Skip to main content
Log in

Crack fusion as a model for repetitive seismicity

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

A renormalization group treatment of a skeletal, hierarchical model of crack fusion and suturing yields the experimental stress versus time-to-fracture law. We construct a model that eliminates the intervening size states in the hierarchy but retains the time delay that represents the time-to-fracture observations. We add a source term to replenish microcracks lost by promotion due to fusion. The system is found to be stable for all values of time delay if the rate of replenishment is steady. If we allow the rate of replenishment of microcracks to be coupled to the rate of appearance of the largest size cracks, which we interpret as large-scale seismicity, then a Hopf bifurcation appears and the system is describable as a limit cycle attractor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allègre, C. J., LeMouel, J. L., andProvost, A. (1982), Nature297, 47–49.

    Article  Google Scholar 

  • Anderson, O. L., andGrew, P. C. (1977), Rev. Geophys. Space Phys.15, 77–104.

    Google Scholar 

  • Cherepanov, G. P.,Mechanics of Brittle Fracture (McGraw-Hill, New York, 1979).

    Google Scholar 

  • Dieterich, J. H. (1979), J. Geophys. Res.84, 2161–2175.

    Article  Google Scholar 

  • Glathart, J. L., andPreston, F. W. (1946), J. Appl. Phys.17, 189–195.

    Article  Google Scholar 

  • Griggs, D. T. (1940), Bull. Geol. Soc. Am.51, 1001–1022.

    Google Scholar 

  • Kagan, Y. Y. (1981a), Geophys. J. R. Astronom. Soc.67, 697–717.

    Google Scholar 

  • Kagan, Y. Y. (1981b), Geophys. J. R. Astronom. Soc.67, 719–733.

    Google Scholar 

  • Kagan, Y. Y., andKnopoff, L. (1978), Geophys. J. R. Astronom. Soc.55, 67–86.

    Google Scholar 

  • Kagan, Y. Y., andKnopoff, L. (1980), Geophys. J. R. Astronom. Soc.62, 303–320.

    Google Scholar 

  • Means, W. D., andXia, Z. G. (1981), Geology9, 538–543.

    Article  Google Scholar 

  • Mogi, K. (1962), Bull. Earthquake Res. Inst.40, 107–124.

    Google Scholar 

  • Newman, W. I. (1983),Nonlinear Diffusion: Self-Similarity and Traveling-Waves, PAGEOPH121, 417–441.

    Google Scholar 

  • Newman, W. I., andKnopoff, L. (1982), Geophys. Res. Lett.9, 735–738.

    Google Scholar 

  • Newman, W. I., andKnopoff, L. (1983), Geophys. Res. Lett.10, 305–308.

    Google Scholar 

  • Newman, W. I., andKnopoff, L. (1984) (in preparation).

  • Preston, F. W. (1946), Nature156, 55.

    Google Scholar 

  • Scholz, C. H. (1968), Bull. Seismol. Soc. Am.58, 1117–1130.

    Google Scholar 

  • Zhurkov, Z. N. (1965), Int. J. Fract. Mech.1, 311–323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knopoff, L., Newman, W.I. Crack fusion as a model for repetitive seismicity. PAGEOPH 121, 495–510 (1983). https://doi.org/10.1007/BF02590153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02590153

Key words

Navigation