3 ± 2.6 µM (kaempferol) and 46.7 ± 6.5 µM (genistein), following a mixed mode of inhibition. Co-application of two inhibitors revealed distinct binding sites for flavonoids and gingerols. Pore-lining mutants T258A and T258S were strongly inhibited by quercetin and naringenin, but not by 6-gingerol, confirming the existence of distinct binding sites for flavonoids and gingerols. Apigenin, kaempferol, nobiletin, naringenin and 6-gingerol showed biphasic action, potentiating glycine-induced currents at low concentration of both, modulator and glycine, and inhibiting at higher concentrations. Identification of distinct modulatory sites for flavonoids and related compounds may present pharmacological target sites and aid the discovery of novel glycinergic drugs.


Corresponding author: Ulrike Breitinger, Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo11835, Egypt, E-mail:

Award Identifier / Grant number: Neuronal Modulators

Acknowledgments

We thank Mr. Mousa Abdalla Mousa for excellent technical assistance.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the DAAD (German Academic Exchange Service) cooperation grant “Neuronal modulators” awarded to the authors.

  3. Conflict of interest statement: The authors declare no competing financial interests.

References

Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., and Fukami, Y. (1987). Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262: 5592–5595, https://doi.org/10.1016/s0021-9258(18)45614-1.Search in Google Scholar

Aoshima, H., Cash, D.J., and Hess, G.P. (1980). Acetylcholine receptor-controlled ion flux in electroplax membrane vesicles: a minimal mechanism based on rate measurements in the millisecond to minute time region. Biochem. Biophys. Res. Commun. 92: 896–904, https://doi.org/10.1016/0006-291x(80)90787-1.Search in Google Scholar

Beato, M., Groot-Kormelink, P.J., Colquhoun, D., and Sivilotti, L.G. (2002). Openings of the rat recombinant alpha 1 homomeric glycine receptor as a function of the number of agonist molecules bound. J. Gen. Physiol. 119: 443–466, https://doi.org/10.1085/jgp.20028530.Search in Google Scholar

Betz, H., Kuhse, J., Fischer, M., Schmieden, V., Laube, B., Kuryatov, A., Langosch, D., Meyer, G., Bormann, J., and Rundstrom, N. (1994). Structure, diversity and synaptic localization of inhibitory glycine receptors. J. Physiol. Paris 88: 243–248, https://doi.org/10.1016/0928-4257(94)90087-6.Search in Google Scholar

Bloomenthal, A.B., Goldwater, E., Pritchett, D.B., and Harrison, N.L. (1994). Biphasic modulation of the strychnine-sensitive glycine receptor by Zn2+. Mol. Pharmacol. 46: 1156–9.Search in Google Scholar

Boehm, S., Harvey, R.J., Von Holst, A., Rohrer, H., and Betz, H. (1997). Glycine receptors in cultured chick sympathetic neurons are excitatory and trigger neurotransmitter release. J. Physiol. 504: 683–694, https://doi.org/10.1111/j.1469-7793.1997.683bd.x.Search in Google Scholar

Bormann, J., Rundstrom, N., Betz, H., and Langosch, D. (1993). Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. EMBO J. 12: 3729–3737, https://doi.org/10.1002/j.1460-2075.1993.tb06050.x.Search in Google Scholar

Breitinger, H.G. (2012). Drug synergy – mechanisms and methods of analysis. In: Acree, W. (Ed.), Toxicity and Drug Testing. InTech, Rijeka, Croatia, pp. 143–166.10.5772/30922Search in Google Scholar

Breitinger, H.G. (2014). Glycine receptors. eLS. John Wiley and Sons Ltd, Chichester.10.1002/9780470015902.a0000236.pub2Search in Google Scholar

Breitinger, H.G., Geetha, N., and Hess, G.P. (2001). Inhibition of the serotonin 5-HT3 receptor by nicotine, cocaine, and fluoxetine investigated by rapid chemical kinetic techniques. Biochemistry 40: 8419–8429, https://doi.org/10.1021/bi0106890.Search in Google Scholar

Breitinger, U., Bahnassawy, L., Janzen, D., Roemer, A., Becker, C.-M., Villmann, C., and Breitinger, H.G. (2018). PKA and PKC modulators affect ion channel function and internalization of recombinant alpha1 and alpha1-beta glycine receptors. Front. Mol. Neurosci. 11: 154, https://doi.org/10.3389/fnmol.2018.00154.Search in Google Scholar

