Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-28T07:28:10.626Z Has data issue: false hasContentIssue false

Morphological, Chemical, and Isotopic Evidence for an Early Diagenetic Evolution of Detrital Smectite in Marine Sediments

Published online by Cambridge University Press:  02 April 2024

Norbert Clauer
Affiliation:
Centre de Géochimie de la Surface, 67084 Strasbourg, France
James R. O'Neil
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109
Chantal Bonnot-Courtois
Affiliation:
Laboratoire de Géomorphologie, 35800 Dinard, France
Thierry Holtzapffel
Affiliation:
Laboratoire de Géologie, Université d'Angers, 49045 Angers, France

Abstract

Mineralogical (XRD), morphological (transmission electron microscopy), chemical (major, rare-earth elements, and scanning-transmission electron microscopy), and isotope (Sr, O, H) measurements were made of marine detrital smectite from shales to study their reactions during early diagenesis. Albian, Aptian, and Palaeogene smectite samples were selected from Deep Sea Drilling Project drill cores taken in the Atlantic Ocean and from outcrops and drill cores from Belgium and northern France. Detrital, fake-like smectite particles seem to have adapted to their depositional environment by isochemical dissolution and subsequent crystallization of authigenic, lath-like particles. The major-element and rare-earth element compositions of both types of particles are similar. The Sr isotope chemistry suggests that the dissolution-crystallization process occurred soon after deposition in an almost closed chemical system. Except for slight changes in the amount of Fe and the oxygen isotope composition, the reaction took place without noticeable chemical exchange with the interstitial or marine environment. Such closed-system recrystallization of clay minerals may be a common diagenetic process if the water/rock ratio is small, as in shales.

Résumé

Résumé

Une étude minéralogique (diffraction des rayons X), morphologique (éléments majeurs et terres rares, microsonde électronique et microscope électronique à balayage et à transmission), et isotopique (Sr, O, H) a été réalisée sur des smectites-détritiques marines d'argilites pour éxaminer leur évolution diagénétique précoce. Des échantillons albo-aptiens et paléogènes ont sélectionnés de carottes de forages DSDP de l'Océan Atlantique et d'affleurements et de carottes de sondages du nord de la France et de la Belgique.

Les particules de smectites détritiques ont une forme de flocons, et semblent s'adapter à leur environnement de dépôt par dissolution isochimique et cristallisation de lattes authigènes. Les compositions chimiques en éléments majeurs et en terres rares sont très voisines dans les deux types de particules. La géochimie isotopique du Sr suggère que le processus de dissolution-cristallisation a eu lieu rapidement après la sédimentation dans un système chimique pratiquement fermé. A part quelques modifications mineures dans les teneurs en Fe et les compositions isotopiques de l'oxygène, la réaction a eu lieu sans intervention chimique visible de l'environnement interstitiel ou marin. Un tel phénomène de recristallisation des minéraux argileux dans un système chimique clos pourrait être un mécanisme diagénétique commun quand le rapport eau/roche est faible comme c'est le cas dans les shales.

