The 2023 MDPI Annual Report has
been released!
 
12 pages, 798 KiB  
Article
Factors Associated with Primary Liver Cancer Survival in a Southern Italian Setting in a Changing Epidemiological Scenario
by Sergio Mazzola, Martina Vittorietti, Santo Fruscione, Daniele Domenico De Bella, Alessandra Savatteri, Miriam Belluzzo, Daniela Ginevra, Alice Gioia, Davide Costanza, Maria Domenica Castellone, Claudio Costantino, Maurizio Zarcone, Barbara Ravazzolo, Giorgio Graziano, Rita Mannino, Rosalba Amodio, Vito Di Marco, Francesco Vitale and Walter Mazzucco
Cancers 2024, 16(11), 2046; https://doi.org/10.3390/cancers16112046 (registering DOI) - 28 May 2024
Abstract
A retrospective observational study utilising cancer incidence data from a population-based registry investigated determinants affecting primary liver cancer survival in a southern Italian region with high hepatitis viral infection rates and obesity prevalence. Among 2687 patients diagnosed between 2006 and 2019 (65.3% male), [...] Read more.
A retrospective observational study utilising cancer incidence data from a population-based registry investigated determinants affecting primary liver cancer survival in a southern Italian region with high hepatitis viral infection rates and obesity prevalence. Among 2687 patients diagnosed between 2006 and 2019 (65.3% male), a flexible hazard-based regression model revealed factors influencing 5-year survival rates. High deprivation levels [HR = 1.41 (95%CI = 1.15–1.76); p < 0.001], poor access to care [HR = 1.99 (95%IC = 1.70–2.35); p < 0.0001], age between 65 and 75 [HR = 1.48 (95%IC = 1.09–2.01); p < 0.05] or >75 [HR = 2.21 (95%CI = 1.62–3.01); p < 0.0001] and residing in non-urban areas [HR = 1.35 (95%CI = 1.08–1.69); p < 0.01] were associated with poorer survival estimates. While deprivation appeared to be a risk factor for primary liver cancer patients residing within the urban area, the geographic distance from specialised treatment centres emerged as a potential determinant of lower survival estimates for residents in the non-urban areas. After balancing the groups of easy and poor access to care using a propensity score approach, poor access to care and a lower socioeconomic status resulted in potentially having a negative impact on primary liver cancer survival, particularly among urban residents. We emphasise the need to interoperate cancer registries with other data sources and to deploy innovative digital solutions to improve cancer prevention. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Figure 1

13 pages, 1819 KiB  
Article
Effect of Cubic Crystal Morphology on Thermal Characteristics and Mechanical Sensitivity of PYX
by Xi Luo, Qiong Wang, Hongni Liu, Wenjie Li, Ruixue Zheng and Weiqiang Pang
Crystals 2024, 14(6), 513; https://doi.org/10.3390/cryst14060513 (registering DOI) - 28 May 2024
Abstract
To investigate the influence of the cubic crystal morphology on the thermal properties and sensitivity of 2,6-bis(picrylamino)-3,5-dinitropyridine (PYX), cubic PYX (CPYX) crystals were prepared using the antisolvent method. Scanning electron microscopy (SEM), laser particle size analysis, X-ray diffraction (XRD) and Fourier transform infrared [...] Read more.
To investigate the influence of the cubic crystal morphology on the thermal properties and sensitivity of 2,6-bis(picrylamino)-3,5-dinitropyridine (PYX), cubic PYX (CPYX) crystals were prepared using the antisolvent method. Scanning electron microscopy (SEM), laser particle size analysis, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the morphology, particle size and structure of the prepared products. The thermal behavior, thermal decomposition kinetics, thermal safety parameters and thermal decomposition mechanism of CPYX were investigated by differential scanning calorimetry–thermogravimetry–mass spectrometry–Fourier transform infrared spectrometry (DSC-TG-MS-FT-IR) and in situ FT-IR experiments. Meanwhile, the mechanical sensitivity of CPYX was determined by means of the explosion probability method. The results showed that the product had a smooth cubic morphology and small crystal aspect ratio with an average particle size (d50) of 10.65 μm, but it had no distinct differences from the crystal structure of raw PYX (RPYX). The thermal decomposition peak temperature, the self-accelerating decomposition temperature and the critical temperature of the thermal explosion of CPYX increased by 7.2 °C, 6.1 °C and 10.4 °C, respectively, compared to RPYX. Similarly, the apparent activation energy increased by 15%. Besides these, the impact sensitivity and friction sensitivity of CPYX decreased by 36% and 20%, respectively, compared to RPYX. The decomposition process of CPYX contains two stages. The first stage involves the breakage of N-H bonds and -NO2 groups with the release of CO2, N2O, NO, HCN and H2O, followed by the thermal decomposition of the resulting intermediate and the release of CO2, N2O and HCN in the second stage. Full article
(This article belongs to the Section Materials for Energy Applications)
12 pages, 583 KiB  
Article
Non-Consumptive Effects of Harmonia axyridis on the Reproduction and Metabolism of Spodoptera frugiperda
by Zeyun Fan, Xiaolu Lv, Yuyang Huang, Weizhen Kong, Chongjian Ma and He Yan
Insects 2024, 15(6), 395; https://doi.org/10.3390/insects15060395 (registering DOI) - 28 May 2024
Abstract
An increasing body of research has underscored the significant impact of non-consumptive effects on the dynamics of prey pests, encompassing growth, development, reproduction, and metabolism across various vertebrate and invertebrate taxa, rivaling the influence of consumption effects. In our investigation, we delved into [...] Read more.