Breitinger, U. and Breitinger, H.G. (2020). Modulators of the inhibitory Glycine receptor. ACS Chem. Neurosci. 11: 1706–1725, https://doi.org/10.1021/acschemneuro.0c00054.Search in Google Scholar

Breitinger, U., Raafat, K.M., and Breitinger, H.G. (2015). Glucose is a positive modulator for the activation of human recombinant glycine receptors. J. Neurochem. 134: 1055–1066, https://doi.org/10.1111/jnc.13215.Search in Google Scholar

Breitinger, U., Sticht, H., and Breitinger, H.G. (2016). Modulation of recombinant human a1 glycine receptors by mono- and disaccharides: a kinetic study. ACS Chem. Neurosci. 7: 1077–1087, https://doi.org/10.1021/acschemneuro.6b00044.Search in Google Scholar

Campbell, E.L., Chebib, M., and Johnston, G.A. (2004). The dietary flavonoids apigenin and (-)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABAA receptors. Biochem. Pharmacol. 68: 1631–1638, https://doi.org/10.1016/j.bcp.2004.07.022.Search in Google Scholar

Cheng, M.H., Coalson, R.D., and Cascio, M. (2008). Molecular dynamics simulations of ethanol binding to the transmembrane domain of the glycine receptor: implications for the channel potentiation mechanism. Proteins 71: 972–981, https://doi.org/10.1002/prot.21784.Search in Google Scholar

Chesnoy-Marchais, D. (1996). Potentiation of chloride responses to glycine by three 5-HT3 antagonists in rat spinal neurones. Br. J. Pharmacol. 118: 2115–2125, https://doi.org/10.1111/j.1476-5381.1996.tb15651.x.Search in Google Scholar

Colquhoun, D. (1998). Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125: 924–947, https://doi.org/10.1038/sj.bjp.0702164.Search in Google Scholar

De Saint Jan, D., David-Watine, B., Korn, H., and Bregestovski, P. (2001). Activation of human alpha1 and alpha2 homomeric glycine receptors by taurine and GABA. J. Physiol. 535: 741–755, https://doi.org/10.1111/j.1469-7793.2001.t01-1-00741.x.Search in Google Scholar

Du, J., Lu, W., Wu, S., Cheng, Y., and Gouaux, E. (2015). Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 526: 224–229, https://doi.org/10.1038/nature14853.Search in Google Scholar

Dutertre, S., Becker, C.M., and Betz, H. (2012). Inhibitory glycine receptors: an update. J. Biol. Chem. 287: 40216–40223, https://doi.org/10.1074/jbc.r112.408229.Search in Google Scholar

Golovko, T., Min, R., Lozovaya, N., Falconer, C., Yatsenko, N., Tsintsadze, T., Tsintsadze, V., Ledent, C., Harvey, R.J., Belelli, D., et al.. (2015). Control of inhibition by the direct action of cannabinoids on GABAA receptors. Cerebr. Cortex 25: 2440–2455, https://doi.org/10.1093/cercor/bhu045.Search in Google Scholar

Hanrahan, J.R., Chebib, M., and Johnston, G.A. (2015). Interactions of flavonoids with ionotropic GABA receptors. Adv. Pharmacol. 72: 189–200.10.1016/bs.apha.2014.10.007Search in Google Scholar

Harvey, R.J., Thomas, P., James, C.H., Wilderspin, A., and Smart, T.G. (1999). Identification of an inhibitory Zn2+ binding site on the human glycine receptor α1 subunit. J. Physiol. 520: 53–64, https://doi.org/10.1111/j.1469-7793.1999.00053.x.Search in Google Scholar

Havsteen, B.H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96: 67–202, https://doi.org/10.1016/s0163-7258(02)00298-x.Search in Google Scholar

Hess, G.P., Cash, D.J., and Aoshima, H. (1980). Kinetic mechanism of acetylcholine receptor-controlled ion flux: flow quench kinetic measurements of acetylcholine-induced flux in membrane vesicles. Neurochem. Int. 2C: 233–242, https://doi.org/10.1016/0197-0186(80)90030-3.Search in Google Scholar

Huang, R.Q. and Dillon, G.H. (2000). Direct inhibition of glycine receptors by genistein, a tyrosine kinase inhibitor. Neuropharmacology 39: 2195–2204, https://doi.org/10.1016/s0028-3908(00)00046-0.Search in Google Scholar

Huang, R.Q., Fang, M.J., and Dillon, G.H. (1999a). The tyrosine kinase inhibitor genistein directly inhibits GABAA receptors. Brain Res. Mol. Brain Res. 67: 177–183, https://doi.org/10.1016/s0169-328x(99)00061-3.Search in Google Scholar

