Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-28T00:09:37.081Z Has data issue: false hasContentIssue false

K-Ar and Rb-Sr Dating of Nanometer-Sized Smectite-Rich Mixed Layers From Bentonite Beds of the Campos Basin (Rio De Janeiro State, Brazil)

Published online by Cambridge University Press:  01 January 2024

Norbert Clauer*
Affiliation:
Institut de Physique du Globe de Strasbourg, Université de Strasbourg (UdS-CNRS), 1 Rue Blessig, 67084, Strasbourg, France
Jan Środoń
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, 31-002, Kraków, Poland
Amélie Aubert
Affiliation:
Laboratoire d’Hydrologie et de Géochimie de Strasbourg, Université de Strasbourg (UdS-CNRS), 1 rue Blessig, 67084, Strasbourg, France
I. Tonguç Uysal
Affiliation:
Geological Engineering Department, Ankara University, Gölbaşı, Ankara, Turkey
Theofilos Toulkeridis
Affiliation:
Universidad de las Fuerzas Armadas ESPE, Av. General Ruminahui, Sangolqui, Ecuador
*
*E-mail address of corresponding author: nclauer@unistra.fr

Abstract

K-Ar isotopic dating has been applied to alkali-rich nanometer-sized illite separates of bentonites since the late 1990s. In the present study, K-Ar and Rb-Sr isotopic analyses were based on mineralogical determinations and morphological observations of similarly nm-sized separates (<0.02, 0.02–0.05, and 0.05–0.1 μm) depleted in alkalis and recovered from Santonian (85.8–83.5 Ma) bentonites of the Campos Basin located offshore the southeastern Atlantic coast (Rio de Janeiro State, Brazil). On the basis of XRD analyses and geochemical/mineralogical simulations, the size fractions consist essentially of the smectite-rich end-member of the smectite-to-illite trend with no more than 9% authigenic illite layers. High K-Ar values from 42.6 ± 3.2 to 70.2 ± 2.1 Ma confirm the occurrence of detrital illite in one sample at least, the age data being meaningless. A second group of K-Ar values ranges from 15.5 ± 10.7 to 41.3 ± 10.8 Ma, while the smallest (<0.02 and 0.02–0.05 μm) fractions with <0.42% K2O lack detectable radiogenic 40Ar and yield analytically 0 Ma ages. Two samples including that with the detrital illite were leached with dilute acid and the Rb-Sr method was applied to the untreated, leachate, and residual fractions of the different separates. The combined isotopic data suggest that illitization started at ~44 ± 4 Ma when the bentonites were subjected to a temperature of ~60°C. The leachable Sr yielded 87Sr/86Sr ratios of 0.7106–0.7108, which is greater than those of seawater either during deposition or recently, and of the initial ashes. They do not correspond to the chemical signature of pore fluids, but more likely to removals from fragile edges of the illite-smectite layers probably impacted by the rough initial chemical treatment applied to empty the smectite interlayers. Illitization was either a side effect of a major contemporaneous smectitization or an independent process that occurred later, in the progressively buried bentonite beds. Of variable duration, it was probably dependent on burial-induced temperature increase in the bentonites, which monitored the fixation of K in the smectite layering with or without a changing fluid chemistry. On the basis of the combined K-Ar and Rb-Sr isotopic data, illitization lasted either until ~15 Ma or even 0 Ma for some of the finest size fractions.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altaner, S.P. & Ylagan, R.F. (1997). Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays and Clay Minerals 45, 517533.CrossRefGoogle Scholar
Altaner, S.P., Hower, J., Whitney, G., & Aronson, J.L. (1984). Model for K-bentonite formation: Evidence from zoned K-bentonites in the Disturbed Belt, Montana. Geology 12, 412425.2.0.CO;2>CrossRefGoogle Scholar
Alves, D.B., Mizusaki, A.M.P., & Caddah, L.E.G. (1993). Camadas de cinzasvulcanicas no Santoniano (Creticeo Superior) da Bacia de Campos. Simposio de Geologia do Sudeste, 3, Rio de Janeiro, SBG, Atas, 3742.Google Scholar
Aronson, J.L. & Douthitt, C.B. (1986). K/Ar systematics of an acidtreated illite/smectite: Implications for evaluating age and crystal structure. Clays and Clay Minerals 34, 473482.CrossRefGoogle Scholar