An increasing body of research has underscored the significant impact of non-consumptive effects on the dynamics of prey pests, encompassing growth, development, reproduction, and metabolism across various vertebrate and invertebrate taxa, rivaling the influence of consumption effects. In our investigation, we delved into the non-consumptive effects exerted by the natural predatory enemy Harmonia axyridis on the reproductive capacity and metabolism of Spodoptera frugiperda adults. Our findings revealed a substantial decrease in the reproductive ability of S. frugiperda adults when exposed to the non-consumptive effects of H. axyridis. Concurrently, we observed an elevation in hydrogen peroxide (H2O2) content and the activities of antioxidant enzymes such as superoxide dismutases (SODs), catalases (CATs), and peroxidases (PODs). Furthermore, notable alterations were detected in energy metabolism, characterized by heightened triglyceride levels and diminished glycogen and trehalose concentrations. These outcomes underscored the adaptive response of the pest aimed at mitigating non-consumptive adverse effects by augmenting antioxidant enzyme activity to counteract oxidative stress and minimize cellular damage. Nonetheless, this defensive mechanism entails a significant expenditure of energy resources, resulting in shifts in energy utilization. Elevated triglyceride levels and reduced glycogen and trehalose concentrations diminish available resources for reproductive processes, such as egg laying, ultimately culminating in decreased fecundity. This study contributes novel insights into the non-consumptive effects observed in insects, while also furnishing valuable insights into the mechanisms underlying insect stress responses. Full article
(This article belongs to the Special Issue Genetics and Evolution of Ladybird Beetles in Biological Control)
12 pages, 1693 KiB  
Case Report
FANCM Gene Variants in a Male Diagnosed with Sertoli Cell-Only Syndrome and Diffuse Astrocytoma
by Monika Logara Klarić, Tihana Marić, Lucija Žunić, Lovro Trgovec-Greif, Filip Rokić, Ana Fiolić, Ana Merkler Šorgić, Davor Ježek, Oliver Vugrek, Antonia Jakovčević, Maja Barbalić, Robert Belužić and Ana Katušić Bojanac
Genes 2024, 15(6), 707; https://doi.org/10.3390/genes15060707 (registering DOI) - 28 May 2024
Abstract
Azoospermia is a form of male infertility characterized by a complete lack of spermatozoa in the ejaculate. Sertoli cell-only syndrome (SCOS) is the most severe form of azoospermia, where no germ cells are found in the tubules. Recently, FANCM gene variants were reported [...] Read more.
Azoospermia is a form of male infertility characterized by a complete lack of spermatozoa in the ejaculate. Sertoli cell-only syndrome (SCOS) is the most severe form of azoospermia, where no germ cells are found in the tubules. Recently, FANCM gene variants were reported as novel genetic causes of spermatogenic failure. At the same time, FANCM variants are known to be associated with cancer predisposition. We performed whole-exome sequencing on a male patient diagnosed with SCOS and a healthy father. Two compound heterozygous missense mutations in the FANCM gene were found in the patient, both being inherited from his parents. After the infertility assessment, the patient was diagnosed with diffuse astrocytoma. Immunohistochemical analyses in the testicular and tumor tissues of the patient and adequate controls showed, for the first time, not only the existence of a cytoplasmic and not nuclear pattern of FANCM in astrocytoma but also in non-mitotic neurons. In the testicular tissue of the SCOS patient, cytoplasmic anti-FANCM staining intensity appeared lower than in the control. Our case report raises a novel possibility that the infertile carriers of FANCM gene missense variants could also be prone to cancer development. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 831 KiB  
Review
Mechanisms of Male Reproductive Sterility Triggered by Dysbiosis of Intestinal Microorganisms
by Mingbang Wei, Huaizhi Liu, Yu Wang, Mingyang Sun and Peng Shang
Life 2024, 14(6), 694; https://doi.org/10.3390/life14060694 (registering DOI) - 28 May 2024
Abstract
Abstract: The intestinal microbiota, comprised of bacteria, archaea, and phages, inhabits the gastrointestinal tract of the organism. Male reproductive sterility is currently a prominent topic in medical research. Increasing research suggests that gut microbiota dysbiosis can result in various reproductive health problems. This [...] Read more.
Abstract: The intestinal microbiota, comprised of bacteria, archaea, and phages, inhabits the gastrointestinal tract of the organism. Male reproductive sterility is currently a prominent topic in medical research. Increasing research suggests that gut microbiota dysbiosis can result in various reproductive health problems. This article specifically investigates the impact of gut microbiota dysbiosis on male reproductive infertility development. Gut microbiota imbalances can disrupt the immune system and immune cell metabolism, affecting testicular growth and sperm production. This dysfunction can compromise the levels of hormones produced and secreted by the endocrine glands, affecting male reproductive health. Furthermore, imbalance of the gut microbiota can disrupt the gut–brain–reproductive axis, resulting in male reproductive infertility. This article explores how the imbalance of the gut microbiota impacts male reproductive infertility through immune regulation, endocrine regulation, and interactions of the gut–brain–reproductive axis, concluding with recommendations for prevention and treatment. Full article
(This article belongs to the Special Issue Trends in Microbiology 2024)
13 pages, 971 KiB  
Article
Molecular and Evolution In Silico Studies Unlock the h4-HPPD C-Terminal Tail Gating Mechanism
by Alfonso Trezza, Ancuta Birgauan, Michela Geminiani, Anna Visibelli and Annalisa Santucci
Biomedicines 2024, 12(6), 1196; https://doi.org/10.3390/biomedicines12061196 (registering DOI) - 28 May 2024
Abstract
The enzyme 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) is involved in the catabolism of the amino acid tyrosine in organisms such as bacteria, plants, and animals. It catalyzes the conversion of 4-hydroxyphenylpyruvate to a homogenisate in the presence of molecular oxygen and Fe(II) as a cofactor. [...] Read more.
