Skip to main content
Log in

New Version of the KTM Lithium Divertor

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

At present, the Kazakhstan Tokamak for Material testing (KTM) project is in progress. The optimization of innovative design elements of the divertor is carried out at the KTM, in addition to studying materials applied for fusion technologies. The design of the lithium divertor module based on lithium capillary porous systems has been developed and tested successfully in real tokamak conditions. In this design, the problem of removing high-density heat flows is solved by using liquid metal coolant based on the Na–K eutectic alloy. The requirements for the improved safety and the divertor design compatibility with other in-vessel water-cooled elements of the tokamak and temperature limitation of the receiving lithium surface to the level <600°C at the heat flows of 10–20 MW/m2 stipulated a new design solution of the divertor experimental module and the use of a totally new coolant—water flow dispersed with gas (gas-water spray). In the paper, the design solutions of the new version of the module, the coolant parameters, and the cooling system layout are described and substantiated. The experimental results on determining the heat transfer coefficient of the coolant based on gas-water spray are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. E. A. Azizov, O. I. Buzhinskij, G. G. Gladush, V.   N.   Dokouka, I. A. Kovan, Yu. M. Semenets, R.  Khayrutdinov, V. A. Yagnov, E. P. Velikhov, V.  A. Glukhikh, V. Krilov, A. Mineev, O. G. Filatov, N. Ya. Dvorkin, I. N. Leikin, et al., Fusion Eng. Des. 56–57, 831 (2001).

    Google Scholar 

  2. E. A. Azizov, V. N. Dokuka, V. Shestakov, V. Shkolnik, I. Tazibayeva, E. Velikhov, et al., Plasma Dev. Operat. 11, 39 (2003).

    Article  Google Scholar 

  3. I. L. Tazhibayeva, E. A. Azizov, V. A. Krylov, V. S. Shkolnik, E. P. Velikhov, N. A. Obysov, Sh. T. Tukhvatulin, L. N. Tikhomirov, V. P. Shestakov, and O. G. Filatov, Fusion Sci. Technol. 47, 746 (2005).

    Article  Google Scholar 

  4. E. A. Azizov, E. P. Velikhov, I. L. Tazhibaeva, V. S. Shkol’nik, et al., KTM Kazakhstan Material Science Tokamak and Issues of Controlled Thermonuclear Fusion (Glory K, Almaty, 2006) [in Russian].

    Google Scholar 

  5. I. Tazhibayeva, I. Lyublinski, A. Vertkov, V. Lazarev, A. Azizov, G. Mazzitelli, and P. Agostini, Fusion Sci. Technol. 60, 554 (2011).

    Article  Google Scholar 

  6. I. Lyublinski, A. Vertkov, V. Evtikhin, V. Balakirev, D.  Ionov, M. Zharkov, I. Tazhibayeva, S. Mirnov, S. Khomiakov, D. Mitin, G. Mazzitelli, and P. Agostini, Fusion Eng. Des. 87, 1719 (2012).

    Article  Google Scholar 

  7. I. Lyublinski, A. Vertkov, I. Tazhibayeva, G. Shapovalov, T. Kulsartov, V. Dyachenko, V. Lazarev, A. Azizov, G. Mazzitelli, and P. Agostini, Fusion Eng. Des. 88, 1862 (2013).

    Article  Google Scholar 

  8. I. Lyublinski, A. Vertkov, S. Mirnov, and V. Lazarev, J. Nucl. Mater. 463, 1156 (2015). https://doi.org/10.1016/j.nucmat.2014.12.017

    Article  ADS  Google Scholar 

  9. I. E. Lyublinski, V. A. Evtikhin, A. V. Vertkov, N. I. Ezhov, and V. M. Shcerbakov, Fusion Eng. Des. 75–79, 1071 (2013).

    Google Scholar 

  10. T. W. Morgan, V. Kvon, P. Rindt, et al., Plasma Phys. Control. Fussion 60, 014025 (2018). https://doi.org/10.1088/1361-6587/aa86cd

    Article  ADS  Google Scholar 

  11. A. Vertkov, I. Lyublinski, G. Mazzitelli, et al., Fusion Eng. Des. 117, 130 (2017). https://doi.org/10.1016/j.fusengdes.2017.01.041

    Article  Google Scholar 

  12. I. E. Lyublinski, S. V. Mirnov, A. T. Komov, et al., J. Phys.: Conf. Ser. 891, 012152 (2017).

    Google Scholar 

  13. A. V. Vertkov, I. E. Lyublinskii, A. T. Komov, et al., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 41 (1), 57 (2018).

    Google Scholar 

  14. S. V. Mirnov, A. T. Komov, A. N. Varava, et al., J. Phys.: Conf. Ser. 1128, 012128 (2018).

    Google Scholar 

  15. A. Vertkov and I. Lyublinski, Phys. At. Nucl. 81, 1000 (2018).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. RFMEFI58519X0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vertkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vertkov, A.V., Zharkov, M.Y., Lyublinski, I.E. et al. New Version of the KTM Lithium Divertor. Phys. Atom. Nuclei 83, 1116–1123 (2020). https://doi.org/10.1134/S1063778820070121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820070121

Keywords:

Navigation