Aronson, J.L. & Hower, J. (1976). Mechanism of burial metamorphism of argillaceous sediment: 2. Radiogenic argon evidence. Geological Society of America Bulletin 87, 738744.2.0.CO;2>CrossRefGoogle Scholar
Bonhomme, M., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R., & Winkler, R. (1975). Méthode de datation potassium-argon. Appareillage et technique. Rapport technique du Centre de Géochimie de la Surface, Université Louis Pasteur, Strasbourg, France, 53 pp.Google Scholar
Burst, J.F. (1959). Post diagenetic clay mineral-environmental relationships in the Gulf Coast Eocene in clays and clay minerals. Clays and Clay Minerals 6, 327341.CrossRefGoogle Scholar
Caddah, L.F.G., Alves, D.B., & Mizusaki, A.M.P. (1998). Turbidites associated with bentonites in the Upper-Cretaceous of the Campos Basin, offshore Brazil. Sedimentary Geology 115, 175184.CrossRefGoogle Scholar
Cainelli, C. & Mohriak, W.U. (1999). Some remarks on the evolution of sedimentary basins along the eastern Brazilian continental margin. Episodes 22, 206216.CrossRefGoogle Scholar
Calarge, L.M., Meunier, A. & Formoso, M.L. (2002). A bentonite bed in the Acegua (RS, Brazil) and Melo (Uruguay) areas: a highly crystallized montmorillonite. Journal of South American Earth Sciences 16, 187198.CrossRefGoogle Scholar
Cardoso, RA. & Hamza, V.M. (2014). Heat flow in the Campos sedimentary basin and thermal history of the continental margin of southeast Brazil. ISRN Geophysics, Hindawi Publication Corporation Article ID 384752, 19 pagesGoogle Scholar
Chang, H.K., Kowsmann, R.O., Figueiredo, A.M.F., & Bender, AA. (1992). Tectonics and stratigraphy of the East Brazil rift system: an overview. In: Ziegler PA. (Ed.), Geodynamics of Rifting, Volume II. Case History Studies on Rifts: North and South America and Africa. Tectonophysics 213, 97138.Google Scholar
Clauer, N. (1982). Strontium isotopes of Tertiary phillipsites from the Southern Pacific: timing of the geochemical evolution. Journal of Sedimentary Petrology 52, 10031009.Google Scholar
Clauer, N. (2011). Another insight into the illitization process by K-Ar dating of micro- to nanometric illite-type particles leached with alkylammonium cations. Clay Minerals 46, 593612.CrossRefGoogle Scholar
Clauer, N. & Mongodin, Y. (2012). Chemical and isotopic (K-Ar) systematic of a mylonitic mica after natural and experimental interactions with varied fluids. Chemical Geology 294-295, 1825.CrossRefGoogle Scholar
Clauer, N., Giblin, P., & Lucas, J. (1984). Sr and Ar isotope studies of detrital smectites from the Atlantic Ocean (DSDP, Leg 43, 48 and 50). Chemical Geology (Isotope Geosciences Section) 2, 141151.Google Scholar
Clauer, N., Chaudhuri, S., Kralik, M., & Bonnot-Courtois, C. (1993). Effects of experimental leaching on Rb-Sr and K-Ar isotopic systems and REE contents of diagenetic illite. Chemical Geology 103, 116.CrossRefGoogle Scholar
Clauer, N., Środoń, J., Francù, J., & Šucha, V. (1997). K-Ar dating of illite fundamental particles separated from illite/smectite. Clay Minerals 32, 181196.CrossRefGoogle Scholar
Clauer, N., Rinckenbach, T., Weber, F., Sommer, F., Chaudhuri, S., & O'Neil, J.R. (1999). Diagenetic evolution of clay minerals in oil-bearing Neogene sandstones and associated shales from Mahakam Delta basin (Kalimantan, Indonesia). American Association of Petroleum Geologists Bulletin 83, 6287.Google Scholar
Clauer, N., Liewig, N., Pierret, M.C., & Toulkeridis, T. (2003). Crystallization conditions of fundamental particles from mixed-layers illite-smectite of bentonites based on isotopic data (K-Ar, Rb-Sr and δ18 O). Clays and Clay Minerals 51, 664674.CrossRefGoogle Scholar
Clauer, N., Rousset, D., & Środoń, J. (2004). Modeled shale and sandstone burial diagenesis based on the K-Ar systematics of illite-type fundamental particles. Clays and Clay Minerals 52, 576588.CrossRefGoogle Scholar