The enzyme 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) is involved in the catabolism of the amino acid tyrosine in organisms such as bacteria, plants, and animals. It catalyzes the conversion of 4-hydroxyphenylpyruvate to a homogenisate in the presence of molecular oxygen and Fe(II) as a cofactor. This enzyme represents a key step in the biosynthesis of important compounds, and its activity deficiency leads to severe, rare autosomal recessive disorders, like tyrosinemia type III and hawkinsinuria, for which no cure is currently available. The 4-HPPD C-terminal tail plays a crucial role in the enzyme catalysis/gating mechanism, ensuring the integrity of the active site for catalysis through fine regulation of the C-terminal tail conformation. However, despite growing interest in the 4-HPPD catalytic mechanism and structure, the gating mechanism remains unclear. Furthermore, the absence of the whole 3D structure makes the bioinformatic approach the only possible study to define the enzyme structure/molecular mechanism. Here, wild-type 4-HPPD and its mutants were deeply dissected by applying a comprehensive bioinformatics/evolution study, and we showed for the first time the entire molecular mechanism and regulation of the enzyme gating process, proposing the full-length 3D structure of human 4-HPPD and two novel key residues involved in the 4-HPPD C-terminal tail conformational change. Full article
(This article belongs to the Special Issue Latest Frontiers and Applications in Target and Drug Discovery Field)
8 pages, 1577 KiB  
Case Report
Arteriovenous Fistula: The Case of a Rare Complication after Minimal Percutaneous Nephrostomy and Brief Review
by Răzvan Alexandru Dănău, Răzvan-Cosmin Petca, Traian Vasile Constantin, Aida Petca, Gabriel Predoiu and Viorel Jinga
Diagnostics 2024, 14(11), 1121; https://doi.org/10.3390/diagnostics14111121 (registering DOI) - 28 May 2024
Abstract
Percutaneous renal surgery, although much less invasive than other procedures, is subject to several complications, which can occur at any time during the course of treatment, starting from the performance of the minimal nephrostomy procedure. We present an extremely rare vascular complication of [...] Read more.
Percutaneous renal surgery, although much less invasive than other procedures, is subject to several complications, which can occur at any time during the course of treatment, starting from the performance of the minimal nephrostomy procedure. We present an extremely rare vascular complication of percutaneous nephrostomy represented by arteriovenous fistula that occurred in a 24-year-old patient known to have right ureteropelvic junction obstruction operated with the absence of double-J catheter permeability and grade II-III hydronephrosis for which minimal percutaneous nephrostomy was urgently fitted. The arteriovenous fistula was resolved by supraselective artery embolization. Full article
(This article belongs to the Special Issue Challenges in Urology: From the Diagnosis to the Management)
Show Figures

Figure 1

16 pages, 1360 KiB  
Article
Chondroitin Sulfate-Based Nanocapsules as Nanocarriers for Drugs and Nutraceutical Supplements
by Magdalena Górniewicz, Dawid Wnuk, Aleksander Foryś, Barbara Trzebicka, Marta Michalik and Mariusz Kepczynski
Int. J. Mol. Sci. 2024, 25(11), 5897; https://doi.org/10.3390/ijms25115897 (registering DOI) - 28 May 2024
Abstract
Oil-core nanocapsules (NCs, also known as nanoemulsions) are of great interest due to their application as efficient carriers of various lipophilic bioactives, such as drugs. Here, we reported for the first time the preparation and characterization of NCs consisting of chondroitin sulfate (CS)-based [...] Read more.
Oil-core nanocapsules (NCs, also known as nanoemulsions) are of great interest due to their application as efficient carriers of various lipophilic bioactives, such as drugs. Here, we reported for the first time the preparation and characterization of NCs consisting of chondroitin sulfate (CS)-based shells and liquid oil cores. For this purpose, two amphiphilic CS derivatives (AmCSs) were obtained by grafting the polysaccharide chain with octadecyl or oleyl groups. AmCS-based NCs were prepared by an ultrasound-assisted emulsification of an oil phase consisting of a mixture of triglyceride oil and vitamin E in a dispersion of AmCSs. Dynamic light scattering and cryo-transmission electron microscopy showed that the as-prepared core–shell NCs have typical diameters in the range of 30–250 nm and spherical morphology. Since CS is a strong polyanion, these particles have a very low surface potential, which promotes their stabilization. The cytotoxicity of the CS derivatives and CS-based NCs and their impact on cell proliferation were analyzed using human keratinocytes (HaCaTs) and primary human skin fibroblasts (HSFs). In vitro studies showed that AmCSs dispersed in an aqueous medium, exhibiting mild cytotoxicity against HaCaTs, while for HSFs, the harmful effect was observed only for the CS derivative with octadecyl side groups. However, the nanocapsules coated with AmCSs, especially those filled with vitamin E, show high biocompatibility with human skin cells. Due to their stability under physiological conditions, the high encapsulation efficiency of their hydrophobic compounds, and biocompatibility, AmCS-based NCs are promising carriers for the topical delivery of lipophilic bioactive compounds. Full article
27 pages, 2001 KiB  
Article
Antimicrobial Susceptibility of Canine and Feline Urinary Tract Infection Pathogens Isolated from Animals with Clinical Signs in European Veterinary Practices during the Period 2013–2018
by Robin Temmerman, Helena Berlamont, Farid El Garch, Markus Rose, Shabbir Simjee, Sylvie Meschi and Anno de Jong
Antibiotics 2024, 13(6), 500; https://doi.org/10.3390/antibiotics13060500 (registering DOI) - 28 May 2024
Abstract
Bacterial urinary tract infections (UTIs) occur frequently in companion animals and are often treated with antibiotics. However, antimicrobial resistance can severely hamper treatment success. Therefore, antimicrobial susceptibility monitoring is key. UTI isolates were obtained from dogs and cats in two collection periods (ComPath [...] Read more.
