The 2023 MDPI Annual Report has
been released!
 
20 pages, 8983 KiB  
Article
Analysing the Spatio-Temporal Variations of Urban Street Summer Solar Radiation through Historical Street View Images: A Case Study of Shanghai, China
by Lei Wang, Longhao Zhang and Jie He
ISPRS Int. J. Geo-Inf. 2024, 13(6), 190; https://doi.org/10.3390/ijgi13060190 (registering DOI) - 7 Jun 2024
Abstract
Understanding solar radiation in urban street spaces is crucial for comprehending residents’ environmental experiences and enhancing their quality of life. However, existing studies rarely focus on the patterns of urban street solar radiation over time and across different urban and suburban areas. In [...] Read more.
Understanding solar radiation in urban street spaces is crucial for comprehending residents’ environmental experiences and enhancing their quality of life. However, existing studies rarely focus on the patterns of urban street solar radiation over time and across different urban and suburban areas. In this study, street view images from the summers of 2013 and 2019 in Shanghai were used to calculate solar radiation in urban street spaces. The results show a general decrease in street solar radiation in 2019 compared to 2013, with an average drop of 12.34%. The decrease was most significant in October (13.47%) and least in May (11.71%). In terms of solar radiation data gathered from street view sampling points, 76.57% showed a decrease, while 23.43% showed an increase. Spatially, solar radiation decreased by 79.66% for every additional 1.5 km from the city centre. In summary, solar radiation generally shows a decreasing trend, with significant variations between different areas. These findings are vitally important for guiding urban planning, optimising green infrastructure, and enhancing the urban ecological environment, further promoting sustainable urban development and improving residents’ quality of life. Full article
Show Figures

Figure 1

20 pages, 6780 KiB  
Article
Hump-Nosed Pit Viper (Hypnale hypnale) Venom-Induced Irreversible Red Blood Cell Aggregation, Inhibition by Monovalent Anti-Venom and N-Acetylcysteine
by Vaddaragudisalu D. Sandesha, Puttaswamy Naveen, Kurnegala Manikanta, Shanmuga S. Mahalingam, Kesturu S. Girish and Kempaiah Kemparaju
Cells 2024, 13(12), 994; https://doi.org/10.3390/cells13120994 (registering DOI) - 7 Jun 2024
Abstract
Envenomation by the Hypnale hypnale in the Western Ghats of India (particularly in the Malabar region of Kerala) and the subcontinent island nation of Sri Lanka is known to inflict devastating mortality and morbidity. Currently, H. hypnale bites in India are devoid of [...] Read more.
Envenomation by the Hypnale hypnale in the Western Ghats of India (particularly in the Malabar region of Kerala) and the subcontinent island nation of Sri Lanka is known to inflict devastating mortality and morbidity. Currently, H. hypnale bites in India are devoid of anti-venom regimens. A detailed characterization of the venom is essential to stress the need for therapeutic anti-venom. Notably, the deleterious effects of this venom on human blood cells have largely remained less explored. Therefore, in continuation of our previous study, in the present study, we envisioned investigating the effect of venom on the morphological and physiological properties of red blood cells (RBCs). The venom readily induced deleterious morphological changes and, finally, the aggregation of washed RBCs. The aggregation process was independent of the ROS and the intracellular Ca2+ ion concentration. Confocal and scanning electron microscopy (SEM) images revealed the loss of biconcave morphology and massive cytoskeletal disarray. Crenation or serrated plasma membrane projections were evenly distributed on the surface of the RBCs. The venom did not cause the formation of methemoglobin in washed RBCs but was significantly induced in whole blood. Venom did not affect glucose uptake and Na+/K+ -ATPase activity but inhibited glucose 6 phosphate dehydrogenase activity and decreased the fluidity of the plasma membrane. Venom-induced RBC aggregates exhibited pro-coagulant activity but without affecting platelet aggregation. In pre-incubation or co-treatment studies, none of the bioactive compounds, such as melatonin, curcumin, fisetin, berberine, and quercetin, sugars such as mannose and galactose, and therapeutic polyvalent anti-venoms (Bharat and VINS) were inhibited, whereas only N-acetylcysteine and H. hypnale monovalent anti-venom could inhibit venom-induced deleterious morphological changes and aggregation of RBCs. In post-treatment studies, paradoxically, none of the bioactives and anti-venoms, including N-acetylcysteine and H. hypnale monovalent anti-venom, reversed the venom-induced RBC aggregates. Full article
Show Figures

Figure 1

17 pages, 2041 KiB  
Article
Method for the Trajectory Tracking Control of Unmanned Ground Vehicles Based on Chaotic Particle Swarm Optimization and Model Predictive Control
by Mengtao Jin, Junmin Li and Te Chen
Symmetry 2024, 16(6), 708; https://doi.org/10.3390/sym16060708 (registering DOI) - 7 Jun 2024
Abstract
The symmetry principle has significant guiding value in vehicle dynamics modeling and motion control. In complex driving scenarios, there are problems of low accuracy and large time delay in the trajectory tracking control of unmanned ground vehicles. In order to solve this problem [...] Read more.
The symmetry principle has significant guiding value in vehicle dynamics modeling and motion control. In complex driving scenarios, there are problems of low accuracy and large time delay in the trajectory tracking control of unmanned ground vehicles. In order to solve this problem and improve the motion control of unmanned ground vehicles, a vehicle coordination control method based on chaotic particle swarm optimization (CPSO) and model predictive control (MPC) algorithms is proposed. To achieve coordinated control of vehicle trajectory tracking and yaw stability, a model predictive controller was designed with the objective of minimizing trajectory tracking errors and yaw stability tracking errors. The required front wheel angle and yaw torque control variables were obtained by solving nonlinear constraint optimization. At the same time, considering the problems of low computational efficiency, high solving time, and local optimization in model predictive control, a chaotic particle swarm optimization algorithm is introduced to solve the optimization constraint problem within model predictive control, thereby effectively improving the computational efficiency and accuracy of the model predictive trajectory tracking controller. The results show that compared with MPC, the multi-objective function optimization solution time and vehicle lane changing time of CPSOMPC improved by 24.51% and 7.21%, respectively, which indicates the coordinated control method that combines the CPSO and MPC algorithms can effectively improve trajectory tracking performance while ensuring vehicle lateral stability. Full article
Show Figures