Clauer, N., O'Neil, J.R., Honnorez, J., & Buatier, M. (2011). 87Sr/86Sr and O/ O ratios of clay minerals from a hydrothermal mound near the Galapagos rift as records of origin, crystallization temperature and fluid composition. Marine Geology 288, 32–42.Google Scholar
Clauer, N., Williams, L., Lemarchand, D., Florian, P., & Honty, M. (2018). Illitization decrypted by B and Li isotope geochemistry of nanometer-sized illite crystals of bentonite beds from East Slovak Basin. Chemical Geology 477, 177194.CrossRefGoogle Scholar
Contreras, J. (2011). Seismo-stratigraphy and numerical basin modeling of the southern Brazilian continental margin (Campos, Santos and Pelotas basins). PhD thesis, University Heidelberg, Germany, 146 pp.Google Scholar
Dunoyer de Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamorphism: A review. Sedimentology 15, 281346.CrossRefGoogle Scholar
Eberl, D.D. & Środoń, J. (1988). Ostwald ripening and interparticle diffraction effects from illite crystals. American Mineralogist 73, 13351345.Google Scholar
Eberl, D.D., Drits, V.A., & Środoń, J. (1998). Deducing growth mechanisms for minerals from the shapes of crystals size distributions. American Journal of Science 298, 571577.CrossRefGoogle Scholar
Ehrenberg, S.N. & Nadeau, P.H. (1989). Formation of diagenetic illite in sandstones of the Garn Formation, Haltenbanken area, mid-Norwegian continental shelf. Clay Minerals 24, 233253.CrossRefGoogle Scholar
Elliott, W.C. & Aronson, J.L. (1987). Alleghanian episode of K-bentonites illitization in the southern Appalachian Basin. Geology 15, 735739.Google Scholar
Elliott, W.C. & Haynes, J. (2002). The chemical character of fluids forming diagenetic illite in the Southern Appalachian Basin. American Mineralogist 87, 15191527.CrossRefGoogle Scholar
Essene, E.J. & Peacor, D.R. (1995). Clay mineral thermometry – a critical prospective. Clays and Clay Minerals 43, 540553.CrossRefGoogle Scholar
Gillot, P.-Y. & Cornette, Y. (1986). The Cassignol technique for Potassium-Argon dating, precision and accuracy: Examples from the Late Pleistocene to Recent volcanics from southern Italy. Chemical Geology (Isotope Geosciences Section) 59, 205222.CrossRefGoogle Scholar
Hamilton, P.J., Kelley, S., & Fallick, A.E. (1989). K-Ar dating of illite in hydrocarbon reservoirs. Clay Minerals 24, 2131.CrossRefGoogle Scholar
Hamilton, P.J., Giles, M.R., & Ainsworth, P. (1992). K-Ar dating of illites Brent Group reservoirs: A regional perspective. In: Morton A.C, Haszeldine R.S., Giles M.R. and Brown S. (Eds). Geology of the Brent Group, Geological Society of London, U.K., Special Publication 61, 377400.Google Scholar
Harper, C.T. (1970). Graphic solution to the problem of Ar loss from metamorphic minerals. Eclogae Geologicae Helvetiae 63, 119140.Google Scholar
Hodell, DA., Mead, G., & Mueller, PA. (1990). Variation in the strontium isotopic composition of seawater (8 Ma to present); implications for chemical weathering rates and dissolved fluxes to the oceans. Chemical Geology (Isotope Geosciences Section) 80, 291307.CrossRefGoogle Scholar
Honty, M., Uhlík, P., Šucha, V., Caplovicová, M., Francù, J., Clauer, N., & Biron, A. (2004). Smectite to illite alteration in salt-bearing bentonites (The East Slovak Basin). Clays and Clay Minerals 52, 533551.CrossRefGoogle Scholar
Hower, J., Eslinger, E.V., Hower, M., & Perry, E.A. (1976). Mechanism of burial metamorphism of argillaceous sediments. 1. Mineralogical and chemical evidence. Geological Society of America Bulletin 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Hunziker, J.C., Frey, M., Clauer, N., Dallmeyer, R.D., Friedrichsen, H., Flemig, W., Hochstrasser, K., Roggwiler, P., & Schwander, H. (1986). The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contributions to Mineralogy and Petrology 92, 157180.CrossRefGoogle Scholar
Hurley, P.M., Cormier, R.F., Hower, J., Fairbairn, H.W., & Pinson, W.H. (1960). Reliability of glauconite for age measurements by K-Ar and Rb-Sr methods. American Association of Petroleum Geologists Bulletin 44, 17931808.Google Scholar
Inoue, A., Kohyama, N., Kitagawa, R., & Watanabe, T. (1987). Chemical and morphological evidence for the conversion of smectite to illite. Clays and Clay Minerals 35, 111120.CrossRefGoogle Scholar
