The following article is Open access

Decaying leptophilic dark matter at IceCube

, , , , , and

Published 29 December 2015 , , Citation Sofiane M. Boucenna et al JCAP12(2015)055 DOI 10.1088/1475-7516/2015/12/055

1475-7516/2015/12/055

Abstract

We present a novel interpretation of IceCube high energy neutrino events (with energy larger than 60 TeV) in terms of an extraterrestrial flux due to two different contributions: a flux originated by known astrophysical sources and dominating IceCube observations up to few hundreds TeV, and a new flux component where the most energetic neutrinos come from the leptophilic three-body decays of dark matter particles with a mass of few PeV. Differently from other approaches, we provide two examples of elementary particle models that do not require extremely tiny coupling constants. We find the compatibility of the theoretical predictions with the IceCube results when the astrophysical flux has a cutoff of the order of 100 TeV (broken power law). In this case the most energetic part of the spectrum (PeV neutrinos) is due to an extra component such as the decay of a very massive dark matter component. Due to the low statistics at our disposal we have considered for simplicity the equivalence between deposited and neutrino energy, however such approximation does not affect dramatically the qualitative results. Of course, a purely astrophysical origin of the neutrino flux (no cutoff in energy below the PeV scale—unbroken power law) is still allowed. If future data will confirm the presence of a sharp cutoff above few PeV this would be in favor of a dark matter interpretation.

Export citation and abstract BibTeX RIS

Article funded by SCOAP. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1475-7516/2015/12/055