Figure 1

4 pages, 186 KiB  
Editorial
Climate Change and Agriculture—Sustainable Plant Production
by Zhong-Xiu Sun, Cheng-Cheng Zhang, Jin-Long Dong and Ying-Ying Jiang
Agronomy 2024, 14(6), 1236; https://doi.org/10.3390/agronomy14061236 (registering DOI) - 7 Jun 2024
Abstract
Climate change has a great impact on plant growth and agricultural production, especially on the growing season, growth rate, and growth distribution [...] Full article
(This article belongs to the Special Issue Climate Change and Agriculture—Sustainable Plant Production)
10 pages, 621 KiB  
Article
The Association of Infant Birth Sizes and Anemia under Five Years Old: A Population-Based Prospective Cohort Study in China
by Xiaojing Liu, Xiaowen Liu, Zeping Yang, Zhiwen Li, Le Zhang, Yali Zhang, Jianmeng Liu, Rongwei Ye and Nan Li
Nutrients 2024, 16(12), 1796; https://doi.org/10.3390/nu16121796 (registering DOI) - 7 Jun 2024
Abstract
Infant birth sizes are vital clinical parameters to predict poor growth and micronutrient deficiency in early life. However, their effects on childhood anemia remain unclear. We aimed to explore the associations between birth weight, crown–heel length, and head circumference with anemia in early [...] Read more.
Infant birth sizes are vital clinical parameters to predict poor growth and micronutrient deficiency in early life. However, their effects on childhood anemia remain unclear. We aimed to explore the associations between birth weight, crown–heel length, and head circumference with anemia in early childhood, as well as potential modification factors. This population-based prospective cohort study included 204,556 participants with singleton live births delivered at gestational ages of 28–42 weeks. A logistic regression model was used to estimate the associations of the measures of infant birth size and their Z-score with anemia under five years old. There were 26,802 (13.10%) children under five years old who were diagnosed has having anemia. Compared with children who did not have anemia, children who had anemia had a lower birth weight and smaller head circumference and a longer crown–heel length (all p-values < 0.05). After adjusting for confounders, not only birth weight (β coefficient, −0.008; 95% CI, −0.011–−0.004; p < 0.001) and head circumference (β coefficient, −0.004; 95% CI, −0.007–−0.001; p = 0.009), but also the related Z-scores were negatively associated with childhood anemia, while the trends for crown–heel length were the opposite. We further found significant interactions of folic acid use and maternal occupation with infant birth sizes. In conclusion, infants having abnormal sizes at birth are significantly associated with the risk for childhood anemia, which can be modified by folic acid use during pregnancy and maternal occupation. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

15 pages, 15884 KiB  
Article
A Data-Driven Motor Optimization Method Based on Support Vector Regression—Multi-Objective, Multivariate, and with a Limited Sample Size
by Guanghao Li, Ruicheng Li, Haobo Hou, Guoyi Zhang and Zhiyong Li
Electronics 2024, 13(12), 2231; https://doi.org/10.3390/electronics13122231 (registering DOI) - 7 Jun 2024
Abstract
The increasing demand for sustainable development and energy efficiency underscores the importance of optimizing motors in driving the upgrade of energy structures. This paper studies a data-driven approach for the multi-objective optimization of motors designed for scenarios involving multiple variables, objectives, and limited [...] Read more.
The increasing demand for sustainable development and energy efficiency underscores the importance of optimizing motors in driving the upgrade of energy structures. This paper studies a data-driven approach for the multi-objective optimization of motors designed for scenarios involving multiple variables, objectives, and limited sample sizes and validates its efficacy. Initially, sensitivity analysis is employed to identify potentially influential variables, thus selecting key design parameters. Subsequently, Latin hypercube sampling (LHS) is utilized to select experimental points, ensuring the coverage of the modeled test points across the experimental space to enhance fitting accuracy. Finally, the support vector regression (SVR) algorithm is employed to fit the objective function, in conjunction with multi-objective particle swarm optimization (MOPSO) for solution derivation. The presented method is used to optimize the efficiency, average output torque, and induced electromotive force harmonic distortion rate of a permanent magnet synchronous motor (PMSM). The results show an improvement of approximately 6.80% in average output torque and a significant decrease of about 59.5% in the induced electromotive force harmonic distortion rate, with minimal impact on efficiency. This study offers a pathway for enhancing motor performance, holding practical significance. Full article
Show Figures

