Skip to main content
Log in

Distribution of Generalized Schmid Factor in Euler Orientation Space and Rollability of AZ31B Alloy with Basal Texture

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The activation of deformation mechanisms in magnesium alloys is Schmid factor-related. The concept of a generalized Schmid factor (G-SF) and a corresponding calculation method were proposed. The G-SF was calculated under a general stress state of plate rolling to discuss the rollability of a textured AZ31B magnesium alloy in terms of the Schmid factor criterion. A low reduction per pass (RPP) is favorable for rollability. The G-SF for basal slip systems of grains in the basal orientation remained constant, but it increased for (0-110)[2-1-10] and (1-100)[11-20] prismatic slip systems with a decrease in RPP. Similarly, the G-SF for all pyramidal slip systems and contraction twinning systems increased with a decrease in RPP. The rollability benefits from such a development trend and makes the synchronous activation of deformation modes possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Von Mises, Mechanik der festen Körper im plastisch deformablen Zustand, Göttin. Nachr. Math. Phys., 1913, 1, p 582–592

    Google Scholar 

  2. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening Evolution of AZ31B Mg Sheet, Int. J. Plast., 2007, 23, p 44–86

    CAS  Google Scholar 

  3. S.R. Agnew, M.H. Yoo, and C.N. Tome, Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y, Acta Mater., 2001, 49, p 4277–4289

    CAS  Google Scholar 

  4. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2003, 51, p 2055–2065

    CAS  Google Scholar 

  5. Z. Keshavarz and M.R. Barnett, Observation of Deformation Modes in Mg-3Al-1Zn, Mater. Sci. Forum, 2005, 29, p 382–386

    CAS  Google Scholar 

  6. S.R. Agnew, J.W. Senn, and J.A. Horton, Mg Sheet Metal Forming: Lessons Learned from Deep Drawing Li and Y Solid-Solution Alloys Magnesium, JOM, 2006, 58, p 62–69

    CAS  Google Scholar 

  7. L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet, Twinning-Induced Softening in Polycrystalline AM30 Mg Alloy at Moderate Temperatures, Scr. Mater., 2006, 54, p 771–775

    CAS  Google Scholar 

  8. M.R. Barnett, Twinning and the Ductility of Magnesium Alloys Part I: “Tension” Twins, Mater. Sci. Eng. A, 2007, 464, p 1–7

    Google Scholar 

  9. M.R. Barnett, Twinning and the Ductility of Magnesium Alloys Part II. “Contraction” Twins, Mater. Sci. Eng. A, 2007, 464, p 8–16

    Google Scholar 

  10. C.D. Barrett, H. El-Kadiri, and M.A. Tschopp, Breakdown of the Schmid Law in Homogeneous and Heterogeneous Nucleation Events of Slip and Twinning in Magnesium, J. Mech. Phys. Solids, 2012, 60, p 2084–2099

    Google Scholar 

  11. D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tomé, Internal Strain and Texture Evolution during Deformation Twinning in Magnesium, Mater. Sci. Eng. A, 2005, 399, p 1–12

    Google Scholar 

  12. M.R. Barnett, Z. Keshavarz, A.G. Beer, and X. Ma, Non-Schmid Behavior during Secondary Twinning in a Polycrystalline Magnesium Alloy, Acta Mater., 2008, 56, p 5–15

    CAS  Google Scholar 

  13. R.L. Xin, M.Y. Wang, X.X. Huang, C.F. Guo, and Q. Liu, Observation and Schmid Factor Analysis of Multiple Twins in a Warm-Rolled Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A, 2014, 596, p 41–44

    CAS  Google Scholar 

  14. B.S. Wang, L.P. Deng, N. Guo, Z.R. Xu, and Q. Li, EBSD Analysis of 10-12 Twinning Activity in Mg-3Al-1Zn Alloy during Compression, Mater. Charact., 2014, 98, p 180–185

    CAS  Google Scholar 

  15. G.S. Song, S.H. Zhang, L. Zheng, and L.Q. Ruan, Twinning, Grain Orientation and Texture Variation of AZ31 Mg Alloy during Compression by EBSD Tracing, J. Alloys Compd., 2011, 509, p 6481–6488

    CAS  Google Scholar 

  16. F. Lv, F. Yang, Q.Q. Duan, T.J. Luo, Y.S. Yang, S.X. Li, and Z.F. Zhang, Tensile and low-Cycle Fatigue Properties of Mg-2.8% Al-1.1% Zn-0.4% Mn Alloy Along the Transverse and Rolling Directions, Scr. Mater., 2009, 61, p 887–890

    CAS  Google Scholar 

  17. S.H. Park, S.G. Hong, B.H. Lee, W. Bang, and C.S. Lee, Low-Cycle Fatigue Characteristics of Rolled Mg-3Al-1Zn Alloy, Int. J. Fatigue, 2010, 32, p 1835–1842

    CAS  Google Scholar 

  18. M.D. Nave and M.R. Barnett, Microstructures and Textures of Pure Magnesium Deformed in Plane-Strain Compression, Scr. Mater., 2004, 51, p 881–885

    CAS  Google Scholar 

  19. Y. Chino, K. Kimura, M. Hakamada, and M. Mabuchi, Mechanical Anisotropy Due to Twinning in an Extruded AZ31 Alloy, Mater. Sci. Eng. A, 2008, 485, p 311–317

    Google Scholar 

  20. S. Zaefferer, A Study of Active Deformation Systems in Titanium Alloys: Dependence on Alloy Composition and Correlation with Deformation Texture, Mater. Sci. Eng. A, 2003, 344, p 20–30

    Google Scholar 

  21. S.F. Chen, H.W. Song, S.H. Zhang, M. Cheng, C. Zheng, and M.G. Lee, An Effective Schmid Factor in Consideration of Combined Normal and Shear Stresses for Slip/Twin Variant Selection of Mg-3Al-1Zn Alloy, Scr. Mater., 2019, 167, p 51–55

    CAS  Google Scholar 

  22. D. Xia, X. Chen, G. Huang, B. Jiang, A. Tang, H. Yang, S. Gavras, Y. Huang, N. Hort, and F. Pan, Calculation of Schmid Factor in Mg Alloys: Influence of Stress State, Scr. Mater., 2019, 171, p 31–35

    CAS  Google Scholar 

  23. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi, Ductility Enhancement in AZ31 Magnesium Alloy by Controlling Its Grain Structure, Scr. Mater., 2001, 45, p 89–94

    CAS  Google Scholar 

  24. S.R. Agnew, J.A. Horton, T.M. Lillo, and D.W. Brown, Enhanced Ductility in Strongly Textured Magnesium Produced by Equal Channel Angular Processing, Scr. Mater., 2004, 50, p 377–381

    CAS  Google Scholar 

  25. R. Gehrmann, M.M. Frommert, and G. Gottstein, Texture Effects on Plastic Deformation of Magnesium, Mater. Sci. Eng. A, 2005, 395, p 338–349

    Google Scholar 

  26. J.A. del Valle, F. Carreno, and O.A. Ruano, Influence of Texture and Grain Size on Work Hardening and Ductility in Magnesium-Based Alloys Processed by ECAP and Rolling, Acta Mater., 2006, 54, p 4247–4259

    Google Scholar 

  27. G.S. Duan, B.L. Wu, X.H. Du, G. Zhao, Y.D. Zhang, X. Zhao, L. Zuo, and C. Esling, The Microstructure Evolution in AZ31B Alloy during Multi-pass Cold Rolling to a High Reduction, Mater. Sci. Eng. A, 2015, 620, p 120–128

    Google Scholar 

  28. X.H. Du, M. Hong, G.S. Duan, C.B. Wei, E.P. Jiang, M. Zhang, B.L. Wu, Y.D. Zhang, and C. Esling, Excellent Cold Rollability in a Single Pass of an Mg-4Er (wt.%) Alloy, Int. J. Mater. Res., 2015, 106, p 15–21

    CAS  Google Scholar 

  29. W. Prager, Introduction to Mechanics of Continua, Dover Publications, New York, 2004, p 43

    Google Scholar 

  30. H.C. Wu, Continuum Mechanics and Plasticity, CRC Press, Boca Raton, 2005, p 45

    Google Scholar 

  31. L.G. Johnson, Theory and Technique of Variation Research, Elsevier Publishing Company, Amsterdam, 1964, p 105

    Google Scholar 

  32. O. Hoffman and G. Sachs, Introduction to the Theory of Plasticity for Engineers, McGraw-Hill, New York, 1953, p 276

    Google Scholar 

  33. S. Suwas, G. Gottstein, and R. Kumar, Evolution of Crystallographic Texture during Equal Channel Angular Extrusion (ECAE) and Its Effects on Secondary Processing of Magnesium, Mater. Sci. Eng. A, 2007, 471, p 1–14

    Google Scholar 

  34. N. Stanford and M. Barnett, Effect of Composition on the Texture and Deformation Behaviour of Wrought Mg Alloys, Scr. Mater., 2008, 58, p 179–182

    CAS  Google Scholar 

  35. S. Yi, I. Schestakow, and S. Zaefferer, Twinning-Related Microstructural Evolution during Hot Rolling and Subsequent Annealing of Pure Magnesium, Mater. Sci. Eng. A, 2009, 516, p 58–64

    Google Scholar 

  36. T. Mayama, M. Noda, R. Chiba, and M. Kuroda, Crystal Plasticity Analysis of Texture Development in Magnesium Alloy during Extrusion, Int. J. Plast., 2011, 27, p 1916–1935

    CAS  Google Scholar 

  37. M.J. Philippe, C. Esling, and B. Hocheid, Role of Twinning in Texture Development and in Plastic Deformation of Hexagonal Materials, Textures Microstruct., 1988, 7, p 265–301

    CAS  Google Scholar 

  38. R. Cottam, J. Robson, G. Lorimer, and B. Davis, Dynamic Recrystallization of Mg and Mg-Y Alloys: Crystallographic Texture Development, Mater. Sci. Eng. A, 2008, 485, p 375–382

    Google Scholar 

  39. E. Schmid, Beitrage zur Physik und Metallographie des Magnesiums, Z. Elektrochem., 1931, 37, p 447–459

    CAS  Google Scholar 

  40. P.W. Bakarian and C.H. Mathewson, Slip and Twinning of Magnesium Single Crystals at Elevated Temperatures, Trans. AIME, 1943, 152, p 226–231

    Google Scholar 

  41. E.C. Burke and W.R. Hibbard, Plastic Deformation of Magnesium Single Crystals, Trans. Metall. Soc. AIME, 1952, 194, p 295–303

    Google Scholar 

  42. S.S. Hsu and B.D. Cullity, On the Torsional Deformation and Recovery of Single Crystals, Trans. AIME, 1954, 200, p 305–312

    Google Scholar 

  43. H. Conrad and W.D. Robertson, Effect of Temperature on the Flow Stress and Strain-Hardening Coefficient of Magnesium Single Crystals, Trans. AIME, 1957, 209, p 503–513

    Google Scholar 

  44. R.E. Reed-Hill and W.D. Robertson, Additional Modes of Deformation Twinning in Magnesium, Acta Metall., 1957, 5, p 717–727

    CAS  Google Scholar 

  45. R.E. Reed-Hill and W.D. Robertson, Deformation of Magnesium Single Crystals by Non Basal Slip, Trans. TMS-AIME, 1957, 220, p 496–502

    Google Scholar 

  46. X.X. Wang, P.L. Mao, Z. Liu, Z. Wang, and L. Zhou, Nucleation and Growth Analysis of 10-12 Extension Twins in AZ31 Magnesium Alloy during In Situ Tension, J. Alloys Compd., 2020, 817, p 152967

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Foundation of Natural Science of China (Grant No. 51371121).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baolin Wu or Xinghao Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Song, L., Wan, G. et al. Distribution of Generalized Schmid Factor in Euler Orientation Space and Rollability of AZ31B Alloy with Basal Texture. J. of Materi Eng and Perform 29, 8145–8155 (2020). https://doi.org/10.1007/s11665-020-05279-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05279-7

Keywords

Navigation