Skip to main content

Advertisement

Log in

Stable-boundary-layer regimes from the perspective of the low-level jet

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

This paper reviews results from two field studies of the nocturnal stable atmospheric boundary layer (SBL) over the Great Plains of the United States. Data from a scanning remote-sensing system, a High-Resolution Doppler Lidar (HRDL), provided measurements of mean and turbulent wind components at high spatial and temporal resolution through the lowest 500–1000 m of the atmosphere. This data set has allowed the characteristics of the low-level jet (LLJ) maximum (speed, height, direction) to be documented through entire nights. LLJs form after sunset and produce strong shear in the layer below the LLJ maximum or nose, which is a source of turbulence and mixing in the SBL. Simultaneous HRDL measurements of turbulence quantities related to turbulence kinetic energy (TKE) has allowed the turbulence in the subjet layer to be related to LLJ properties. Turbulence structure was found to be a function of the bulk stability of the subjet layer. For the strong-LLJ (> 15 m s−1), weakly stable cases the strength of the turbulence is proportional to the strength of the LLJ. For these cases with nearly continuous turbulence in the subjet layer, low-level jet scaling, in which lengths are scaled by the LLJ height and velocity variables are scaled by the LLJ speed, was found to be appropriate. For the weak-wind (< 5 m s−1 in the lowest 200 m), very stable boundary layer (vSBL), the boundary layer was found to be very shallow (sometimes < 10 m deep), and turbulent fluxes between the earth’s surface and the atmosphere were found to be essentially shut down. For more intermediate wind speeds and stabilities, the SBL shows varying degrees of intermittency due to various mechanisms, including shearinstability and other gravity waves, density currents, and other mesoscale disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas, E.L, K.J. Claffey, and A.P. Makshtas (2000), Low-level atmospheric jets and inversions over the western Weddell Sea, Bound.-Layer Meteor. 97, 459–486.

    Article  Google Scholar 

  • Balsley, B.B., R.G. Frehlich, M.L. Jensen, and Y. Meillier (2006), High-resolution in-situ profiling through the stable boundary layer: Examination of the SBL top in terms of minimum shear, maximum stratification, and turbulence decrease, J. Atmos. Sci. 63, 1291–1307.

    Article  Google Scholar 

  • Banta, R.M., C.J. Senff, A.B. White, M. Trainer, R.T. McNider, R.J. Valente, S.D. Mayor, R.J. Alvarez, R.M. Hardesty, D.D. Parish, and F.C. Fehsenfeld (1998), Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode, J. Geophys. Res. 103, 22,519–22,544.

    Article  Google Scholar 

  • Banta, R.M., R.K. Newsom, J.K. Lundquist, Y.L. Pichugina, R.L. Coulter, and L. Mahrt (2002), Nocturnal low-level jet characteristics over Kansas during CASES-99, Bound.-Layer Meteor. 105, 221–252.

    Article  Google Scholar 

  • Banta, R.M., Y.L. Pichugina, and R.K. Newsom (2003), Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer, J. Atmos. Sci. 60, 2549–2555.

    Article  Google Scholar 

  • Banta, R.M., N.D. Kelley, and Y.L. Pichugina (2004), Low-level jet properties and turbulence below the jet during the Lamar Low-Level-Jet Project, 16 th Symposium on Boundary Layers and Turbulence, Portland ME, Paper 4.10, 4 pp. (preprints)

  • Banta, R.M., Y.L. Pichugina, and W.A. Brewer (2006), Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet, J. Atmos. Sci. 63, 2700–2719.

    Article  Google Scholar 

  • Banta, R.M., L. Mahrt, D. Vickers, J. Sun, B. Balsley, Y. Pichugina, and E. Williams (2007), The very stable boundary layer on nights with weak low-level jets, J. Atmos. Sci. 64 (in press).

  • Beyrich, F. (1997), Mixing height estimation from sodar data — A critical discussion, Atmos. Environ. 31, 3941–3953.

    Article  Google Scholar 

  • Blackadar, A.K. (1957), Boundary layer wind maxima and their significance for the growth of nocturnal inversions, Bull. Amer. Meteor. Soc. 38, 283–290.

    Google Scholar 

  • Blumen, W., R.M. Banta, S.P. Burns, D.C. Fritts, R. Newsom, G.S. Poulos, and J. Sun (2001), Turbulence statistics of a Kelvin-Helmholtz billow event observed in the nighttime boundary layer during the CASES-99 field program, Dynamics of Atmos. and Oceans 34, 189–204.

    Article  Google Scholar 

  • Bonner, W.D. (1968), Climatology of the low level jet, Mon. Wea. Rev. 96, 833–850.

    Article  Google Scholar 

  • Brost, R.A., and J.C. Wyngaard (1978), A model study of the stably stratified planetary boundary layer, J. Atmos. Sci. 35, 1427–1440.

    Article  Google Scholar 

  • Brown, S.S., W.P. Dubé, H.D. Osthoff, D.E. Wolfe, W.M. Angevine, and A.R. Ravishankara (2007), High-resolution vertical distributions of NO3 and N2O5 through sthe nocturnal boundary layer, Atmos. Chem. Phys. 7, 139–149.

    Article  Google Scholar 

  • Browning, K.A., and R. Wexler (1968), The determination of kinematic properties of a wind field using Doppler radar, J. Appl. Meteor. 7, 105–113.

    Article  Google Scholar 

  • Caughey, S.J., J.C. Wyngaard, and J.C. Kaimal (1979), Turbulence in the evolving stable boundary layer, J. Atmos. Sci. 36, 1041–1052.

    Google Scholar 

  • Drobinski, P., P. Carlotti, R.K. Newsom, R.M. Banta, R.C. Foster, and J.-L. Redelsperger (2004), The structure of the near-neutral atmospheric surface layer, J. Atmos. Sci. 61, 699–714.

    Article  Google Scholar 

  • Drobinski, P., P. Carlotti, J.-L. Redelsperger, R.M. Banta, V. Masson, and R.K. Newsom (2007), Numerical and experimental investigation of the neutral atmospheric surface layer, J. Atmos. Sci. 64, 137–156.

    Article  Google Scholar 

  • Emeis, S., M. Harris, and R.M. Banta (2007), Boundary-layer anemometry by optical remote sensing for wind energy applications, Meteor. Zeitschr. 16, 337–347.

    Article  Google Scholar 

  • Fritts, D.C., C. Nappo, C.M. Riggin, B.B. Balsley, W.E. Eichingre, and R.K. Newsom (2003), Analysis of ducted motions in the stable nocturnal boundary layer during CASES-99, J. Atmos. Sci. 60, 2450–2472.

    Article  Google Scholar 

  • Grachev, A., C.W. Fairall, P.O.G. Persson, E.L. Andreas, and P.S. Guest (2005), Stable boundary layer scaling regimes: The SHEBA data, Bound.-Layer Meteor. 116, 201–235.

    Article  Google Scholar 

  • Grund, C.J., R.M. Banta, J.L. George, J.N. Howell, M.J. Post, R.A. Richter, and A.M. Weickmann (2001), High-resolution Doppler lidar for boundary-layer and cloud research, J. Atmos. Ocean. Technol. 18, 376–393.

    Article  Google Scholar 

  • Ha, K.-J., and L. Mahrt (2001), Simple inclusion of z-less turbulence within and above the modelled nocturnal boundary layer, Mon. Wea. Rev. 129, 2136–2143.

    Article  Google Scholar 

  • Hanna, S.R. (1969), The thickness of the planetary boundary layer, Atmos. Environ. 3, 519–536.

    Article  Google Scholar 

  • Hoecker, W.H. (1963), Three southerly low-level jet systems delineated by the Weather Bureau special pibal network of 1961, Mon. Wea. Rev. 91, 573–582.

    Article  Google Scholar 

  • Holtslag, A.A.M., and F.T.M. Nieuwstadt (1986), Scaling the atmospheric boundary layer. Bound.-Layer Meteor. 36, 201–209.

    Article  Google Scholar 

  • Kelley, N.D., M. Shirazi, D. Jager, S. Wilde, J. Adams, M. Buhl, P. Sullivan, and E. Patton (2004), Lamar Low-Level Jet Project Interim Report. NREL/TP-500-34593. Golden, CO, National Renewable Energy Laboratory.

  • Lundquist, J.K. (2003), Intermittent and elliptical inertial oscillations in the atmospheric boundary layer, J. Atmos. Sci. 60, 2661–2673.

    Article  Google Scholar 

  • Mahrt, L. (1981), Modelling the depth of the stable boundary layer, Bound.-Layer Meteor. 21, 3–19.

    Article  Google Scholar 

  • Mahrt, L. (1998), Stratified atmospheric boundary layers and breakdown of models, J. Theor. Comp. Fluid Dyn. 11, 263–280.

    Article  Google Scholar 

  • Mahrt, L. (1999), Stratified atmospheric boundary layers, Bound.-Layer Meteor. 90, 375–396.

    Article  Google Scholar 

  • Mahrt, L., and D. Vickers (2002), Contrasting vertical structures of nocturnal boundary layers, Bound.-Layer Meteor. 105, 351–363.

    Article  Google Scholar 

  • Mahrt, L., and D. Vickers (2006), Extremely weak mixing in stable conditions, Bound.-Layer Meteor. 119, 19–39.

    Article  Google Scholar 

  • Mahrt, L., R.C. Heald, D.H. Lenschow, B.B. Stankov, and I. Troen (1979), An observational study of the structure of the nocturnal boundary layer, Bound.-Layer Meteor. 17, 247–264.

    Article  Google Scholar 

  • Mahrt, L., J. Sun, W. Blumen, T. Delaney, and S. Oncley (1998), Nocturnal boundary layer regimes, Bound.-Layer Meteor. 88, 255–278.

    Article  Google Scholar 

  • Mahrt, L., D. Vickers, R. Nakamura, M.R. Soler, J. Sun, S. Burns, and D.H. Lenschow (2001), Shallow drainage flows, Bound.-Layer Meteor. 101, 243–260.

    Article  Google Scholar 

  • McNider, R.T., M.D. Moran, and R.A. Pielke (1988), Influence of diurnal and inertial boundary-layer oscillations on long-range dispersion, Atmos. Environ. 11, 2445–2462.

    Google Scholar 

  • Mitchell, M.J., R.W. Arritt, and K. Labas (1995), A climatology of the warm season Great Plains low-level jet using wind profiler observations, Wea. Forecasting 10, 576–591.

    Article  Google Scholar 

  • Newsom, R.K., and R.M. Banta (2003), Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99, J. Atmos. Sci. 30, 16–33.

    Article  Google Scholar 

  • Newsom, R.K., and R.M. Banta (2004a), Assimilating coherent Doppler lidar measurements into a model of the atmospheric boundary layer. I: Algorithm development and sensitivity to measurement error, J. Atmos. Ocean. Technol. 21, 1328–1345.

    Article  Google Scholar 

  • Newsom, R.K., and R.M. Banta (2004b), Assimilating coherent Doppler lidar measurements into a model of the atmospheric boundary layer. II: Sensitivity analyses, J. Atmos. Ocean. Technol. 21, 1809–1824.

    Article  Google Scholar 

  • Nieuwstadt, F.T.M. (1984), The turbulent structure of the stable, nocturnal boundary layer, J. Atmos. Sci. 41, 2202–2216.

    Article  Google Scholar 

  • Obukhov, A.M. (1971), Turbulence in an atmosphere with a non-uniform temperature, Bound.-Layer Meteor. 2, 7–29.

    Article  Google Scholar 

  • Ohya, Y. (2001), Wind-tunnel study of atmospheric stable boundary layers over a rough surface, Bound.-Layer Meteor. 98, 57–82.

    Article  Google Scholar 

  • Ohya, Y., D.E. Neff, and R.N. Meroney (1997), Turbulence structure in a stratified boundary layer under stable conditions, Bound.-Layer Meteor. 83, 139–161.

    Article  Google Scholar 

  • Pichugina, Y.L., R.M. Banta, N.D. Kelley, S.P. Sandberg, J.L. Machol, and W.A. Brewer (2004), Nocturnal low-level jet characteristics over southeastern Colorado, 16 th Symposium on Boundary Layers and Turbulence, Portland ME, Paper 4.11, 6 pp. (preprints).

  • Pichugina, Y.L., R.M. Banta, W.A. Brewer, N.D. Kelley, R.K. Newsom, and S.C. Tucker (2008), Evaluation of Doppler-lidar-based horizontal-velocity and turbulence profiles to averaging procedures, J. Atmos. Ocean. Technol. 24 (submitted).

  • Poulos, G., W. Blumen, D.C. Fritts, J.K. Lundquist, J. Sun, S.P. Burns, C. Nappo, R. Banta, R. Newsom, J. Cuxart, E. Terradellas, B. Balsley, and M. Jensen (2002), CASES-99: A comprehensive investigation of the stable nocturnal boundary layer, Bull. Amer. Meteor. Soc. 83, 555–581.

    Article  Google Scholar 

  • Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier (2000), Review and intercomparison of operational methods for the determination of the mixing height, Atmos. Environ. 34, 1001–1027.

    Article  Google Scholar 

  • Smedman, A.-S. (1988), Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer, Bound.-Layer Meteor. 44, 231–253.

    Article  Google Scholar 

  • Smedman, A.-S., M. Tjernström, and U. Högström (1993), Analysis of the turbulence structure of a marine low-level jet, Bound.-Layer Meteor. 66, 105–126.

    Article  Google Scholar 

  • Smedman, A.-S., H. Bergström, and B. Grisogano (1997), Evolution of stable internal boundary layers over a cold sea, J. Geophys. Res. 102, 1091–1099.

    Article  Google Scholar 

  • Song, J., K. Liao, R.L. Coulter, and B.M. Lesht (2005), Climatology of the low-level jet at the Southern Great Plains atmospheric boundary layer experiment site, J. Appl. Meteor. 44, 1593–1606.

    Article  Google Scholar 

  • Steeneveld, G.J., B.J.H. van de Wiel, and A.A.M. Holtslag (2007), Diagnostic equations for the stable boundary layer height: Evaluation and dimensional analysis, J. Appl. Meteor. Climate 46, 212–225.

    Article  Google Scholar 

  • Stensrud, D.J. (1996), Importance of the low-level jet to climate, J. Climate 9, 1698–1711.

    Article  Google Scholar 

  • Sun, J., S.P. Burns, D.H. Lenschow, R.M. Banta, R.K. Newsom, R. Coulter, S. Frasier, T. Ince, C.J. Nappo, J. Cuxart, W. Blumen, X. Lee, and X.-Z. Hu (2002), Intermittent turbulence associated with a density current passage in the stable boundary layer, Bound.-Layer Meteor. 105, 199–219.

    Article  Google Scholar 

  • Sun, J., D. Lenschow, S. Burns, R. Banta, R. Newsom, R. Coulter, S. Frasier, T. Ince, C. Nappo, B. Balsley, M. Jensen, L. Mahrt, D. Miller, and B. Skelly (2004), Intermittent turbulence in stable boundary layers and the processes that generate it, Bound.-Layer Meteor. 110, 255–279.

    Article  Google Scholar 

  • van de Wiel, B.J.H., A. Moene, O. Hartogensis, H.A.R. de Bruin, and A.A.M. Holtslag (2002a), Intermittent turbulence in the stable boundary layer over land. Part I: A bulk model, J. Atmos. Sci. 59, 942–958.

    Article  Google Scholar 

  • van de Wiel, B.J.H., A. Moene, R.J. Ronda, H.A.R. de Bruin, and A.A.M. Holtslag (2002b), Intermittent turbulence in the stable boundary layer over land. Part II: A system dynamics approach, J. Atmos. Sci. 59, 2567–2581.

    Article  Google Scholar 

  • van de Wiel, B.J.H., A. Moene, O. Hartogensis, H.A.R. de Bruin, and A.A.M. Holtslag (2003), Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99, J. Atmos. Sci. 60, 2509–2522.

    Article  Google Scholar 

  • Vickers, D., and L.J. Mahrt (2003), The cospectral gap and turbulent flux calculations, J. Atmos. Ocean. Technol. 20, 660–672.

    Article  Google Scholar 

  • Vickers, D., and L.J. Mahrt (2004), Evaluating formulations of stable boundary layer height, J. Appl. Meteor. 43, 1736–1749.

    Article  Google Scholar 

  • Vickers, D., and L.J. Mahrt (2006), A solution for flux contamination by mesoscale motions with very weak turbulence, Bound.-Layer Meteor. 118, 431–447.

    Article  Google Scholar 

  • Vogelezang, D.H.P., and A.A.M. Holtslag (1996), Evaluation and model impacts of alternative boundary-layer height formulations, Bound.-Layer Meteor. 81, 245–269.

    Article  Google Scholar 

  • Wetzel, P.J. (1982), Toward parameterization of the stable boundary layer, J. Appl. Meteor. 21, 7–13.

    Article  Google Scholar 

  • Whiteman, C.D., X. Bian, and S. Zhong (1997), Low-level jet climatology from enhanced raw-insonde observations at a site in the Southern Great Plains, J. Appl. Meteor. 36, 1363–1376.

    Article  Google Scholar 

  • Wulfmeyer, V.O., M. Randall, W.A. Brewer, and R.M. Hardesty (2000), 2 μm Doppler lidar transmitter with high frequency stability and low chirp, Opt. Lett. 25, 1228–1230.

    Article  Google Scholar 

  • Wyngaard, J.C. (1973), On Surface-Layer Turbulence. Workshop on Micrometeorology, American Meteorological Society, Boston, 101–149.

    Google Scholar 

  • Wyngaard J.C., and O.R. Cote (1972), Cospectral similarity in the atmospheric surface layer, Quart. J. Royal Meteor. Soc. 98, 590–603.

    Article  Google Scholar 

  • Zhong, S., and J.D. Fast (2003), An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using field campaign data in the Salt Lake Valley, Mon. Wea. Rev. 131, 1301–1322.

    Article  Google Scholar 

  • Zhong, S., J.D. Fast, and X. Bian (1996), A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model, Mon. Wea. Rev. 5, 785–806.

    Article  Google Scholar 

  • Zilitinkevich, S. (1972), On the determination of the height on the Ekman boundary layer, Bound.-Layer Meteor. 3, 141–145.

    Article  Google Scholar 

  • Zilitinkevich, S., and D.V. Mironov (1996), A multi-limit formulation for the equilibrium height of a stably stratified boundary layer, Bound.-Layer Meteor. 81, 141–145.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Banta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banta, R.M. Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys. 56, 58–87 (2008). https://doi.org/10.2478/s11600-007-0049-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-007-0049-8

Key words

Navigation