Huang, Y.T., Hwang, J.J., Lee, P.P., Ke, F.C., Huang, J.H., Huang, C.J., Kandaswami, C., Middleton, E.J., and Lee, M.T. (1999b). Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br. J. Pharmacol. 128: 999–1010, https://doi.org/10.1038/sj.bjp.0702879.Search in Google Scholar

Islam, R. and Lynch, J.W. (2012). Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels. Br. J. Pharmacol. 165: 2707–2720, https://doi.org/10.1111/j.1476-5381.2011.01722.x.Search in Google Scholar

Jin, X., Covey, D.F., and Steinbach, J.H. (2009). Kinetic analysis of voltage-dependent potentiation and block of the glycine alpha 3 receptor by a neuroactive steroid analogue. J. Physiol. 587: 981–997, https://doi.org/10.1113/jphysiol.2008.159343.Search in Google Scholar

Karpen, J.W., and Hess, G.P. (1986). Acetylcholine receptor inhibition by d-tubocurarine involves both a competitive and a noncompetitive binding site as determined by stopped-flow measurements of receptor-controlled ion flux in membrane vesicles. Biochemistry 25: 1786–1792, https://doi.org/10.1021/bi00355a050.Search in Google Scholar

Katz, B., and Thesleff, S. (1957). A study of the desensitization produced by acetylcholine at the motor end-plate. J. Physiol. 138: 63–80, https://doi.org/10.1113/jphysiol.1957.sp005838.Search in Google Scholar

Kim, K.C., Choi, E.H., and Lee, C. (2014). Axl receptor tyrosine kinase is a novel target of apigenin for the inhibition of cell proliferation. Int. J. Mol. Med. 34: 592–598, https://doi.org/10.3892/ijmm.2014.1804.Search in Google Scholar

Kuhse, J., Betz, H., and Kirsch, J. (1995). The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr. Opin. Neurobiol. 5: 318–323, https://doi.org/10.1016/0959-4388(95)80044-1.Search in Google Scholar

Labbé, D., Provençal, M., Lamy, S., Boivin, D., Gingras, D., and Béliveau, R. (2009). The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J. Nutr. 139: 646–652.10.3945/jn.108.102616Search in Google Scholar PubMed

Langlhofer, G., and Villmann, C. (2016). The intracellular loop of the glycine receptor: it’s not all about the size. Front. Mol. Neurosci. 9: 41, https://doi.org/10.3389/fnmol.2016.00041.Search in Google Scholar

Lee, B.H., Choi, S.H., Shin, T.J., Pyo, M.K., Hwang, S.H., Lee, S.M., Paik, H.D., Kim, H.C., and Nah, S.Y. (2011a). Effects of quercetin on α9α10 nicotinic acetylcholine receptor-mediated ion currents. Eur. J. Pharmacol. 650: 79–85, https://doi.org/10.1016/j.ejphar.2010.09.079.Search in Google Scholar

Lee, B.H., Jeong, S.M., Lee, J.H., Kim, J.H., Yoon, I.S., Lee, J.H., Choi, S.H., Lee, S.M., Chang, C.G., Kim, H.C., et al.. (2005). Quercetin inhibits the 5-hydroxytryptamine type 3 receptor-mediated ion current by interacting with pre-transmembrane domain I. Mol. Cell. 20: 69–73.Search in Google Scholar

Lee, B.H., Lee, J.H., Yoon, I.S., Lee, J.H., Choi, S.H., Pyo, M.K., Jeong, S.M., Choi, W.S., Shin, T.J., Lee, S.M., et al.. (2007). Human glycine α1 receptor inhibition by quercetin is abolished or inversed by alpha267 mutations in transmembrane domain 2. Brain Res. 1161: 1–10, https://doi.org/10.1016/j.brainres.2007.05.057.Search in Google Scholar

Lee, B.H., Shin, T.J., Hwang, S.H., Choi, S.H., Kang, J., Kim, H.J., Park, C.W., Lee, S.H., and Nah, S.Y. (2011b). Inhibitory effects of quercetin on muscle-type of nicotinic acetylcholine receptor-mediated ion currents expressed in Xenopus oocytes. Korean J. Physiol. Pharmacol. 15: 195–201, https://doi.org/10.4196/kjpp.2011.15.4.195.Search in Google Scholar

Lozovaya, N., Mukhtarov, M., Tsintsadze, T., Ledent, C., Burnashev, N., and Bregestovski, P. (2011). Frequency-dependent cannabinoid receptor-independent modulation of glycine receptors by endocannabinoid 2-AG. Front. Mol. Neurosci. 4: 13, https://doi.org/10.3389/fnmol.2011.00013.Search in Google Scholar

Lynagh, T., Webb, T.I., Dixon, C.L., Cromer, B.A., and Lynch, J.W. (2011). Molecular determinants of ivermectin sensitivity at the glycine receptor chloride channel. J. Biol. Chem. 286: 43913–43924, https://doi.org/10.1074/jbc.m111.262634.Search in Google Scholar

Madunić, J., Madunić, I.V., Gajski, G., Popić, J., and Garaj-Vrhovac, V. (2018). Apigenin: a dietary flavonoid with diverse anticancer properties. Canc. Lett. 413: 11–22, https://doi.org/10.1016/j.canlet.2017.10.041.Search in Google Scholar

Maksay, G., Laube, B., Schemm, R., Grudzinska, J., Drwal, M., and Betz, H. (2009). Different binding modes of tropeines mediating inhibition and potentiation of α1 glycine receptors. J. Neurochem. 109: 1725–1732, https://doi.org/10.1111/j.1471-4159.2009.06083.x.Search in Google Scholar

Malosio, M.L., Grenningloh, G., Kuhse, J., Schmieden, V., Schmitt, B., Prior, P., and Betz, H. (1991). Alternative splicing generates two variants of the α1 subunit of the inhibitory glycine receptor. J. Biol. Chem. 266: 2048–2053, https://doi.org/10.1016/s0021-9258(18)52207-9.Search in Google Scholar

Mascia, M.P., Wick, M.J., Martinez, L.D., and Harris, R.A. (1998). Enhancement of glycine receptor function by ethanol: role of phosphorylation. Br. J. Pharmacol. 125: 263–270, https://doi.org/10.1038/sj.bjp.0702054.Search in Google Scholar

Matzenbach, B., Maulet, Y., Sefton, L., Courtier, B., Avner, P., Guenet, J.L., and Betz, H. (1994). Structural analysis of mouse glycine receptor α subunit genes. Identification and chromosomal localization of a novel variant. J. Biol. Chem. 269: 2607–2612, https://doi.org/10.1016/s0021-9258(17)41987-9.Search in Google Scholar

Meier, J., Juttner, R., Kirischuk, S., and Grantyn, R. (2002). Synaptic anchoring of glycine receptors in developing collicular neurons under control of metabotropic glutamate receptor activity. Mol. Cell. Neurosci. 21: 324–340, https://doi.org/10.1006/mcne.2002.1161.Search in Google Scholar

Miller, P.S., Beato, M., Harvey, R.J., and Smart, T.G. (2005). Molecular determinants of glycine receptor alphabeta subunit sensitivities to Zn2+-mediated inhibition. J. Physiol. 566: 657–670, https://doi.org/10.1113/jphysiol.2005.088575.Search in Google Scholar

Morrow, A.L., Pace, J.R., Purdy, R.H., and Paul, S.M. (1990). Characterization of steroid interactions with gamma-aminobutyric acid receptor-gated chloride ion channels: evidence for multiple steroid recognition sites. Mol. Pharmacol. 37: 263–270.Search in Google Scholar

Ong, J., Kerr, D.I., and Johnston, G.A. (1987). Cortisol: a potent biphasic modulator at GABAA-receptor complexes in the Guinea pig isolated ileum. Neurosci. Lett. 82: 101–106, https://doi.org/10.1016/0304-3940(87)90178-9.Search in Google Scholar

Pribilla, I., Takagi, T., Langosch, D., Bormann, J., and Betz, H. (1992). The atypical M2 segment of the beta subunit confers picrotoxinin resistance to inhibitory glycine receptor channels. EMBO J. 11: 4305–4311, https://doi.org/10.1002/j.1460-2075.1992.tb05529.x.Search in Google Scholar

Putteeraj, M., Lim, W.L., Teoh, S.L., and Yahaya, M.F. (2018). Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr. Drug Targets 19: 1710–1720, https://doi.org/10.2174/1389450119666180326125252.Search in Google Scholar

Raafat, K., Breitinger, U., Mahran, L., Ayoub, N., and Breitinger, H.G. (2010). Synergistic inhibition of glycinergic transmission in vitro and in vivo by flavonoids and strychnine. Toxicol. Sci. 118: 171–182, https://doi.org/10.1093/toxsci/kfq245.Search in Google Scholar