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, M. A. et al. , Sibuet, J. C. and Ryan, W. B. F. 1979 et al. , North Atlantic Cretaceous black-shales: The record at site 398 and a brief comparison with other occurrences Initial Reports of the Deep Sea Drilling Project, 47, Part 2 Washington, D.C. U.S. Gov. Print. Office 719751.Google Scholar
Bernat, M., 1973 Les terres rares dans le milieu marin France Univ. Paris VI, Paris 125.Google Scholar
Biscaye, P., 1965 Mineralogy of Recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans Geol. Soc. Amer. Bull. 76 803832.CrossRefGoogle Scholar
Bofinger, V. M., Compston, W. and Vernon, M. J., 1968 The application of acid leaching to the Rb-Sr dating of a Middle Ordovician shale Geochim. Cosmochim. Acta 32 823833.CrossRefGoogle Scholar
Bonnot-Courtois, C., 1981 Géochimie des terres rares dans les principaux milieux de formation et de sédimentation des argiles France Univ. Orsay, Orsay.Google Scholar
Chamley, H., 1979 North Atlantic clay sedimentation since the Late Jurassic 2nd Ewing Symposium New York Amer. Geophysical Union Publication 342361.Google Scholar
Chamley, H. and Bonnot-Courtois, C., 1981 Argiles terrigènes et authigènes de l’Atlantique et du Pacifique NW (Leg II et 58 DSDP): Apport des terres rares Oceanol. Acta 4 229238.Google Scholar
Chamley, H. and Debrabant, P., 1982 L’Atlantique Nord à l’Albien: Influences américaines et africaines sur la sédimentation C.R. Acad. Sci., Paris 294D 525528.Google Scholar
Chamley, H., Debrabant, P., Candillier, A. M., Foulon, J., Sheridan, R. E. and Gradstein, R. M., 1983 Clay mineralogical and inorganic geochemical stratigraphy of Blake-Bahama Basin since the Callovian, site 534 Deep Sea Drilling Project leg 76 Initial Reports of the Deep Sea Drilling Project, 76 Washington, D.C. U.S. Gov. Print. Office 437542.Google Scholar
Clauer, N. (1976) Géochimie isotopique du strontium des milieux sédimentaires. Application à la géochronologie de la couverture du craton ouest-africain: Mém. Sci. Géol., Strasbourg 45, 256 pp.Google Scholar
Clauer, N., 1979 Relationship between the isotopic composition of strontium in newly formed continental clay minerals and their source material Chem. Geol. 27 115124.CrossRefGoogle Scholar
Clauer, N., 1982 Strontium isotopes of Tertiary phillipsites from the southern Pacific. Timing of the chemical evolution J. Sed. Petrol. 52 10031009.Google Scholar
Clauer, N., Chaudhuri, S. and Massey, K. W., 1986 Relationship between clay minerals and environment by the Sr isotopic composition of their leachates Abstracts with Programs, Annual Meeting Geol. Soc. Amer., San Antonio, Texas 565566.Google Scholar
Clauer, N., Giblin, P. and Lucas, J., 1984 Sr and Ar isotope studies of detrital smectites from the Atlantic Ocean (DSDP legs 43, 48, and 50) Isot. Geosc. 2 141151.Google Scholar
Clauer, N. and Hoffert, M., 1985 Sr isotopic constraints for the sedimentation rate of deep sea red clays in the Southern Pacific Ocean The Chronology of the Geological Record 10 290296.Google Scholar
Clauer, N., Hoffert, M. and Karpoff, A. M., 1982 The Rb-Sr isotope system as an index of origin and diagenetic evolution of southern Pacific red clays Geochim. Cosmochim. Acta 46 26592664.CrossRefGoogle Scholar
Cool, T., 1982 Sedimentological evidence concerning the paleooceanography of the Cretaceous western North Atlantic Ocean Paleogeogr. Paleoclim. Paleoecol. 39 135.CrossRefGoogle Scholar
Courtois, C. and Chamley, H., 1978 Terres rares et minéraux argileux dans le Crétacé et le Cénozoique de la marge atlantique orientale C.R. Acad. Sci., Paris 286D 671674.Google Scholar
Courtois, C. and Hoffert, M., 1977 Distribution des terres rares dans les sédiments du Pacifique Sud-Est Bull. Soc. Géol. Fr. 7 12451251.CrossRefGoogle Scholar
Dasch, E. J., 1969 Strontium isotopes in weathering profiles, deep-sea sediments and sedimentary rocks Geochim. Cosmochim. Acta 33 15211552.CrossRefGoogle Scholar
Desprairies, A., Bonnot-Courtois, C., Jehanno, C., Vemhet, S., Joron, J. L., Roberts, D. G. and Schnitker, D., 1984 Mineralogy and geochemistry of alteration products in leg 81 Initial Reports of the Deep Sea Drilling Project, 81 Washington, D.C. U.S. Gov. Print. Office 733742.Google Scholar
Eslinger, E. V. and Savin, S. M., 1973 Oxygen isotope geothermometry of the burial metamorphic rocks of the Precambrian Belt Supergroup, Glacier National Park, Montana Geol. Soc. Amer. Bull. 84 25492560.2.0.CO;2>CrossRefGoogle Scholar
Faure, G. and Odin, G. S., 1982 The marine-strontium geochronometer Numerical Dating in Stratigraphy New York Wiley 7379.Google Scholar
Goldberg, E. D., Kolde, M., Schmitt, R. A. and Smith, R., 1963 Rare earths distribution in the marine environment J. Geophys. Res. 68 42094217.CrossRefGoogle Scholar
Grousset, F., 1983 Sédimentogenèse d’un environnement de dorsale: La ride Açores-Islande au cours du dernier cycle climatique. Origines, vecteurs, flux de particules sédimentaires France Univ. Bordeaux, Bordeaux.Google Scholar
Haskin, L. A., Haskin, M. A., Frey, F. A., Wildeman, T. R. and Ahrens, L. H., 1968 Relative and absolute terrestrial abundance of the rare earths Symposium on the Origin and Distribution of the Elements New York Pergamon 889912.CrossRefGoogle Scholar
Hess, J., Bender, M. L. and Schilling, J. G., 1986 Evolution of the ratio of strontium 87 to strontium 86 in seawater from Cretaceous to present Science 231 979984.CrossRefGoogle ScholarPubMed
Hoffert, M. (1980) Les “argiles rouges des grands fonds” dans le Pacifique Centre-Est. Authigenèse, transport, diagenèse: Mém. Sci. Géol. Strasbourg 61, 281 pp.Google Scholar
Hoffert, M., Karpoff, A. M., Clauer, N., Schaaf, A. and Pautot, G., 1978 Néoformations et altérations dans trois faciès volcanosédimentaires du Pacifique Sud Oceanol. Acta 1 187202.Google Scholar
Hogdhal, O. T., Melson, S. and Bowen, V., 1968 Neutron activation analysis of lanthanide elements in sea water Adv. Chem. 73 308325.CrossRefGoogle Scholar
Holtzapffel, T., 1983 Origine et évolution des smectites albo-aptiennes et paléogènes du domaine Nord-Atlantique .Google Scholar
Holtzapffel, T. and Chamley, H., 1986 Les smectites lattées du domaine Atlantique depuis le Jurassique supérieur: Gisement et signification Clay Miner. 21 133148.CrossRefGoogle Scholar
Holtzapffel, T., Bonnot-Courtois, C., Chamley, H. and Clauer, N., 1985 Héritage et diagenèse des smectites du domaine sédimentaire nord-atlantique (Paléogène et Crétacé) Bull. Soc. Géol. Fr. 8 2534.CrossRefGoogle Scholar
Jeans, C. V., Merriman, R. J., Mitchell, J. G. and Bland, D., 1982 Volcanic clays in the Cretaceous of southern England and northern Ireland Clay Miner. 17 105156.CrossRefGoogle Scholar
Kralik, M., 1984 Effects of cation-exchange treatment and acid leaching on the Rb-Sr system of illite from Fithian, Illinois Geochim. Cosmochim. Acta 48 527533.CrossRefGoogle Scholar
Leclaire, L., 1974 Hypothèse sur l’origine des silicifications dans les grands bassins océaniques. Le rôle des climats hydrolysants Bull. Soc. Géol. Fr. 7 214224.CrossRefGoogle Scholar
Louail, J. (1981) La transgression crétacée du Sud du Massif Armoricain. Cénomanien de l’Anjou et du Poitou, Crétacé supérieur de Vendée. Etude stratigraphique, sédimentologique et minéralogique: Mém. Soc. Géol. Minér. Bretagne 29, 300 pp.Google Scholar
de Macedo Freitas, M. H., 1982 Les systèmes isotopiques rubidium-strontium et potassium-argon dans les argiles extraites de sédiments carbonatés. Application à la datation du Protérozoïque sédimentaire du Brésil dans les états de Bahia et Santa Catarina France Univ. L. Pasteur, Strasbourg.Google Scholar
Morton, J. P. and Long, L. E., 1980 Rb-Sr dating of Paleozoic glauconite from the Llano region, central Texas Geochim. Cosmochim. Acta 44 663672.CrossRefGoogle Scholar
Nathan, Y. and Flexer, A., 1977 Clinoptilolite: Paragenesis and stratigraphy Sedimentology 24 845855.CrossRefGoogle Scholar
O’Neil, J. R., 1987 Preservation of H, C and O isotopic ratios in the low-temperature environment Stable Isotope Geochemistry in Low-Temperature Fluids 13 85128.Google Scholar
Piper, D. Z., 1974 Rare earth elements in the sedimentary cycle: A summary Chem Geol. 14 285304.CrossRefGoogle Scholar
Savin, S. M. and Epstein, S., 1970 The oxygen and hydrogen isotope geochemistry of clay minerals Geochim. Cosmochim. Acta 34 2542.CrossRefGoogle Scholar
Savin, S. M. and Epstein, S., 1970 The oxygen and hydrogen isotope geochemistry of ocean sediments and shales Geochim. Cosmochim. Acta 34 4363.CrossRefGoogle Scholar
Spirn, R. V., 1965 Rare earth distribution in the marine environment Cambridge Massachusetts Massachusetts Inst. Technol..Google Scholar
Steinberg, M., Holtzapffel, T., Rautureau, M., Clauer, N., Bonnot-Courtois, C., Manoubi, T. and Badaut, D., 1984 Croissance cristalline et homogénéisation chimique de monoparticules argileuses au cours de la diagenèse C.R. Acad. Sci., Paris 299D 441446.Google Scholar
Steinberg, M., Holtzapffel, T. and Rautureau, M., 1987 Characterization of overgrowth structures formed around individual clay particles during early diagenesis Clay & Clay Minerals 35 189195.CrossRefGoogle Scholar
Suzuoki, T. and Epstein, S., 1976 Hydrogen isotope fractionation between OH-bearing minerals and water Geochim. Cosmochim. Acta 40 12291240.CrossRefGoogle Scholar
Thellier, C. and Clauer, N., 1989 Strontium isotopic evidence for soil-solution interactions during evaporation experiments Chem. Geol. 73 299306.Google Scholar
Yeh, H. W. and Eslinger, E. V., 1986 Oxygen isotopes and the extent of diagenesis of clay minerals during sedimentation and burial in the sea Clays & Clay Minerals 34 403406.CrossRefGoogle Scholar
Yeh, H. W. and Savin, S. M., 1976 The extent of oxygen isotope exchange between clay minerals and sea water Geochim. Cosmochim. Acta 40 743748.CrossRefGoogle Scholar
Yeh, H. W. and Savin, S. M., 1977 Mechanism of burial metamorphism of argillaceous sediments. 3. O-isotope evidence Geol. Soc. Amer. Bull. 88 13211330.2.0.CO;2>CrossRefGoogle Scholar