Bacterial urinary tract infections (UTIs) occur frequently in companion animals and are often treated with antibiotics. However, antimicrobial resistance can severely hamper treatment success. Therefore, antimicrobial susceptibility monitoring is key. UTI isolates were obtained from dogs and cats in two collection periods (ComPath II: 2013–2014 and ComPath III: 2017–2018) as part of CEESA’s ComPath programme. Susceptibility testing of the UTI isolates (2021 in total) was carried out at one central laboratory using agar and broth dilution methodology as recommended by the Clinical and Laboratory Standards Institute. Escherichia coli was the most frequently isolated bacterium in UTI in both dogs (46.9%, 43.1%) and cats (61.2%, 48.3%) across ComPath II and ComPath III, respectively. The percentage of resistance in E. coli was low (<10%) across both programmes in both dogs and cats except for trimethoprim-sulfamethoxazole (dogs ComPath III: 12.9%; cats ComPath II: 13.0%) and enrofloxacin (10.5%), marbofloxacin (11.4%), and doxycycline (98.8%) for dogs in ComPath III. Three (7.5%) of the 40 isolated S. aureus bacteria in total were MRSA and harboured mecA. The level of multidrug resistance (MDR) was generally low and ranged from 0.0% for feline coagulase-negative Staphylococcus spp. to 11.7% for canine Proteus spp., except for a peak of MDR observed in canine Klebsiella isolates from ComPath II (36.7%). Overall, antimicrobial resistance for most canine and feline UTI pathogens isolated during the ComPath II and ComPath III programmes was low (1–10%) to moderate (10–20%). Full article
19 pages, 2674 KiB  
Article
Smartphone-Based Rapid Quantitative Detection Platform with Imprinted Polymer for Pb (II) Detection in Real Samples
by Flor de Liss Meza López, Christian Jacinto Hernández, Jaime Vega-Chacón, Juan C. Tuesta, Gino Picasso, Sabir Khan, María D. P. T. Sotomayor and Rosario López
Polymers 2024, 16(11), 1523; https://doi.org/10.3390/polym16111523 (registering DOI) - 28 May 2024
Abstract
This paper reports the successful development and application of an efficient method for quantifying Pb2+ in aqueous samples using a smartphone-based colorimetric device with an imprinted polymer (IIP). The IIP was synthesized by modifying the previous study; using rhodizonate, 2-acrylamido-2-methylpropane sulfonic acid [...] Read more.
This paper reports the successful development and application of an efficient method for quantifying Pb2+ in aqueous samples using a smartphone-based colorimetric device with an imprinted polymer (IIP). The IIP was synthesized by modifying the previous study; using rhodizonate, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N,N′-methylenebisacrylamide (MBA), and potassium persulfate (KPS). The polymers were then characterized. An absorption study was performed to determine the optimal conditions for the smartphone-based colorimetric device processing. The device consists of a black box (10 × 10 × 10 cm), which was designed to ensure repeatability of the image acquisition. The methodology involved the use of a smartphone camera to capture images of IIP previously exposed at Pb2+ solutions with various concentrations, and color channel values were calculated (RGB, YMK HSVI). PLS multivariate regression was performed, and the optimum working range (0–10 mg L−1) was determined using seven principal components with a detection limit (LOD) of 0.215 mg L−1 and R2 = 0.998. The applicability of a colorimetric sensor in real samples showed a coefficient of variation (% RSD) of less than 9%, and inductively coupled plasma mass spectrometry (ICP-MS) was applied as the reference method. These results confirmed that the quantitation smartphone-based colorimetric sensor is a suitable analytical tool for reliable on-site Pb2+ monitoring. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers: Latest Advances and Applications)
17 pages, 6897 KiB  
Article
Parametric Study of the Deep Excavation Performance of Underground Pumping Station Based on Numerical Method
by Jiani Zhang, Zhenkun Yang and Rafig Azzam
Buildings 2024, 14(6), 1569; https://doi.org/10.3390/buildings14061569 (registering DOI) - 28 May 2024
Abstract
Environmental responses to deep excavations are combined results of numerous factors. The effects of some factors are relatively straightforward and can be considered carefully during the design. On the other hand, more features impact excavation-induced performances indirectly, making their influences difficult to be [...] Read more.