Rengarajan, T. and Yaacob, N.S. (2016). The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur. J. Pharmacol. 789: 8–16, https://doi.org/10.1016/j.ejphar.2016.07.001.Search in Google Scholar

Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S., and Russo, G.L. (2012). The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem. Pharmacol. 83: 6–15, https://doi.org/10.1016/j.bcp.2011.08.010.Search in Google Scholar

Shan, Q., Haddrill, J.L., and Lynch, J.W. (2001). Ivermectin, an unconventional agonist of the glycine receptor chloride channel. J. Biol. Chem. 276: 12556–12564, https://doi.org/10.1074/jbc.m011264200.Search in Google Scholar

Sigel, E. and Baur, R. (1988). Allosteric modulation by benzodiazepine receptor ligands of the GABAA receptor channel expressed in Xenopus oocytes. J. Neurosci. 8: 289–295, https://doi.org/10.1523/jneurosci.08-01-00289.1988.Search in Google Scholar

Sontheimer, H., Becker, C.-M., Pritchett, D.B., Schofield, P.R., Grenningloh, G., Kettenmann, H., Betz, H., and Seeburg, P.H. (1989). Functional chloride channels by mammalian cell expression of rat glycine receptor subunit. Neuron 2: 1491–1497, https://doi.org/10.1016/0896-6273(89)90195-5.Search in Google Scholar

Sun, H., Cheng, X.P., You-Ye, Z., Jiang, P., and Zhou, J.N. (2007). Quercetin subunit specifically reduces GlyR-mediated current in rat hippocampal neurons. Neuroscience 148: 548–559, https://doi.org/10.1016/j.neuroscience.2007.06.007.Search in Google Scholar

Sureda, A., Xavier, C., and Tejada, S. (2017). Neuroprotective effects of flavonoid compounds on neuronal death associated to Alzheimer`s disease. Curr. Med. Chem, https://doi.org/10.2174/0929867325666171226103237.Search in Google Scholar

Wang, F., Shing, M., Huen, Y., Tsang, S.Y., and Xue, H. (2005). Neuroactive flavonoids interacting with GABAA receptor complex. Curr. Drug Targets - CNS Neurol. Disord. 4: 575–585, https://doi.org/10.2174/156800705774322030.Search in Google Scholar

Wasowski, C. and Marder, M. (2012). Flavonoids as GABAA receptor ligands: the whole story? J. Exp. Pharmacol. 4: 9–24, https://doi.org/10.2147/JEP.S23105.Search in Google Scholar

Welsh, B.T., Kirson, D., Allen, H.M., and Mihic, S.J. (2010). Ethanol enhances taurine-activated glycine receptor function. Alcohol Clin. Exp. Res. 34: 1634–1639, https://doi.org/10.1111/j.1530-0277.2010.01249.x.Search in Google Scholar

Yang, Z., Cromer, B.A., Harvey, R.J., Parker, M.W., and Lynch, J.W. (2007). A proposed structural basis for picrotoxinin and picrotin binding in the glycine receptor pore. J. Neurochem. 103: 580–589, https://doi.org/10.1111/j.1471-4159.2007.04850.x.Search in Google Scholar

Ye, Q., Koltchine, V.V., Mihic, S.J., Mascia, M.P., Wick, M.J., Finn, S.E., Harrison, N.L., and Harris, R.A. (1998). Enhancement of glycine receptor function by ethanol is inversely correlated with molecular volume at position alpha267. J. Biol. Chem. 273: 3314–3319, https://doi.org/10.1074/jbc.273.6.3314.Search in Google Scholar

Yévenes, G.E. and Zeilhofer, H.U. (2011). Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids. PloS One 6: e23886, https://doi.org/10.1371/journal.pone.0023886.Search in Google Scholar

Zemkova, H., Tvrdonova, V., Bhattacharya, A., and Jindrichova, M. (2014). Allosteric modulation of ligand gated ion channels by ivermectin. Physiol. Res. 63: S215–S224, https://doi.org/10.33549/physiolres.932711.Search in Google Scholar

Zhu, L., Jiang, Z.L., Krnjević, K., Wang, F.S., and Ye, J.H. (2003). Genistein directly blocks glycine receptors of rat neurons freshly isolated from the ventral tegmental area. Neuropharmacology 45: 270–280, https://doi.org/10.1016/s0028-3908(03)00151-5.Search in Google Scholar

Received: 2020-11-10
Accepted: 2021-03-09
Published Online: 2021-03-23
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.6.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2020-0360/html
Scroll to top button