Figure 1

7 pages, 641 KiB  
Brief Report
The Use of Potassium Iodide in Pediatric Dentistry Does Not Change the Retention of Glass Ionomer Cement on a Dentin Treated with Silver Fluoride: In Vitro Results
by Louise Gotas, Thibault Canceill and Sabine Joniot
Dent. J. 2024, 12(6), 177; https://doi.org/10.3390/dj12060177 (registering DOI) - 7 Jun 2024
Abstract
In pediatric and operative dentistry, caries treatment benefits from a therapeutic option based on the use of silver fluoride (AgF) associated with potassium iodide (KI) to avoid dark colorations on dental tissues. The objective of this in vitro study is to evaluate the [...] Read more.
In pediatric and operative dentistry, caries treatment benefits from a therapeutic option based on the use of silver fluoride (AgF) associated with potassium iodide (KI) to avoid dark colorations on dental tissues. The objective of this in vitro study is to evaluate the retention of glass ionomer cement (GIC) on a dentin when treated with AgF and KI. Twenty-two healthy human permanent molars and eight human primary teeth, all free of any decay, were cut to obtain occlusal flat dentinal surfaces and were then treated with AgF for a duration of 60 s. For half of the teeth, a drop of KI was applied for a duration of 30 s. All samples were covered with a plot of GIC and their resistance to shear bond strength was measured. The fracture resistance in both permanent and primary teeth does not show any statistically significant differences whether KI was applied or not. For permanent teeth, the resistance is slightly higher in the group treated with KI than in the group treated with AgF alone. To our knowledge, these data are the first to describe the possible application of KI both on primary and permanent teeth. In any case, further studies are needed to investigate the bond strength between dentin and GIC on a wider range of samples. Full article
(This article belongs to the Special Issue Current Advances in Pediatric Odontology)
Show Figures

Figure 1

18 pages, 3495 KiB  
Article
SARS-CoV-2 Viroporin E Induces Ca2+ Release and Neuron Cell Death in Primary Cultures of Rat Hippocampal Cells Aged In Vitro
by Sara López-Vázquez, Carlos Villalobos and Lucía Núñez
Int. J. Mol. Sci. 2024, 25(12), 6304; https://doi.org/10.3390/ijms25126304 (registering DOI) - 7 Jun 2024
Abstract
The COVID-19 pandemic was caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which may lead to serious respiratory, vascular and neurological dysfunctions. The SARS-CoV-2 envelope protein (E protein) is a structural viroporin able to form ion channels in cell membranes, [...] Read more.
The COVID-19 pandemic was caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which may lead to serious respiratory, vascular and neurological dysfunctions. The SARS-CoV-2 envelope protein (E protein) is a structural viroporin able to form ion channels in cell membranes, which is critical for viral replication. However, its effects in primary neurons have not been addressed. Here we used fluorescence microscopy and calcium imaging to study SARS-CoV-2 viroporin E localization and the effects on neuron damage and intracellular Ca2+ homeostasis in a model of rat hippocampal neurons aged in vitro. We found that the E protein quickly enters hippocampal neurons and colocalizes with the endoplasmic reticulum (ER) in both short-term (6–8 days in vitro, DIV) and long-term (20–22 DIV) cultures resembling young and aged neurons, respectively. Strikingly, E protein treatment induces apoptosis in aged neurons but not in young neurons. The E protein induces variable increases in cytosolic Ca2+ concentration in hippocampal neurons. Ca2+ responses to the E protein are due to Ca2+ release from intracellular stores at the ER. Moreover, E protein-induced Ca2+ release is very small in young neurons and increases dramatically in aged neurons, consistent with the enhanced Ca2+ store content in aged neurons. We conclude that the SARS-CoV-2 E protein quickly translocates to ER endomembranes of rat hippocampal neurons where it releases Ca2+, probably acting like a viroporin, thus producing Ca2+ store depletion and neuron apoptosis in aged neurons and likely contributing to neurological damage in COVID-19 patients. Full article
(This article belongs to the Special Issue Calcium Signaling in Health and Diseases)
Show Figures

Figure 1

22 pages, 1531 KiB  
Article
Analysis of the Spread and Evolution of COVID-19 Mutations in Ecuador Using Open Data
by Cesar Guevara, Dennys Coronel, Byron Salazar, Jorge Salazar and Hugo Arias-Flores
Life 2024, 14(6), 735; https://doi.org/10.3390/life14060735 (registering DOI) - 7 Jun 2024
Abstract
Currently, the analyses of and prediction using COVID-19-related data extracted from patient information repositories compiled by hospitals and health organizations are of paramount importance. These efforts significantly contribute to vaccine development and the formulation of contingency techniques, providing essential tools to prevent resurgence [...] Read more.
Currently, the analyses of and prediction using COVID-19-related data extracted from patient information repositories compiled by hospitals and health organizations are of paramount importance. These efforts significantly contribute to vaccine development and the formulation of contingency techniques, providing essential tools to prevent resurgence and to effectively manage the spread of the disease. In this context, the present research focuses on analyzing the biological information of the SARS-CoV-2 viral gene sequences and the clinical data of COVID-19-affected patients using publicly accessible data from Ecuador. This involves considering variables such as age, gender, and geographical location to understand the evolution of mutations and their distributions across Ecuadorian provinces. The Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology is applied for data analysis. Various data preprocessing and statistical analysis techniques are employed, including Pearson correlation, the chi-square test, and analysis of variance (ANOVA). Statistical diagrams and charts are used to facilitate a better visualization of the results. The results illuminate the genetic diversity of the virus and its correlation with clinical variables, offering a comprehensive understanding of the dynamics of COVID-19 spread in Ecuador. Critical variables influencing population vulnerability are highlighted, and the findings underscore the significance of mutation monitoring and indicate a need for global expansion of the research area. Full article
Show Figures