Environmental responses to deep excavations are combined results of numerous factors. The effects of some factors are relatively straightforward and can be considered carefully during the design. On the other hand, more features impact excavation-induced performances indirectly, making their influences difficult to be clearly understood. Unfortunately, the complexity and non-repeatability of practical projects make it impossible to thoroughly understand these issues through realistic deep excavation projects. Therefore, parametric studies based on repeatable laboratory and numerical tests are desired to investigate these issues further. This work examines the influence of several key features on excavation-induced displacements through a series of 3D numerical tests. The study includes the choice of soil constitutive models, the modeling method of the soil–wall interface, and the influences of various key soil parameters. The comparison shows that the MCC model can yield a displacement field similar to the HSS model, while its soil movement is greatly improved compared to the MC model. Both the soil–wall interface properties and soil parameters impact the excavation-induced displacement to a large extent. In addition, the influence mechanisms of these parameters are analyzed, and practical suggestions are given. The findings of this paper are expected to provide practical references to the design and construction of future deep excavation projects. Full article
Show Figures

Figure 1

11 pages, 342 KiB  
Article
Polymorphism Patterns and Socioeconomic Characteristics and Their Influence on the Risk of Preeclampsia
by Flavius George Socol, Marius Craina, Simona-Alina Abu-Awwad, Ioana Denisa Socol, Simona Sorina Farcas, Ahmed Abu-Awwad, Denis Serban, Adina-Ioana Bucur, Elena Bernad, Lioara Boscu, Laura Claudia Popa and Nicoleta Ioana Andreescu
Medicina 2024, 60(6), 890; https://doi.org/10.3390/medicina60060890 (registering DOI) - 28 May 2024
Abstract
Background: Preeclampsia (PE) is a critical condition affecting pregnancies worldwide. Understanding its etiology, particularly the genetic factors, is vital. This study aims to investigate the association between ACE gene polymorphisms, specifically the ACE G2350A (rs4343) variant, and the predisposition to PE, offering [...] Read more.
Background: Preeclampsia (PE) is a critical condition affecting pregnancies worldwide. Understanding its etiology, particularly the genetic factors, is vital. This study aims to investigate the association between ACE gene polymorphisms, specifically the ACE G2350A (rs4343) variant, and the predisposition to PE, offering insights into the genetic predisposition towards this complex condition. Methods: A case-control study was conducted with 140 participants without PE (Control Group) and 128 participants diagnosed with PE (PE Group). The study focused on comparing the prevalence of the rs4343 polymorphism between the groups. Results: The analysis identified a significantly reduced risk associated with the AG genotype and an insignificant increase in risk with the AA genotype. Statistically significant differences in demographic and clinical characteristics, such as BMI and marital status, were observed between the groups, suggesting a multifaceted risk profile for PE that includes genetic, environmental, and socio-economic factors. Conclusions: The study highlight the significant role of genetic variations, specifically the ACE G2350A (rs4343) polymorphism, in influencing PE predisposition. It highlights the intricate interplay between genetic predispositions and other risk factors in the development of PE. Further research is encouraged to expand on these findings and explore a wider range of genetic polymorphisms and their interactions with environmental factors. Full article
14 pages, 592 KiB  
Review
Photonic Devices with Multi-Domain Liquid Crystal Structures
by Aleksey Kudreyko, Vladimir Chigrinov, Kristiaan Neyts, Denis Chausov and Arina Perestoronina
Crystals 2024, 14(6), 512; https://doi.org/10.3390/cryst14060512 (registering DOI) - 28 May 2024
Abstract
Photoalignment by azo dye nanolayers can provide high alignment quality for large-area liquid crystal devices. Application of this technology to active optical elements for signal processing and communications is a hot topic of photonics research. In this article, we review recent demonstrations and [...] Read more.
Photoalignment by azo dye nanolayers can provide high alignment quality for large-area liquid crystal devices. Application of this technology to active optical elements for signal processing and communications is a hot topic of photonics research. In this article, we review recent demonstrations and performance of liquid crystal photonic devices, discuss the advantages of the proposed technology, and identify challenges and future prospects in the research field of photoaligned multi-domain liquid crystal structures. We believe that the developments discussed here can provide directions for future research and potential opportunities for applications of liquid crystal devices based on multi-domain photoalignment. Full article
(This article belongs to the Special Issue Optical Crystals and Their Applications in Optical Devices)
21 pages, 4657 KiB  
Article
Failure Mechanism of Rear Drive Shaft in a Modified Pickup Truck
by Zhichao Huang, Jiaxuan Wang, Yihua Hu, Yuqiang Jiang, Yong Xu and Xiongfei Wan
Metals 2024, 14(6), 641; https://doi.org/10.3390/met14060641 (registering DOI) - 28 May 2024
Abstract
This paper investigates the failure mechanism of the rear drive shaft in a modified pickup truck which had operated for about 3000 km. The investigation included macroscopic and microscopic evaluation to document the morphologies of the fracture surface, measurement of the material composition, [...] Read more.