Jackson, M.L. (1975). Soil Chemical Analysis – Advanced Course. Madison, Wisconsin, USA, 386 pp.Google Scholar
Jones, C.E. & Jenkyns, H.C. (2001). Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Sciences 301, 112149.Google Scholar
Kumar, N., Gamboa, L.A.P., Schreiber, B.C., & Macle, J. (1977). Geologic history and origin of the Sao Paulo Plateau (Southeastern Brazilian Margin), comparison with the Angolan Margin and early evolution of the Northern South Atlantic. Initial Reports of Deep Sea Drilling Project, 39, Washington D.C., pp. 927945.Google Scholar
Lee, M.C., Aronson, J.L., & Savin, S.M. (1989). Timing and conditions of Permian Rotliegendes sandstone diagenesis, southern North Sea: K/Ar and oxygen isotope data. American Association of Petroleum Geologists Bulletin 73, 195215.Google Scholar
Lee, J.Y., Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, H.S., Lee, J.B., & Kim, J.S. (2006). A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta 70, 45074512.CrossRefGoogle Scholar
Lerman, A., Ray, B.M., & Clauer, N. (2007). Radioactive production and diffusional loss of radiogenic 40Ar in clays in relation to its flux to the atmosphere. Chemical Geology 243, 205224.CrossRefGoogle Scholar
Liewig, N., Clauer, N., & Sommer, F. (1987). Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone oil reservoir, North Sea. American Association of Petroleum Geologists Bulletin 71, 14671474.Google Scholar
Ludwig, K.R. (2003). User's Manual for Isoplot/Ex Version 2.02. A geochronological Toolkit for Microsoft Excel, Berkeley Geochronology Center, Special Publication 1a, Berkeley, California, USA.Google Scholar
Mohriak, W.U., Mello, M.R., Karner, G.D., Dewey, J.F., & Maxwell, J.R. (1990). Structural and stratigraphic evolution of the Campos Basin, offshore Brazil. In: Tankard A.J. and Balkwill H.R. (Eds.) Extensional tectonics and stratigraphy of the North Atlantic margins. American Association of Petroleum Geologists Memoir 46, 577598.Google Scholar
Mohriak, W.U., Rosendahl, B.R., Turner, J.P., & Valente, S.C. (2002). Crustal architecture of South Atlantic volcanic margins. In: Menzies M.A., Klemperer S.L., Ebinger C.J. and Baker J. (Eds.) Volcanic rifted margins. Geological Society of America, Special Paper 362, 159202.Google Scholar
Nadeau, P.H., Wilson, M.J., McHardy, W.J., & Tait, J.M. (1984). Interstratified clays as fundamental particles. Science 225, 923925.CrossRefGoogle ScholarPubMed
Odin, G.S. and 32 collaborators (1982). Interlaboratory standards for dating purposes. In: Odin G.S. (ed.) Numerical Dating in Stratigraphy, J. Wiley and Sons, Chichester, UK, pp. 123149.Google Scholar
Odin, G.S. & Bonhomme, M.G. (1982). Argon behavior in clays and glauconies during preheationg experiments. In: Odin G.S. (Ed.), Numerical Dating in Stratigraphy, J. Wiley and Sons, Chichester, UK, pp. 333344.Google Scholar
Odin, G.S., Velde, B., & Bonhomme, M. (1977). Radiogenic argon retention in glauconites as a function of mineral recrystallization. Earth and Planetary Science Letters 37, 154158.CrossRefGoogle Scholar
Ojeda, H.A. (1982). Structural framework, stratigraphy and evolution of Brazilian marginal basins. American Association of Petroleum Geologists Bulletin 66, 732749.Google Scholar
Perry, E.A. Jr. (1974). Diagenesis and the K-Ar dating of shales and clay minerals. Geological Society of America Bulletin 85, 827830.2.0.CO;2>CrossRefGoogle Scholar
Pevear, D.R. (1992). Illite age analysis, a new tool for basin thermal history analysis. In: Kharaka, Y.K. and Maest, A.S. (eds.), Proceedings of the 7th International Symposium on Water-Rock Interaction, Balkema, Rotterdam, Netherlands 12511254.Google Scholar
Pollastro, R.M. (1993). Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals 41, 119133.CrossRefGoogle Scholar
Powers, M.C. (1959). Adjustment of clays to chemical change and the concept of the equivalence level. Clays and Clay Minerals 6, 309326.CrossRefGoogle Scholar
Renac, C. & Meunier, A. (1995). Reconstruction of paleothermal conditions in a passive margin using illite–smectite mixed-layer series (BA1 scientific deep drill-hole, Ardèche, France). Clay Minerals 30, 107118.CrossRefGoogle Scholar
Reuter, A. (1987). Implications of K-Ar ages of whole-rocks and grainsize fractions of metapelites and intercalated metatuffs within an anchizonal terrane. Contributions to Mineralogy and Petrology 97, 105115.CrossRefGoogle Scholar
Schaltegger, U., Stille, P., Rais, N., Piqué, A., & Clauer, N. (1994). Nd and Sr isotopic dating of diagenesis and low-grade metamorphism of argillaceous sediments. Geochimica et Cosmochimica Acta 58, 14711481.CrossRefGoogle Scholar
Środoń, J. (1980). Precise identification of illite/smectite interstratification by X-ray powder diffraction. Clay Minerals 28, 401411.CrossRefGoogle Scholar
Środoń, J. & Eberl, D.D. (1984). Illite. In: Bailey, S.W. (Ed) Micas. Reviews in Mineralogy 13, Mineralogical Society of America, Washington, DC, 584 pp.Google Scholar
Środoń, J., Elsass, F., McHardy, W.J., & Morgan, D.J. (1992). Chemistry of illite/smectite inferred from TEM measurements of fundamental particles. Clay Minerals 27, 137158.CrossRefGoogle Scholar
Środoń, J., Clauer, N., & Eberl, D.D. (2002). Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modelling. American Mineralogist 87, 15281535.CrossRefGoogle Scholar
Środoń, J., Clauer, N., Banas, M., & Wojtowicz, A. (2006). K-Ar evidence for a Mesozoic thermal event superimposed on burial diagenesis of the Upper Silesia Coal Basin. Clay Minerals 41, 669690.CrossRefGoogle Scholar
Środoń, J., Zeelmaekers, E., & Derkowski, A. (2009a). The charge of component layers of illite-smectite in bentonites and the nature of end-member illite. Clays and Clay Minerals 57, 649671.CrossRefGoogle Scholar
Środoń, J., Clauer, N., Huff, W.D., Dudek, T., & Banas, M. (2009b). K-Ar dating of Ordovician K-bentonites from the Baltic Basin and the Baltic Shield: implications for the role of temperature and time in the illitization of smectite. Clay Minerals 44, 361387.CrossRefGoogle Scholar
Środoń, J., Kuzmenkova, O., Stanek, J.J., Petit, S., Beaufort, D., Gilg, H.A., Liivamägi, S., Goryl, M., Marynowski, L., & Szczerba, M. (2019). Hydrothermal alteration of the Ediacaran Volyn-Brest volcanics on the western margin of the East European Craton. Precambrian Research 325, 217235.CrossRefGoogle Scholar
Steiger, R. & Jäger, E. (1977). Subcommission on Geochronology: Convention on the use of decay constants in geo-cosmochronology. Earth and Planetary Science Letters 36, 359362.CrossRefGoogle Scholar
Šucha, V., Kraus, I., Gerthofferová, H., Peteš, J., & Sereková, M. (1993). Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Minerals 28, 243253.CrossRefGoogle Scholar
Szczerba, M., Derkowski, A., Kalinichev, A.G, & Środoń, J. (2015). Molecular modeling of the effects of Ar recoil in illite particles on their K-Ar isotope dating. Geochimica et Cosmochimica Acta 159, 162176.CrossRefGoogle Scholar
Thompson, GR. & Hower, J. (1973). An explanation for low radiometric ages from glauconite. Geochimica and Cosmochimica Acta 37, 14731491.CrossRefGoogle Scholar
Turekian, K.K. & Wedepohl, K.H. (1961). Distribution of the elements in some major units of the Earth's crust. Geological Society of America Bulletin 72, 175192.CrossRefGoogle Scholar
Velde, B. (1985). Clay Minerals: A Physico-chemical Explanation of their Occurrence. Developmentss in Sedimentology 40, Elsevier, Amsterdam , 426 pp.Google Scholar
Velde, B. & Vasseur, G. (1992). Estimation of the diagenetic smectite to illite transformation in time-temperature space. American Mineralogist 77, 967—-976.Google Scholar
Viana, A.R., Faugères, J.C., Kowsmann, R.O., Lima, J.A.M., Caddah, L.F.G, & Rizzo, J.G. (1998). Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil. Sedimentary Geology 115, 133157.CrossRefGoogle Scholar
Weaver, C.E. (1957). The clay petrology of sediments. Clays and Clay Minerals 6, 154187.CrossRefGoogle Scholar
Zimmermann, J.L. & Odin, G.S. (1982). Kinetics of the release of argon and fluids from glauconies. In: Odin G.S. (Ed.) Numerical Dating in Stratigraphy. J. Wiley Publisher, Chichester, UK, pp. 345362.Google Scholar