Skip to main content
Log in

Effect of Carbonate on Desilication of Sodium Aluminate Solution at High Temperature

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Carbonate is the main anionic impurity in alumina produced by the Bayer process. The phase composition, morphology, and precipitation activity of desilication products (DSPs) precipitated at 245°C in sodium aluminate solution with different carbonate concentrations have been investigated by x-ray diffraction (XRD) and scanning electron microscopy–energy-dispersive x-ray spectroscopy (SEM–EDS) methods. The crystalline DSPs without carbonate are composed of zeolite, sodalite, and hydroxy-sodalite, but only zeolite and cancrinite precipitate in the presence of carbonate. Increasing the carbonate concentration promotes the precipitation of cancrinite but reduces the crystallinity of various DSPs. The cell parameters and the Na2O/Al2O3 ratios of DSPs are significantly increased because of the entry of sodium carbonate during crystallization, especially for the cancrinite. The morphology of various DSPs is greatly changed by the carbonate. The amorphous phase content and precipitation activity of DSPs increase with increasing carbonate concentration. This contributes to the effective removal of carbonate from sodium aluminate solution by controlling the desilication process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Greg, S.C.L. Joanne, and V. Chris, Hydrometallurgy 127, 125. (2012).

    Google Scholar 

  2. P.J. The, and J.F. Bush, Light Met., 5 (1987).

  3. M. Mahmoudian, A. Ghaemi, and S. Shahhosseini, Hydrometallurgy 154, 137. (2015).

    Article  Google Scholar 

  4. H. Peng, M.L. Ding, and J. Vaughan, Ind. Eng. Chem. Res. 57, 1048. (2018).

    Article  Google Scholar 

  5. V. John, S. Talitha, H. Peng, and V. James, Hydrometallurgy 192, 105236. (2020).

    Article  Google Scholar 

  6. I.A. Fabian, and S. Jafar Safarian, Hydrometallurgy 195, 105388. (2020).

    Article  Google Scholar 

  7. L. Wang, Y. Lu, P. Mao, and J.W. Wang, Light Met., 19 (2012).

  8. X.L. Pan, H.Y. Yu, G.F. Tu, and S.W. Bi, Hydrometallurgy 165, 261. (2016).

    Article  Google Scholar 

  9. B. Whittington, and T. Fallows, Hydrometallurgy 45, 289. (1997).

    Article  Google Scholar 

  10. P. Smith, R. Pennifold, T. Lwin, and A. Kane, Light Met., 5 (2001).

  11. F.Q. Gu, G.H. Li, Z.W. Peng, J. Luo, B.N. Deng, M.G. Rao, Y.B. Zhang, and T. Jiang, JOM 70, 1893. (2018).

    Article  Google Scholar 

  12. K.L. Zheng, A.R. Gerson, A.M. Jonas, and R.S.C. Smart, J Cryst Growth. 171, 197. (1997).

    Article  Google Scholar 

  13. B.L. Whittington, B.L. Fletcher, and C. Talbot, Hydrometallurgy 49, 1. (1998).

    Article  Google Scholar 

  14. X.B. Li, D.F. Zhao, S.S. Yang, D.Q. Wang, Q.S. Zhou, and G.H. Liu, Trans. Nonferrous Met. Soc. China. 24, 3348. (2014).

    Article  Google Scholar 

  15. J. Vaughan, H. Peng, D. Seneviratne, H. Hodge, W. Hawker, P. Hayes, and W. Staker, JOM 71, 2928. (2019).

    Article  Google Scholar 

  16. K. Hackbarth, T.M. Gesing, M. Fechtelkord, F. Stief, and J.C. Buhl, Microporous Mesoporous Mater. 200, 451. (1999).

    Google Scholar 

  17. M.C. Barnes, J. Addai-Mensah, and A.R. Gerson, Colloids Surf. A. 147, 283. (1999).

    Article  Google Scholar 

  18. X.F. Kong, Y. Guo, X.S. Guo, W. Hartley, C. Wu, Y.Z. Ye, and Q.Y. Cheng, J. Clean. Prod. 143, 224. (2017).

    Article  Google Scholar 

  19. X.L. Pan, H.F. Wu, H.Y. Yu, and S.W. Bi, Hydrometallurgy 197, 105469. (2020).

    Article  Google Scholar 

  20. X.L. Pan, H.Y. Yu, and G.F. Tu, Hydrometallurgy 151, 98. (2015).

    Article  Google Scholar 

  21. T. Jiang, X.L. Pan, Y. Wu, H.Y. Yu, and G.F. Tu, Trans. Nonferrous Met. Soc. China. 28, 367. (2018).

    Article  Google Scholar 

  22. Y.J. Wang, H.L. Li, C.J. Pang, and Y.C. Zhai, Chin. J. Process. Eng. 11, 239. (2011).

    Google Scholar 

  23. T. Jiang, X.L. Pan, Y. Wu, H.Y. Yu, G.F. Tu, and S.W. Bi, Light Met., 14 (2016).

Download references

Acknowledgements

The authors greatly appreciate the financial project supports from the National Natural Science Foundation of China (Nos. 51774079, 22078055, and 51104041) and the Fundamental Research Funds for the Central Universities, China (No. N182508026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Pan, X., Yu, H. et al. Effect of Carbonate on Desilication of Sodium Aluminate Solution at High Temperature. JOM 73, 1180–1187 (2021). https://doi.org/10.1007/s11837-021-04568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04568-3

Navigation