This paper investigates the failure mechanism of the rear drive shaft in a modified pickup truck which had operated for about 3000 km. The investigation included macroscopic and microscopic evaluation to document the morphologies of the fracture surface, measurement of the material composition, metallographic preparation and examination, mechanical testing, and finite element modelling and calculations. The results obtained suggest that rotation-bending fatigue was the primary cause of the drive shaft failure. The crack initiation is located in the root of the machined threads on the drive shaft surface and expanded along the side of the machining line surface. The main cause of fatigue cracks is attributable to a high stress concentration owing to a large unilateral bending impact under overload. Meanwhile, the bidirectional torsional force also produces a higher stress concentration and thus accelerates the fatigue crack to expand radially along the surface. Furthermore, the hardness of the central section of the drive shaft was marginally below standard. This deficiency results in harm to the bearings and other mechanical components, as well as expediting the enlargement of cracks. Finite element analysis revealed significant contact stress between the bearing and drive shaft, with stress levels exceeding the fatigue limit stress of the parent material. This highlights the need for reevaluation of the heat treatment process and vehicle loading quality to enhance the drive shaft’s longevity. Full article
(This article belongs to the Special Issue Failure of Metals: Fracture and Fatigue of Metallic Materials)
20 pages, 21050 KiB  
Article
Outlier Detection by Energy Minimization in Quantized Residual Preference Space for Geometric Model Fitting
by Yun Zhang, Bin Yang, Xi Zhao, Shiqian Wu, Bin Luo and Liangpei Zhang
Electronics 2024, 13(11), 2101; https://doi.org/10.3390/electronics13112101 (registering DOI) - 28 May 2024
Abstract
Outliers significantly impact the accuracy of geometric model fitting. Previous approaches to handling outliers have involved threshold selection and scale estimation. However, many scale estimators assume that the inlier distribution follows a Gaussian model, which often does not accurately represent cases in geometric [...] Read more.
Outliers significantly impact the accuracy of geometric model fitting. Previous approaches to handling outliers have involved threshold selection and scale estimation. However, many scale estimators assume that the inlier distribution follows a Gaussian model, which often does not accurately represent cases in geometric model fitting. Outliers, defined as points with large residuals to all true models, exhibit similar characteristics to high values in quantized residual preferences, thus causing outliers to cluster away from inliers in quantized residual preference space. In this paper, we leverage this consensus among outliers in quantized residual preference space by extending energy minimization to combine model error and spatial smoothness for outlier detection. The outlier detection process based on energy minimization follows an alternate sampling and labeling framework. Subsequently, an ordinary energy minimization method is employed to optimize inlier labels, thereby following the alternate sampling and labeling framework. Experimental results demonstrate that the energy minimization-based outlier detection method effectively identifies most outliers in the data. Additionally, the proposed energy minimization-based inlier segmentation accurately segments inliers into different models. Overall, the performance of the proposed method surpasses that of most state-of-the-art methods. Full article
(This article belongs to the Special Issue Computational Imaging and Its Application)
24 pages, 1139 KiB  
Article
Infant Care: Predictors of Outdoor Walking, Infant Carrying and Infant Outdoor Sleeping
by Nicole Rheinheimer, Stefania V. Vacaru, Julie C. van Immerseel, Simone Kühn and Carolina de Weerth
Int. J. Environ. Res. Public Health 2024, 21(6), 694; https://doi.org/10.3390/ijerph21060694 (registering DOI) - 28 May 2024
Abstract
Background. Although spending time outdoors is beneficial for development, little is known about outdoor time during infancy. The aim of this study was to assess frequencies and durations of (1a) outdoor walking and carrying in mother–infant dyads and (1b) infant outdoor sleeping in [...] Read more.
Background. Although spending time outdoors is beneficial for development, little is known about outdoor time during infancy. The aim of this study was to assess frequencies and durations of (1a) outdoor walking and carrying in mother–infant dyads and (1b) infant outdoor sleeping in a stationary cot or pram. We furthermore aimed to identify associations of (2a) outdoor walking and carrying and (2b) infant outdoor sleeping, with infant, maternal and environmental sample characteristics. Methods. An online survey was distributed among mothers of 0- to 12-month-old infants. Initially, 1453 mothers were recruited, of which 1275 were included in the analyses. With respect to (1a) the outcomes of interest were: mother–infant dyads’ total weekly duration of walking in minutes, frequency of walking on weekdays, as well as weekends, and the frequency of using an infant carrier during walks, as well as the daily duration of carrying in hours (indoors and outdoors together). With respect to (1b) the outcome variables were: placing the infant outdoors to sleep (yes/no), the total weekly duration of outdoor sleeping and the weekly frequency of outdoor sleeping. For aim 2, associations of the outcome variables with infant (i.e., age), maternal (i.e., working status) and environmental (i.e., house type) sample characteristics were assessed. Results. Mother–infant dyads engaged in walks for a total weekly duration of 201 min, for approximately one to three walks over weekdays (Monday through Friday), as well as one to three walks on the weekend. The infant carrier was used by 22% of mothers at least half of the time during outdoor walks, and 18% reported a daily duration of infant carrying of one hour or more. Among other associations, infant and maternal enjoyment of outdoor walking correlated positively with the duration as well as the frequency of walking during weekdays and during the weekend. Furthermore, employed mothers walked for a shorter duration and less frequently on weekdays as compared to mothers on maternity leave or mothers without a paid job. The availability of nearby recreational areas correlated positively with the weekly duration and frequency of walks. The infant carrier was used more frequently during outdoor walks if more than one child lived in the household. Infant carrying during outdoor walks was also related to infant behavior at night. Roughly a third of the mothers (29%) regularly had their infant sleep outdoors for a weekly duration of four hours and a weekly frequency of approximately one to two times. Younger infants, infants of mothers with higher education and infants living in detached houses were more likely to be placed outdoors to sleep. Discussion. We identified associations of infant, maternal and environmental characteristics with outdoor time spent during infancy. These results lay the foundation for future research on the effects of the outdoors on child development as well as on facilitators and barriers for caregivers. Full article
(This article belongs to the Special Issue Women's Health, Pregnancy and Child Health)
17 pages, 4182 KiB  
Review
Percutaneous Endovascular Reconstruction of the Common Femoral Artery and Its Bifurcation
by Stephanie Rassam and Raphaël Coscas
J. Clin. Med. 2024, 13(11), 3169; https://doi.org/10.3390/jcm13113169 (registering DOI) - 28 May 2024
Abstract
Occlusive lesions of the common femoral artery (CFA) and its bifurcation have traditionally been treated with open surgery. Although long-term patency rates after open surgery are excellent, such repairs are associated with substantial local and general morbidity. In recent years, different treatment options [...] Read more.
Occlusive lesions of the common femoral artery (CFA) and its bifurcation have traditionally been treated with open surgery. Although long-term patency rates after open surgery are excellent, such repairs are associated with substantial local and general morbidity. In recent years, different treatment options have emerged within percutaneous endovascular repair. We hereby present a narrative review on endovascular treatment modalities and a treatment algorithm for endovascular revascularisation of the CFA and its bifurcation. Lesion analysis, access issues, vessel preparation tools, and types of repairs with or without the involvement of the bifurcation are described. Based on current data, an interventional approach can result in high technical success and acceptable mid-term patency rates. Further comparative evidence with open surgery and/or between the different types of endovascular repairs is required to improve the current treatment algorithm. Full article
(This article belongs to the Special Issue Vascular Surgery: Current Challenges and New Perspectives)
Show Figures

Figure 1

23 pages, 6734 KiB  
Article
A Bayesian Framework to Quantify Uncertainty in Aerosol Optical Model Selection Applied to TROPOMI Measurements
by Anu Kauppi, Antti Kukkurainen, Antti Lipponen, Marko Laine, Antti Arola, Hannakaisa Lindqvist and Johanna Tamminen
Remote Sens. 2024, 16(11), 1945; https://doi.org/10.3390/rs16111945 (registering DOI) - 28 May 2024
Abstract
This article presents a method within a Bayesian framework for quantifying uncertainty in satellite aerosol remote sensing when retrieving aerosol optical depth (AOD). By using a Bayesian model averaging technique, we take into account uncertainty in aerosol optical model selection and also obtain [...] Read more.
This article presents a method within a Bayesian framework for quantifying uncertainty in satellite aerosol remote sensing when retrieving aerosol optical depth (AOD). By using a Bayesian model averaging technique, we take into account uncertainty in aerosol optical model selection and also obtain a shared inference about AOD based on the best-fitting optical models. In particular, uncertainty caused by forward-model approximations has been taken into account in the AOD retrieval process to obtain a more realistic uncertainty estimate. We evaluated a model discrepancy, i.e., forward-model uncertainty, empirically by exploiting the residuals of model fits and using a Gaussian process to characterise the discrepancy. We illustrate the method with examples using observations from the TROPOspheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor satellite. We evaluated the results against ground-based remote sensing aerosol data from the Aerosol Robotic Network (AERONET). Full article
(This article belongs to the Section Atmospheric Remote Sensing)
19 pages, 1593 KiB  
Article
Performance Analysis and Optimization of Compressed Air Energy Storage Integrated with Latent Thermal Energy Storage
by Xiaoli Yu, Wenbo Dou, Zhiping Zhang, Yan Hong, Gao Qian and Zhi Li
Energies 2024, 17(11), 2608; https://doi.org/10.3390/en17112608 (registering DOI) - 28 May 2024
Abstract
Recovering compression waste heat using latent thermal energy storage (LTES) is a promising method to enhance the round-trip efficiency of compressed air energy storage (CAES) systems. In this study, a systematic thermodynamic model coupled with a concentric diffusion heat transfer model of the [...] Read more.
Recovering compression waste heat using latent thermal energy storage (LTES) is a promising method to enhance the round-trip efficiency of compressed air energy storage (CAES) systems. In this study, a systematic thermodynamic model coupled with a concentric diffusion heat transfer model of the cylindrical packed-bed LTES is established for a CAES system, and the numerical simulation model is validated by experimental data in the reference. Based on the numerical model, the charging–discharging performance of LTES and CAES systems is evaluated under different layouts of phase change materials (PCMs) in LTES, and the optimal layout of PCM is specified as a three-stage layout, since the exergy efficiency of LTES and round-trip efficiency are improved by 8.2% and 6.9% compared with a one-stage layout. Then, the proportion of three PCMs is optimized using response surface methods. The optimization results indicate that the exergy efficiency of LTES and round-trip efficiency of the CAES system are expected to be 80.9% and 73.3% under the PCM proportion of 0.48:0.3:0.22 for three stages, which are 7.0% and 13.1% higher than the original three-stage PCMs with equal proportions. Full article
23 pages, 1173 KiB  
Article
TRPA1 Covalent Ligand JT010 Modifies T Lymphocyte Activation
by Katalin Szabó, Géza Makkai, János Konkoly, Viktória Kormos, Balázs Gaszner, Tímea Berki and Erika Pintér
Biomolecules 2024, 14(6), 632; https://doi.org/10.3390/biom14060632 (registering DOI) - 28 May 2024
Abstract
Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in sensitivity to a plethora of irritating agents and endogenous mediators of oxidative stress. TRPA1 influences neuroinflammation and macrophage and lymphocyte functions, but its role is controversial in immune cells. We [...] Read more.
Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in sensitivity to a plethora of irritating agents and endogenous mediators of oxidative stress. TRPA1 influences neuroinflammation and macrophage and lymphocyte functions, but its role is controversial in immune cells. We reported earlier a detectable, but orders-of-magnitude-lower level of Trpa1 mRNA in monocytes and lymphocytes than in sensory neurons by qRT-PCR analyses of cells from lymphoid organs of mice. Our present goals were to (a) further elucidate the expression of Trpa1 mRNA in immune cells by RNAscope in situ hybridization (ISH) and (b) test the role of TRPA1 in lymphocyte activation. RNAscope ISH confirmed that Trpa1 transcripts were detectable in CD14+ and CD4+ cells from the peritoneal cavity of mice. A selective TRPA1 agonist JT010 elevated Ca2+ levels in these cells only at high concentrations. However, a concentration-dependent inhibitory effect of JT010 was observed on T-cell receptor (TcR)-induced Ca2+ signals in CD4+ T lymphocytes, while JT010 neither modified B cell activation nor ionomycin-stimulated Ca2+ level. Based on our present and past findings, TRPA1 activation negatively modulates T lymphocyte activation, but it does not appear to be a key regulator of TcR-stimulated calcium signaling. Full article
(This article belongs to the Special Issue TRP Channels in Cardiovascular and Inflammatory Disease)
3 pages, 236 KiB  
Editorial
Friction and Wear of Cutting Tools and Cutting Tool Materials
by Guoliang Liu, Chuanzhen Huang, Xiangyu Wang, Bin Zhao and Min Ji
Lubricants 2024, 12(6), 192; https://doi.org/10.3390/lubricants12060192 (registering DOI) - 28 May 2024
Abstract
The friction between cutting tools and the workpiece/chip can significantly affect the tool wear, cutting force, cutting temperature, machined surface integrity, and machined parts’ service performance. [...] Full article
(This article belongs to the Special Issue Friction and Wear of Cutting Tools and Cutting Tool Materials)
13 pages, 1683 KiB  
Article
Characterization of Heart Diseases per Single Lead Using ECG Images and CNN-2D
by Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Debora Montano and Riccardo Pecori
Sensors 2024, 24(11), 3485; https://doi.org/10.3390/s24113485 (registering DOI) - 28 May 2024
Abstract
Cardiopathy has become one of the predominant global causes of death. The timely identification of different types of heart diseases significantly diminishes mortality risk and enhances the efficacy of treatment. However, fast and efficient recognition necessitates continuous monitoring, encompassing not only specific clinical [...] Read more.
Cardiopathy has become one of the predominant global causes of death. The timely identification of different types of heart diseases significantly diminishes mortality risk and enhances the efficacy of treatment. However, fast and efficient recognition necessitates continuous monitoring, encompassing not only specific clinical conditions but also diverse lifestyles. Consequently, an increasing number of studies are striving to automate and progress in the identification of different cardiopathies. Notably, the assessment of electrocardiograms (ECGs) is crucial, given that it serves as the initial diagnostic test for patients, proving to be both the simplest and the most cost-effective tool. This research employs a customized architecture of Convolutional Neural Network (CNN) to forecast heart diseases by analyzing the images of both three bands of electrodes and of each single electrode signal of the ECG derived from four distinct patient categories, representing three heart-related conditions as well as a spectrum of healthy controls. The analyses are conducted on a real dataset, providing noteworthy performance (recall greater than 80% for the majority of the considered diseases and sometimes even equal to 100%) as well as a certain degree of interpretability thanks to the understanding of the importance a band of electrodes or even a single ECG electrode can have in detecting a specific heart-related pathology. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Imaging Sensors and Processing)
22 pages, 1604 KiB  
Article
Optimisation of the Transmitter Layout in a VLP System Using an Aperture-Based Receiver
by José Miguel Menéndez and Heidi Steendam
Photonics 2024, 11(6), 517; https://doi.org/10.3390/photonics11060517 (registering DOI) - 28 May 2024
Abstract
In this paper, we consider a visible light positioning (VLP) system, where an array of photo diodes combined with apertures is used as a directional receiver and a set of inexpensive and energy-efficient light-emitting diodes (LEDs) is used as transmitters. The paper focuses [...] Read more.
In this paper, we consider a visible light positioning (VLP) system, where an array of photo diodes combined with apertures is used as a directional receiver and a set of inexpensive and energy-efficient light-emitting diodes (LEDs) is used as transmitters. The paper focuses on the optimisation of the layout of the transmitter, i.e., the number and placement of the LEDs, to meet the wanted position estimation accuracy levels. To this end, we evaluate the Cramer–Rao bound (CRB), which is a lower bound on the mean-squared error (MSE) of the position estimate, to analyse the influence of the LEDs’ placement. In contrast to other works, where only the location of the LEDs was considered and/or the optimisation was carried out through simulations, in this work, the optimisation is carried out analytically and considers all the parameters involved in the VLP system as well as the illumination. Based on our results, we formulate simple rules of thumb with which we can determine the spacing between LEDs and the minimum number of LEDs, as well as their position on the ceiling, while also taking into account the requirements for the illumination. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop