Skip to main content

Advertisement

Log in

Using the characteristics of rootless cone deposits to estimate the energetics of explosive lava–water interactions

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

During volcanic eruptions, the interaction of magma and groundwater can produce thermohydraulic explosions capable of significantly increasing the eruption energy. The most well-known mechanism by which explosive magma–water interactions occur, molten fuel–coolant interaction (MFCI), is a complex series of macro- and microscale processes which have been simulated using laboratory-scale experiments. As a natural analog for MFCI experiments, we utilize rootless cone beds formed by lava–water explosions to estimate explosion energy. The specific mechanical energy of the lava–water explosions studied here occurs over a broader range (4 to 178 kJ/kg) than MFCI experiments and includes estimates for the highest-energy lava–water explosions studied to date. Explosion energy is partitioned similarly over the two systems, with kinetic transport and fragmentation energy making up 25–40% and 42–80% of the mechanical energy, respectively, which overlap the ranges estimated for MFCI experiments. Our study of lava–water explosions therefore provides a field-scale analog of MFCI laboratory experiments for understanding the energetics, and therefore hazards, of MFCI in natural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Austin-Erickson A, Büttner R, Dellino P, Ort MH, Zimanowski B (2008) Phreatomagmatic explosions of rhyolitic magma experimental and field evidence. J Geophys Res Solid Earth 113(B11). https://doi.org/10.1029/2008JB005731

  • Büttner R, Zimanowski B (1998) Physics of thermohydraulic explosions. Phys Rev E 57(5):5726–5729

    Article  Google Scholar 

  • Büttner R, Zimanowski B, Blumm J, Hagemann L (1998) Thermal conductivity of a volcanic rock material (olivine-melilitite) in the temperature range between 288 and 1470 K. J Volcanol Geotherm Res 80(3–4):293–302

    Article  Google Scholar 

  • Büttner R, Dellino P, Zimanowski B (1999) Identifying magma–water interaction from the surface features of ash particles. Nature 401(6754):688–690

    Article  Google Scholar 

  • Büttner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from molten fuel coolant interaction experiments. J Geophys Res Solid Earth 107(B11):5–14

    Article  Google Scholar 

  • Büttner R, Zimanowski B, Mohrholz C-O, Kümmel R (2005) Analysis of thermohydraulic explosion energetics. J Appl Phys 98(4):043524. https://doi.org/10.1063/1.2033149

    Article  Google Scholar 

  • Büttner R, Dellino P, Raue H, Sonder I, Zimanowski B (2006) Stress-induced brittle fragmentation of magmatic melts theory and experiments. J Geophys Res Solid Earth 111(B8). https://doi.org/10.1029/2005JB003958

  • Davies T, McSaveney M (2002) Dynamic simulation of the motion of fragmenting rock avalanches. Can Geotech J 39(4):789–798

    Article  Google Scholar 

  • Dürig T, Dioguardi F, Büttner R, Dellino P, Mele D, Zimanowski B (2012a) A new method for the determination of the specific kinetic energy (SKE) released to pyroclastic particles at magmatic fragmentation: theory and first experimental results. Bull Volcanol 74(4):895–902

    Article  Google Scholar 

  • Dürig T, Sonder I, Zimanowski B, Beyrichen H, Büttner R (2012b) Generation of volcanic ash by basaltic volcanism. J Geophys Res Solid Earth 117(B1). https://doi.org/10.1029/2011JB008628

  • Dürig T, Gudmundsson MT, Dellino P (2015) Reconstruction of the geometry of volcanic vents by trajectory tracking of fast ejecta-the case of the Eyjafjallajökull 2010 eruption (Iceland). Earth Planets Space 67(1):1–8

    Article  Google Scholar 

  • Dürig T, White JDL, Murch AP, Zimanowski B, Büttner R, Mele D, Dellino P, Carey RJ, Schmidt LS, Spitznagel N (2020) Deep-sea eruptions boosted by induced fuel–coolant explosions. Nat Geosci 13(7):498–503

    Article  Google Scholar 

  • Ersoy O (2010) Surface area and volume measurements of volcanic ash particles by SEM stereoscopic imaging. J Volcanol Geotherm Res 190:290–296

    Article  Google Scholar 

  • Fagents SA, Thordarson T (2007) Rootless volcanic cones in Iceland and on Mars. In: Chapman MG (ed) The geology of Mars: evidence from Earth-based analog. Cambridge University Press, Cambridge, pp 151–177

    Chapter  Google Scholar 

  • Fagents S, Wilson L (1993) Explosive volcanic eruptions—VII. The ranges of pyroclasts ejected in transient volcanic explosions. Geophys J Int 113(2):359–370

    Article  Google Scholar 

  • Fagents S, Lanagan P, Greeley R (2002) Rootless cones on Mars: a consequence of lava-ground ice interaction. Geol Soc Lond, Spec Publ 202(1):295–317

    Article  Google Scholar 

  • Fitch EP, Fagents SA (2020) Characteristics of rootless tephra emplaced by high-energy lava–water explosions. Bull Volcanol 82(8):1–16

    Article  Google Scholar 

  • Fitch EP, Fagents SA, Thordarson T, Hamilton CW (2017) Fragmentation mechanisms associated with explosive lava–water interactions in a lacustrine environment. Bulletin of Volcanology 79(1)

  • Gansecki C, Hon K, Johnson J, Kjargaard J (2016) 2016 eruption update at Kīlauea volcano. In: Kīlauea Update Series. Volcano Video Productions, Hilo

    Google Scholar 

  • Grady D (2008) Fragment size distributions from the dynamic fragmentation of brittle solids. Int J Impact Eng 35(12):1557–1562

    Article  Google Scholar 

  • Graettinger AH, Valentine GA (2017) Evidence for the relative depths and energies of phreatomagmatic explosions recorded in tephra rings. Bull Volcanol 79(88). https://doi.org/10.1007/s00445-017-1177

  • Greeley R, Fagents SA (2001) Icelandic pseudocraters as analogs to some volcanic cones on Mars. J Geophys Res 106(E9):20527–20546

    Article  Google Scholar 

  • Hamilton CW, Fitch EP, Fagents SA, Thordarson T (2017) Rootless tephra stratigraphy and emplacement processes. Bulletin of Volcanology 79(1)

  • Heiken G, Wohletz K (1985) Volcanic ash. University Press, California, Chicago, Harvard & MIT

  • Krech W (1974) The energy balance theory and rock fracture energy measurements for uniaxial tension. In: Advances in rock mechanics, proceedings, 3rd international symposium on rock mechanics, Congress, Denver: 167–173

  • Mastin LG (2001) A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. U.S. Geological Survey Open-File Report 01–45: https://pubs.usgs.gov/of/2001/0045/

  • Mattox TN, Mangan MT (1997) Littoral hydrovolcanic explosions: a case study of lava–seawater interaction at Kilauea volcano. J Volcanol Geotherm Res 75(1–2):1–17

    Article  Google Scholar 

  • Németh K, Kósik S (2020) Review of explosive hydrovolcanism. Geosciences 10(2):44

    Article  Google Scholar 

  • Proud WG (2016) The fundamentals of blast physics. In: Bull AMJ, Clasper J, Mahone PF (eds) Blast Injury Science and Engineering: A Guide for Clinicians and Researchers. Springer, Cham pp 3–16

  • Sanchidrian JA, Segarra P, Lopez LM (2007) Energy components in rock blasting. Int J Rock Mech Min Sci 44(1):130–147

    Article  Google Scholar 

  • Sharon E, Gross SP, Fineberg J (1996) Energy dissipation in dynamic fracture. Phys Rev Lett 76(12):2117–2120

    Article  Google Scholar 

  • Sheridan MF, Wohletz KH (1981) Hydrovolcanic explosions: the systematics of water-pyroclast equilibration. Science 212(4501):1387–1389

    Article  Google Scholar 

  • Siebert L, Simkin T, Kimberly P (2011) Volcanoes of the world. Univ. of California Press, Berkeley and Los Angeles, CA

  • Sottili G, Taddeucci J, Palladino DM, Gaeta M, Scarlato P, Ventura G (2009) Sub-surface dynamics and eruptive styles of maars in the Colli Albani Volcanic District, Central Italy. J Volcanol Geotherm Res 180(2–4):89–202

    Google Scholar 

  • Spitznagel N, Dürig T, Zimanowski B (2013) Trigger-and heat-transfer times measured during experimental molten-fuel-interactions. AIP Adv 3(10):102126

    Article  Google Scholar 

  • Taddeucci J, Sottili G, Palladino DM, Ventura G, Scarlato P (2010) A note on maar eruption energetics: current models and their application. Bull Volcanol 72(1):75–83

    Article  Google Scholar 

  • Valentine GA, Graettinger AH, Sonder I (2014) Explosion depths for phreatomagmatic eruptions. Geophys Res Lett 41(9):3045–3051

    Article  Google Scholar 

  • Wilson L (1972) Explosive volcanic eruptions-II the atmospheric trajectories of pyroclasts. Geophys J R Astron Soc 30(4):381–392

    Article  Google Scholar 

  • Wohletz KH (1983) Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. J Volcanol Geotherm Res 17(1–4):31–63

    Article  Google Scholar 

  • Wohletz KH (1986) Explosive magma–water interactions: thermodynamics, explosion mechanisms, and field studies. Bull Volcanol 48(5):245–264

    Article  Google Scholar 

  • Wohletz KH, McQueen RG (1984) Experimental studies of hydromagmatic volcanism. In: Wohletz KH, McQueen RG, Boyd FR (eds) Explosive volcanism: inception, evolution, and hazards. National Academy Press, Washington DC, pp 158–169

  • Wohletz KH, McQueen R, Morrissey M (1995) Experimental study of hydrovolcanism by fuel-coolant interaction analogs. NSF/JSPS AMIGO-IMI Seminar, Santa Barbara

    Google Scholar 

  • Wohletz KH, Zimanowski B, Büttner R (2013) Magma–water interactions. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes. Cambridge University Press, New York, pp 230–257

    Chapter  Google Scholar 

  • Yokoo A, Taniguchi H, Goto A, Oshima H (2002) Energy and depth of Usu 2000 phreatic explosions. Geophys Res Lett 29(24):48–41

    Article  Google Scholar 

  • Zimanowski B (2001) Phreatomagmatic explosions. In: Freundt A, Rosi M (eds) From Magma to Tephra: Modeling Physical Processes of Explosive Volcanic Eruptions, Developments in Volcanology 4. Elsevier Science B.V., Amsterdam, p 336

    Google Scholar 

  • Zimanowski B, Büttner R, Lorenz V, Häfele H-G (1997) Fragmentation of basaltic melt in the course of explosive volcanism. J Geophys Res Solid Earth 102(B1):803–814

    Article  Google Scholar 

  • Zimanowski B, Wohletz K, Dellino P, Büttner R (2003) The volcanic ash problem. J Volcanol Geotherm Res 122(1):1–5

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Dellino P, White JDL, Wohletz KH (2015) Magma–water interaction and phreatomagmatic fragmentation. In: Houghton B, McNutt S, Rymer H, Stix J (eds) Sigurdsson H. Elsevier, Encyclopedia of Volcanoes, pp 473–484

    Google Scholar 

Download references

Acknowledgments

This work was improved by discussions with Scott Rowland and Thorvaldur Thordarson and was supported by the University of Hawai‘i Bullard Fellowship. We are grateful to the Journal reviewers Alison Graettinger and Tobias Dürig, and associate editor Pierre-Simon Ross, for their thorough reviews of the manuscript. This work constitutes HIGP publication number 2435 and SOEST publication number 11197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin P. Fitch.

Additional information

Editorial responsibility: P-S. Ross; Deputy Executive Editor: J. Tadeucci

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitch, E.P., Fagents, S.A. Using the characteristics of rootless cone deposits to estimate the energetics of explosive lava–water interactions. Bull Volcanol 82, 83 (2020). https://doi.org/10.1007/s00445-020-01422-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-01422-3

Keywords

Navigation