Figure 1

14 pages, 1254 KiB  
Article
Combining Endocrine Therapy with Trastuzumab Emtansine Improves Progression-Free Survival and Overall Survival in HER2-Positive, Hormone Receptor-Positive Metastatic Breast Cancer
by Oğuzcan Kınıkoğlu, Hatice Odabas, Yunus Emre Altıntaş, Anıl Yıldız, Burçin Çakan, Goncagül Akdağ, Sedat Yıldırım, Hamit Bal, Tuğba Kaya, Salih Tünbekici, Deniz Işık, Tuğba Başoğlu, Mahmut Emre Yıldırım and Nedim Turan
Medicina 2024, 60(6), 951; https://doi.org/10.3390/medicina60060951 (registering DOI) - 7 Jun 2024
Abstract
Background and Objectives: Patients with human epidermal growth factor receptor 2 (HER2) -positive, hormone receptor-positive (HR-positive) metastatic breast cancer (MBC) usually undergo trastuzumab emtansine (T-DM1) therapy in subsequent lines. Combining endocrine therapy (ET) with T-DM1 can improve treatment outcomes in this subtype. Therefore, [...] Read more.
Background and Objectives: Patients with human epidermal growth factor receptor 2 (HER2) -positive, hormone receptor-positive (HR-positive) metastatic breast cancer (MBC) usually undergo trastuzumab emtansine (T-DM1) therapy in subsequent lines. Combining endocrine therapy (ET) with T-DM1 can improve treatment outcomes in this subtype. Therefore, this study aimed to investigate the benefits of using T-DM1 with ET in HER2-positive and HR-positive MBC. This study was the first to investigate the benefits of combining ET with T-DM1. Material and Methods: This study analyzed the medical records of patients with HER2-positive and HR-positive MBC who were treated with T-DM1 from June 2010 to December 2021. The patients were divided into groups based on whether they received concomitant ET with T-DM1. The primary endpoint was to determine the progression-free survival (PFS), while the secondary endpoints were overall survival (OS), objective response rate, and safety of the treatment. Results: Our analysis examined 88 patients, of whom 32 (36.4%) were treated with T-DM1 in combination with ET. The combination therapy showed a significant improvement in median PFS (15.4 vs. 6.4 months; p = 0.00004) and median OS (35.0 vs. 23.1 months; p = 0.026) compared to T-DM1 alone. The ORR was also higher in the combination group (65.6% vs. 29.3%; p = 0.026). Patients treated with pertuzumab priorly had reduced median PFS on T-DM1 compared to those who were not treated with pertuzumab (11.7 vs. 5.4 months, respectively; p < 0.01). T-DM1 demonstrated better median PFS in HER2 3+ patients compared to HER2 2+ patients, with an amplification ratio of >2.0 (10.8 vs 5.8 months, respectively; p = 0.049). The safety profiles were consistent with previous T-DM1 studies. Conclusions: The combination of T-DM1 with ET can significantly improve PFS and OS in patients with HER2-positive and HR-positive MBC. Our study suggests that prior pertuzumab treatment plus trastuzumab treatment might decrease T-DM1 efficacy. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

12 pages, 251 KiB  
Review
Histoplasmosis in Taiwan: Case Summary and Literature Review
by Jui-Chi Hsu, Po-Hsun Chang, Chien-Hsiang Tai and Yi-Chun Chen
Life 2024, 14(6), 738; https://doi.org/10.3390/life14060738 (registering DOI) - 7 Jun 2024
Abstract
Histoplasmosis is a global infection caused by the thermally dimorphic fungus, Histoplasma capsulatum complex. It is endemic in the United States, as well as in Central and South America. In Taiwan, histoplasmosis is rare, with the first reported case not occurring until 1977. [...] Read more.
Histoplasmosis is a global infection caused by the thermally dimorphic fungus, Histoplasma capsulatum complex. It is endemic in the United States, as well as in Central and South America. In Taiwan, histoplasmosis is rare, with the first reported case not occurring until 1977. We summarized a total of 17 cases reported in Taiwan over the past 40 years and provided detailed descriptions for four probable indigenous cases. Due to the lack of rapid diagnostic tools and clinical suspicion, histoplasmosis may be underdiagnosed in Taiwan. We recognize that a limitation of our review is the lack of data on the environmental surveillance for H. capsulatum complex in Taiwan. Conducting a further phylogenetic analysis on both environmental and clinical isolates would provide valuable evidence for the region. Full article
(This article belongs to the Special Issue Fungal Disease Epidemiology: Current State and Future Prospects)
14 pages, 1900 KiB  
Article
Thermal and Oxidative Stability of Biocrude Oil Derived from the Continuous Hydrothermal Liquefaction of Spirulina
by Yingxian Wang, Maojiong Cao, Weijuan Lan and Dongxue Yin
Sustainability 2024, 16(12), 4884; https://doi.org/10.3390/su16124884 (registering DOI) - 7 Jun 2024
Abstract
The stability of biocrude oil is a significant challenge for its storage, transportation, and refining. In this investigation, the thermal and oxidative stability of Spirulina-biocrude oil derived from a plug-flow continuous hydrothermal reactor was systematically studied. The biocrude oil was stored at [...] Read more.
The stability of biocrude oil is a significant challenge for its storage, transportation, and refining. In this investigation, the thermal and oxidative stability of Spirulina-biocrude oil derived from a plug-flow continuous hydrothermal reactor was systematically studied. The biocrude oil was stored at three temperatures to simulate the winter (4 °C), spring and autumn (15 °C), and summer (35 °C) seasons, and in two atmospheres (air and N2) to simulate the conditions of a storage tank being sealed or kept open. Results demonstrated that the physicochemical properties of biocrude oil were highly influenced by the storage environment. The viscosity of biocrude oil increased with increasing storage temperature and time. The maximum viscosity (17,577 mPa·s) was observed when biocrude oil was stored at 35 °C and in an air condition over 84 days, 145% higher than fresh biocrude oil (7164.2 mPa·s). The viscosity increased by 10.9% when biocrude oil was sorted at 4 °C in an N2 atmosphere after being stored for 28 days. After long-term storage, biocrude oil still exhibited comparable characteristics to petroleum, with a slight decrease in HHV (31.36–33.97 MJ·kg−1) and the nitrogen-to-carbon ratio (0.087–0.092). This study indicated that the viscosity and HHV of the biocrude oil derived from a continuous reactor stored at 4 °C in an N2 atmosphere condition remained relatively unchanged, which enables the scheduling of oil refining production. Full article
(This article belongs to the Special Issue Green Chemistry and Sustainable Biomass Conversion)
Show Figures

Figure 1

16 pages, 1125 KiB  
Article
The Optimization of Frequency Distribution Based on Genetic Algorithm for Space Gravitational Wave Observatories
by Lixiao Zeng, Haojie Li, Weilai Yao, Jianyu Wang and Xindong Liang
Appl. Sci. 2024, 14(12), 4963; https://doi.org/10.3390/app14124963 (registering DOI) - 7 Jun 2024
Abstract
The three spacecraft of the space gravitational wave antenna employ heterodyne interferometry to mitigate the effects of Doppler shift. Constrained by laser relative intensity noise (RIN) and the sampling frequency constraints of phase readout circuits, the widespread adoption of fixed offset frequencies effectively [...] Read more.
The three spacecraft of the space gravitational wave antenna employ heterodyne interferometry to mitigate the effects of Doppler shift. Constrained by laser relative intensity noise (RIN) and the sampling frequency constraints of phase readout circuits, the widespread adoption of fixed offset frequencies effectively regulates the frequency of heterodyne interferometric beat notes within a reasonable frequency domain of [5 MHz, 25 MHz]. In this work, a high-precision fitness genetic algorithm for heterodyne interferometry is utilized to generate the initial offset frequency distribution scheme. To address issues with unreasonable switching times and offset frequency settings in the initial scheme for partial frequency domains, optimization strategies are proposed from three aspects: frequency domain selection extension, switch times control, and numerical low frequency. Results demonstrate that the optimization of frequency domain selection extension narrows the reasonable frequency domain to [5 MHz, 15 MHz] and [7 MHz, 17 MHz]. Optimization of switch times control ensures that switching times of offset frequency distribution scheme generated under the settings of [6 MHz, 17 MHz] and wider frequency domains can be controlled within a reasonable range of 6 to 13 times. Fixed offset frequency settings are generally reduced by 24.3% after low-frequency optimization. This methodology and result can provide a reliable reference for Program Taiji and even related space gravitational wave antenna projects. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

35 pages, 1802 KiB  
Article
Advanced Copula-Based Models for Type II Censored Data: Applications in Industrial and Medical Settings
by Ehab M. Almetwally, Aisha Fayomi and Maha E. Qura
Mathematics 2024, 12(12), 1774; https://doi.org/10.3390/math12121774 (registering DOI) - 7 Jun 2024
Abstract
Copula models are increasingly recognized for their ability to capture complex dependencies among random variables. In this study, we introduce three innovative bivariate models utilizing copula functions: the XLindley (XL) distribution with Frank, Gumbel, and Clayton copulas. The results highlight the fundamental characteristics [...] Read more.
Copula models are increasingly recognized for their ability to capture complex dependencies among random variables. In this study, we introduce three innovative bivariate models utilizing copula functions: the XLindley (XL) distribution with Frank, Gumbel, and Clayton copulas. The results highlight the fundamental characteristics and effectiveness of these newly introduced bivariate models. Statistical inference for the distribution parameters is conducted using a Type II censored sampling design. This employs maximum likelihood and Bayesian estimation techniques. Asymptotic and credible confidence intervals are calculated, and numerical analysis is performed using the Markov Chain Monte Carlo method. The proposed methodology’s applicability is illustrated by analyzing several real-world datasets. The initial dataset examines burr formation occurrences and consists of two observation sets. Additionally, the second and third datasets contain medical information. The second dataset focuses on diabetic nephropathy, while the third dataset explores infection and recurrence time among kidney patients. Full article
(This article belongs to the Special Issue Dependence Modeling with Copulas and Their Applications)
Show Figures

Figure 1

15 pages, 2270 KiB  
Article
Hydrochemistry and Stable Isotopes for the Investigation of Water Movement in Bioretention Column Experiments
by Yifan Yang, Xiang Zhang, Chao Wang, Lei Chen, Jinhan Cai and Jingyi Wang
Water 2024, 16(12), 1636; https://doi.org/10.3390/w16121636 (registering DOI) - 7 Jun 2024
Abstract
Bioretention can be an efficient measure of stormwater treatment. The bioretention system has been globally adapted for controlling rainfall-runoff volume and removing pollutants. However, there is a lack of systematic analysis of some hydrological processes in the bioretention facility, such as the transportation [...] Read more.
Bioretention can be an efficient measure of stormwater treatment. The bioretention system has been globally adapted for controlling rainfall-runoff volume and removing pollutants. However, there is a lack of systematic analysis of some hydrological processes in the bioretention facility, such as the transportation of rainfall-runoff (event water) and soil water (pre-event water). This research uniquely applied stable isotope tracing to a bioretention system to investigate the transport of rainfall-runoff and the movement of soil water in a bioretention column. The stable isotope tracing method is helpful for determining the transport process of water and is expected to enhance our understanding of bioretention systems. The ratio of the event rainfall-runoff and the pre-event soil water in the bottom outflow of bioretention columns was calculated by the stable isotope bivariate mixing model based on the oxygen and hydrogen stable isotopic data from continuous testing in the discharge of bioretention column. The time-varying proportion of event water and pre-event water in the hydrographic curve reveals that the outflow process of soil water is divided into three stages. In the early stage, all the outflow was soil water, accounting for about 6–13% of the total outflow. In the middle stage, the proportion of soil water rapidly decreased from 100% to 20% within a few minutes. In the later stage, the soil water proportion decreased slowly from 20% to 0%. The outflow of soil water accounted for more than 36% of the total outflow and decreased with the extension of the drought period. Soil water is a critical part of the bottom outflow of bioretention columns, and the influence of soil water on the hydrological effect of bioretention columns cannot be ignored. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

21 pages, 291 KiB  
Article
Issues and Needs for the Sustainable Development of Shellfish Farming in Italy
by Lucia Tudini and Andrea Forgione
Aquac. J. 2024, 4(2), 55-75; https://doi.org/10.3390/aquacj4020005 (registering DOI) - 7 Jun 2024
Abstract
The Italian shellfish industry mainly comprises clams, mussels, and oysters. While clam production thrives and Italy leads Europe, mussel farming faces economic challenges. Oyster production is relatively new and holds potential. Sustainable development is crucial for meeting growing seafood demand while ensuring resource [...] Read more.
The Italian shellfish industry mainly comprises clams, mussels, and oysters. While clam production thrives and Italy leads Europe, mussel farming faces economic challenges. Oyster production is relatively new and holds potential. Sustainable development is crucial for meeting growing seafood demand while ensuring resource conservation and food safety. This paper, part of the VALUE-SHELL project funded by the Italian Ministry of Agriculture, Food Sovereignty and Forests (MASAF) as part of support activities for the National Strategic Plan of Aquaculture, combines desk research on industry structure and public interventions using a collaborative approach involving stakeholder interviews and focus groups with producers and local entities to assess the sector’s most compelling needs. The collaborative process highlighted key challenges across the following four sustainability pillars: environmental (global warming, predator control, and pollution mitigation are critical concerns for ecosystem balance); economic (increased production costs and limited diversification opportunities affect profitability); social (fear of generational decline due to limited training and education opportunities poses a threat to the industry’s future); and institutional (lack of a dedicated aquaculture law and fragmented governance hinder long-term planning). The project identifies policy bottlenecks hindering the sector’s potential, caused by not fully addressing producer needs. Sustainable development strategies are essential for addressing these challenges and ensuring the Italian shellfish industry’s future. Full article
15 pages, 2960 KiB  
Article
Development of Halloysite Nanotube-Infused Thermoset Soybean Bio-Resin for Advanced Medical Packaging
by Shahab Saedi, Abdus Sobhan, Magdalene Hoff, Siqun Wang and Kasiviswanathan Muthukumarappan
Polymers 2024, 16(12), 1616; https://doi.org/10.3390/polym16121616 (registering DOI) - 7 Jun 2024
Abstract
The development of eco-friendly, mechanically stable, and biocompatible materials for medical packaging has gained significant attention in recent years. Halloysite nanotubes (HNTs) have emerged as a promising nanomaterial due to their unique tubular structure, high aspect ratio, and biocompatibility. We aim to develop [...] Read more.
The development of eco-friendly, mechanically stable, and biocompatible materials for medical packaging has gained significant attention in recent years. Halloysite nanotubes (HNTs) have emerged as a promising nanomaterial due to their unique tubular structure, high aspect ratio, and biocompatibility. We aim to develop a novel soybean oil-based thermoset bio-resin incorporating HNTs and to characterize its physical and functional properties for medical packaging. Soybean oil was epoxidized using an eco-friendly method and used as a precursor for preparing the thermoset resin (ESOR). Different amounts of HNTs (0.25, 0.50, and 1.0 wt.%) were used to prepare the ESOR/HNTs blends. Various characteristics such as transparency, tensile strength, thermal resistance, and water absorption were investigated. While incorporating HNTs improved the tensile strength and thermal properties of the ESOR, it noticeably reduced its transparency at the 1.0 wt.% level. Therefore, HNTs were modified using sodium hydroxide and (3-Aminopropyl) triethoxysilane (APTES) and ESOR/HNTs blends were made using 1.0 wt.% of modified HNTs. It was shown that modifying HNTs using NaOH improved the transparency and mechanical properties of prepared blends compared to those with the same amount of unmodified HNTs. However, modifying using (3-Aminopropyl) triethoxysilane (APTES) decreased the transparency but improved the water absorption of prepared resins. This study provides valuable insights into the design of HNT-based ESOR blends as a sustainable material for medical packaging, contributing to the advancement of eco-friendly packaging solutions in the healthcare industry. Full article
(This article belongs to the Section Biomacromolecules, Biobased and Biodegradable Polymers)
Show Figures

Figure 1

19 pages, 5897 KiB  
Article
Detrital Tourmalines in the Cretaceous–Eocene Julian and Brkini Flysch Basins (SE Alps, Italy and Slovenia)
by Davide Lenaz, Giovanna Garlatti, Francesco Bernardi and Sergio Andò
Minerals 2024, 14(6), 598; https://doi.org/10.3390/min14060598 (registering DOI) - 7 Jun 2024
Abstract
In the SE Alps, two Cretaceous–Eocene flysch basins, Julian and Brkini, filled with turbidite sediments, are present. This study novelly reports heavy mineral assemblage counts and detrital tourmaline characterization for 11 samples. It is possible to define three different groups, characterized by the [...] Read more.
In the SE Alps, two Cretaceous–Eocene flysch basins, Julian and Brkini, filled with turbidite sediments, are present. This study novelly reports heavy mineral assemblage counts and detrital tourmaline characterization for 11 samples. It is possible to define three different groups, characterized by the presence of (1) a clinopyroxene–epidote–low-ZTR (zircon+tourmaline+rutile; 5%) sample association, (2) a high-ZTR (>48%)–garnet–apatite association and (3) a low-ZTR (<40%)–Cr-spinel–garnet association. Detrital tourmalines from both the Julian and Brkini flysch basins are rather similar in composition, associated with metapelites and metapsammites coexisting or not coexisting with an Al-saturating phase, ferric-iron-rich quartz–tourmaline rocks and calc–silicate rocks; however, their number is drastically different. In fact, even if the percentage of heavy minerals is very low and similar in both basins (0.17–1.34% in weight), in the Julian basin, the number of tourmaline crystals is much lower than that in Brkini (1–14 vs. 30–100), suggesting an important change in the provenance area. Interestingly, the presence of a high amount of tourmaline derived from ferric-iron-rich quartz–tourmaline rocks and calc–silicate rocks makes these two basins different from all the Cretaceous flysch basins of Bosnia and the Northern Dinaric zone, where these supplies are missing or very limited. Full article
(This article belongs to the Special Issue Characterization of Flysch Formations: A Multidisciplinary Approach)
Show Figures

Figure 1

15 pages, 264 KiB  
Article
Control or Losing Control: Consumer Perceptions of Controlled Environment Agriculture (CEA) Based on Focus Group Findings
by Ivy Caixia Gan and Denise Maria Conroy
Sustainability 2024, 16(12), 4883; https://doi.org/10.3390/su16124883 (registering DOI) - 7 Jun 2024
Abstract
Technology and innovation are important in mitigating the risks imposed by climate change in many areas, including agriculture and food production. Many novel and emerging agri-food technologies are marching their way to market; however, consumer perceptions are crucial to the adoption of new [...] Read more.
Technology and innovation are important in mitigating the risks imposed by climate change in many areas, including agriculture and food production. Many novel and emerging agri-food technologies are marching their way to market; however, consumer perceptions are crucial to the adoption of new agri-food technologies which claim to be more sustainable than conventional growing systems. This study investigates how the sense of control, an important psychological factor for human behaviours, may interact with consumers’ perceptions of new agri-food technologies, and consequently affect their attitudes towards new technologies for future food production and consumption in the age of climate change. In total, 23 focus groups (n = 117) were conducted across New Zealand using Controlled Environment Agriculture (CEA, a technology-based approach to food production that optimises growing conditions for plants through the regulation of environmental factors) as the exemplar technology for discussion. Findings reveal that, when climate change and the challenge of feeding the world sustainably were presented, CEA was accepted as a means to retain control over climate and environmental crises. Meanwhile, CEA was also speculated as a threat to consumers’ sense of control concerning individual body and health, social order, and ecosystem order. To manage the disruptions that CEA may impose on perceived control, consumers may adopt different strategies to compensate for the perceived loss in their sense of control. Full article
(This article belongs to the Section Sustainable Products and Services)
18 pages, 1992 KiB  
Review
Mitochondrial One-Carbon Metabolism and Alzheimer’s Disease
by Yizhou Yu and L. Miguel Martins
Int. J. Mol. Sci. 2024, 25(12), 6302; https://doi.org/10.3390/ijms25126302 (registering DOI) - 7 Jun 2024
Abstract
Mitochondrial one-carbon metabolism provides carbon units to several pathways, including nucleic acid synthesis, mitochondrial metabolism, amino acid metabolism, and methylation reactions. Late-onset Alzheimer’s disease is the most common age-related neurodegenerative disease, characterised by impaired energy metabolism, and is potentially linked to mitochondrial bioenergetics. [...] Read more.
Mitochondrial one-carbon metabolism provides carbon units to several pathways, including nucleic acid synthesis, mitochondrial metabolism, amino acid metabolism, and methylation reactions. Late-onset Alzheimer’s disease is the most common age-related neurodegenerative disease, characterised by impaired energy metabolism, and is potentially linked to mitochondrial bioenergetics. Here, we discuss the intersection between the molecular pathways linked to both mitochondrial one-carbon metabolism and Alzheimer’s disease. We propose that enhancing one-carbon metabolism could promote the metabolic processes that help brain cells cope with Alzheimer’s disease-related injuries. We also highlight potential therapeutic avenues to leverage one-carbon metabolism to delay Alzheimer’s disease pathology. Full article
(This article belongs to the Special Issue Mitochondrial Metabolism Alterations in Health and Disease)
Show Figures

Figure 1

21 pages, 8759 KiB  
Article
Research and Experiment on Cruise Control of a Self-Propelled Electric Sprayer Chassis
by Lingxi Zhou, Chenwei Hu, Yuxiang Chen, Peijie Guo, Liwei Zhang, Jinyi Liu and Yu Chen
Agriculture 2024, 14(6), 902; https://doi.org/10.3390/agriculture14060902 (registering DOI) - 7 Jun 2024
Abstract
In order to address the issues of poor stability in vehicle speed and deteriorated spraying quality caused by changes in road slope and the decrease in overall mass due to liquid spraying, this study focuses on analyzing the structure and longitudinal dynamic characteristics [...] Read more.
In order to address the issues of poor stability in vehicle speed and deteriorated spraying quality caused by changes in road slope and the decrease in overall mass due to liquid spraying, this study focuses on analyzing the structure and longitudinal dynamic characteristics of a 4WID high ground clearance self-propelled electric sprayer. By utilizing MATLAB/Simulink software, three subsystems, namely, the inverse longitudinal dynamics model, torque distribution model, and motor model, are established. The model takes into account the effects of longitudinal driving resistance, slope, and vehicle roll angle on the distribution of loads among the four wheels during slope driving. A seven-degrees-of-freedom dynamic model is developed. A hierarchical control structure is designed, incorporating an upper-level PID controller and a lower-level fuzzy PID controller, to control the overall system. The control algorithms are tailored to the specific characteristics of the sprayer’s operation, and simulation experiments are conducted under the corresponding operating conditions. Building upon this, a sensor-equipped experimental platform is set up in the self-propelled sprayer manufactured by the team in the preliminary stage. Real vehicle tests are conducted in two scenarios: transition transportation and field operations, with the evaluation of the overall vehicle speed serving as the performance metric to validate the correctness of the model and the control theory. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

26 pages, 2977 KiB  
Review
Weather Extremes Shock Maize Production: Current Approaches and Future Research Directions in Africa
by Shaolong Du and Wei Xiong
Plants 2024, 13(12), 1585; https://doi.org/10.3390/plants13121585 (registering DOI) - 7 Jun 2024
Abstract
Extreme weather events have led to widespread yield losses and significant global economic damage in recent decades. African agriculture is particularly vulnerable due to its harsh environments and limited adaptation capacity. This systematic review analyzes 96 articles from Web of Science, Science Direct, [...] Read more.
Extreme weather events have led to widespread yield losses and significant global economic damage in recent decades. African agriculture is particularly vulnerable due to its harsh environments and limited adaptation capacity. This systematic review analyzes 96 articles from Web of Science, Science Direct, and Google Scholar, focusing on biophysical studies related to maize in Africa and worldwide. We investigated the observed and projected extreme weather events in Africa, their impacts on maize production, and the approaches used to assess these effects. Our analysis reveals that drought, heatwaves, and floods are major threats to African maize production, impacting yields, suitable cultivation areas, and farmers’ livelihoods. While studies have employed various methods, including field experiments, statistical models, and process-based modeling, African research is often limited by data gaps and technological constraints. We identify three main gaps: (i) lack of reliable long-term experimental and empirical data, (ii) limited access to advanced climate change adaptation technologies, and (iii) insufficient knowledge about specific extreme weather patterns and their interactions with management regimes. This review highlights the urgent need for targeted research in Africa to improve understanding of extreme weather impacts and formulate effective adaptation strategies. We advocate for focused research on data collection, technology transfer, and integration of local knowledge with new technologies to bolster maize resilience and food security in Africa. Full article
(This article belongs to the Special Issue Climate Change and Weather Extremes’ Impacts on Crops)
Show Figures

Figure 1

13 pages, 2843 KiB  
Article
Asymmetrical Three-Dimensional Conformal Imaging Lens
by Desen Gong, Yixiao Ge, Wen Xiao and Huanyang Chen
Photonics 2024, 11(6), 543; https://doi.org/10.3390/photonics11060543 (registering DOI) - 7 Jun 2024
Abstract
Absolute instrument refers to a media that can make light rays to propagate in a closed orbit and perform imaging and self-imaging. In the past few decades, traditional investigations into absolute instrument have been centered on the two-dimensional plane and rotational symmetry situations, [...] Read more.
Absolute instrument refers to a media that can make light rays to propagate in a closed orbit and perform imaging and self-imaging. In the past few decades, traditional investigations into absolute instrument have been centered on the two-dimensional plane and rotational symmetry situations, and have paid less attention to three-dimensional counterparts. In this article, we design two types of three-dimensional non-spherically symmetric absolute instruments based on conformal inverse transformation, which originated from the three-dimensional Luneburg lens and Lissajous lens. We carry out ray tracing on the optical performance of these new lenses and analyze the imaging laws. Our work enlarges the family of absolute instruments from two dimensions to three dimensions and symmetry to asymmetry, which may allow for imaging applications in optical waves. Full article
(This article belongs to the Special Issue Recent Advances in Optical Metamaterials and Metasurfaces)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop