Skip to main content
Log in

Mineral inclusions in placer zircon from the Ohře (Eger) Graben: new data on “strontiopyrochlore”

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

After qualitative examination of the inclusion inventory of 80 zircon megacrysts from alluvial placers of the Cenozoic alkali basalt area of northern Bohemia and south-eastern Saxony, three representative megacrysts from the Podsedice deposit were selected for an in-depth study of inclusion minerals. Primary and secondary inclusions were distinguished and used as monitor for zircon-related syn- and epigenetic processes. The trace-element characteristics of the zircon hosts imply an alkali silicatic parental rock, probably nepheline syenites or fenites, which occur as enclaves in placer-near breccia fillings. The genetically most interesting inclusion species is “strontiopyrochlore”, for which its presence within areas of oscillatory zonation suggests a magmatic origin. This mode of origin contrasts to previous observations indicating formation of “strontiopyrochlore” as secondary mineral in altered carbonatite. The Sr concentration of “strontiopyrochlore” from Podsedice varies between 7.4 and 12 wt.% SrO, corresponding to a proportion of Sr of 29–48 at.% of the total A-site cations. The infiltration of late- or post-magmatic Fe-rich hydrothermal fluids along fractures crosscutting the zircon host caused a partial substitution of Nb5+ by Fe3+ in the B-site of the pyrochlore structure and the breakdown of primary fergusonite-like inclusions into undefined Nb–Y–REE–Fe oxide phases usually associated with goethite-like minerals. Thorite and related Y–REE–Th silicate phases are the most frequent secondary inclusions originated by dissolution−re-precipitation. Baddeleyite probably formed in response to desilicification that the zircon host has experienced during the contact with the SiO2-undersaturated alkali basalt melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aspen P, Upton BGJ, Dickin AP (1990) Anorthoclase, sanidine and associated megacrysts in Scottish alkali basalts: high-pressure syenitic debris from upper mantle sources? Eur J Mineral 2:503–517

    Google Scholar 

  • Atencio D, Andrade MB, Christy AG, Gieréé R, Kartashov PM (2010) The pyrochlore supergroup of minerals: nomenclature. Can Mineral 48:673–698

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622

    Article  Google Scholar 

  • Čech F, Novák F, Povondra P, Ševců J, Vavřin I (1976) Fergusonite from the alluvia at Jizerská louka, Czechoslovakia. Acta Univ Carol, Geol 1:21–47

    Google Scholar 

  • Chakhmouradian AR, Mitchell RH (1998) Lueshite, pyrochlore and monazite-(Ce) from apatite–dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia. Mineral Mag 62:769–782

    Article  Google Scholar 

  • Coenraads RR, Vichit P, Sutherland FL (1995) An unusual sapphire–zircon–magnetite xenolith from the Chanthaburi Gem Province, Thailand. Mineral Mag 59:465–479

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM and Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:469–500

  • Förster H-J (2006) Composition and origin of intermediate members of the system thorite–xenotime–zircon–coffinite. Lithos 88:35–55

    Article  Google Scholar 

  • Förster H-J (2010) The late-Variscan granites of the Aue−Schwarzenberg Zone (western Erzgebirge, Germany): composition of accessory minerals and mineralogical mass balance of the lanthanides and actinides. Z Geol Wiss 38:125–144

    Google Scholar 

  • Förster H-J, Rhede D, Hecht L (2008) Chemical composition of radioactive accessory minerals: implications to the evolution, alteration, age, and uranium fertility of the Fichtelgebirge granites (NE Bavaria, Germany). N Jb Mineral Abh 185:161–182

    Article  Google Scholar 

  • Franchini M, Lira R, Meinert L, Ríos FJ, Poklepovic MF, Impiccini A, Millone H (2005) Na–Fe–Ca alteration and LREE (Th–Nb) mineralization in marble and granitoids of Sierra de Sumampa, Santiago del Estero, Argentina. Econ Geol 100:733–764

    Google Scholar 

  • Guo J, O’Reilly SY, Griffin WL (1996) Zircon inclusions in corundum megacrysts: I. Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts. Geochim Cosmochim Acta 60:2347–2363

    Article  Google Scholar 

  • Hogarth DD (1977) Classification and nomenclature of the pyrochlore group. Am Mineral 62:403–410

    Google Scholar 

  • Hollis JD, Sutherland FL (1985) Occurrences and origins of gem zircons in eastern Australia. Rec Austral Museum 36:299–311

    Article  Google Scholar 

  • Irmer G (1985) Zum Einfluss der Apperatefunktion auf die Bestimmung von Streuquerschnitten und Lebensdauer aus optischen Phononenspektren. Exp Tech Phys 33:501–506

    Google Scholar 

  • Irving AJ (1986) Polybaric magma mixing in alkalic basalts and kimberlites: evidence from corundum, zircon and ilmenite megacrysts. Geol Soc Austral, Abstr 16:262–264

    Google Scholar 

  • Kopecký L, Sattran V (1966) Buried occurrences of pyrope peridotite and the structure of the crystalline basement in the extreme SW of the České středohoři Mountains. Krystallinikum 4:65–86

    Google Scholar 

  • Lapin AV, Malyshev AA, Ploshko VV, Cherepivskaya GY (1986) Strontiopyrochlore from lateritc weathering crusts of carbonatites. Doklady Akad Nauk SSSR 290:1212–1217 (in Russian)

    Google Scholar 

  • Lottermoser BG, England BM (1988) Compositional variation in pyrochlores from the Mt Weld carbonatite laterite, Western Australia. Min Petrol 38:37–51

    Article  Google Scholar 

  • Maliková P (1999) Origin of sapphires from the Jizerska Louka alluvial deposit in North Bohemia, Czech Republic, Europe. Australian Gemologist 20:202–206

    Google Scholar 

  • Mitchell RH, Liferovich RP (2006) Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa. Lithos 91:352–372

    Article  Google Scholar 

  • Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircon: a Raman spectroscopic study. Eur J Mineral 7:471–478

    Google Scholar 

  • Nasdala L, Kronz A, Wirth R, Váczi T, Pérez-Soba C, Willner A, Kennedy AK (2009) The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochim Cosmochim Acta 73:1637–1650

    Article  Google Scholar 

  • Nasdala L, Hanchar JM, Rhede D, Kennedy AL, Váczi T (2010) Retention of uranium in complexly altered zircon: an example from Bancroft. Ontario. Chem Geol 269:290–300

    Article  Google Scholar 

  • Panda PK, Panigrahi D (2009) Petrochemistry and REE mineralogy of Kankarkhol-Lodhajhari alkaline complex, Deogarh District, Odissa. Ind J Geosci 63:249–274

    Google Scholar 

  • Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Mineral Petrol 110:463–472

    Article  Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Article  Google Scholar 

  • Rubin JN, Henry CH, Price JG (1989) Hydrothermal zircons and zircon overgrowths, Sierra Blanca Peaks, Texas. Amer Mineral 74:865–869

    Google Scholar 

  • Saminpanya S, Sutherland FL (2011) Different origins of Thai area sapphire and ruby, derived from mineral inclusions and co-existing minerals. Eur J Mineral 23:683–694

    Article  Google Scholar 

  • Seifert W (2006) Mineralchemie der Basaltbrekzie und Schwermineralseife von Hinterhermsdorf, Sachsen (Deutschland) – eine Neubearbeitung. Z Geol Wiss 34:265–285

    Google Scholar 

  • Seifert W, Rhede D, Tietz O (2008) Typology, chemistry and origin of zircon from alkali basalts of SE Saxony (Germany). N Jb Miner Abh 184:299–313

    Article  Google Scholar 

  • Sheard ER, Williams-Jones AE, Heiligmann M, Pedersen C, Trueman DL (2012) Controls on the concentration of zirconium, niobium and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Econ Geol 107:81–104

    Article  Google Scholar 

  • Siebel W, Schmitt AK, Danišik M, Chen F, Meier S, Weiss S, Eroğlu S (2009) Prolonged mantle residence of zircon xenocrysts from the western Eger rift. Nat Geosci, Lett. doi:10.1038/NGEO695

  • Sutherland FL, Meffre S (2009) Zircon megacryst ages and chemistry from a placer, Dunedin volcanic area, eastern Otago, New Zealand. N Z J Geol Geophys 52:185–194

    Article  Google Scholar 

  • Sutherland FL, Hoskin PWO, Fanning CM, Coenraads RR (1998) Models of corundum origin from alkali basaltic terrains: a reappraisal. Contrib Mineral Petrol 133:356–372

    Article  Google Scholar 

  • Tietz O, Büchner J (2007) Abundant in-situ zircon megacrysts in Cenozoic basaltic rocks in Saxony, Germany. Z dt Ges Geowiss 158:201–206

    Google Scholar 

  • Uher P, Giuliani G, Szakáll S, Fallick A, Strunga V, Vaculovič T, Ozdín D, Gregáňová M (2012) Sapphires related to alkali basalts from the Cerová Highlands, Western Carpathians (southern Slovakia): composition and origin. Geologica Carpathica 63:71–82

    Article  Google Scholar 

  • Ulrych J, Uher P (1999) Low-hafnium zircon from alluvial and colluvial placers of northern Bohemia: composition and possible sources. Geol Sudet 32:139–146

    Google Scholar 

  • Upton BGJ, Hinton RW, Finch A (2009) Megacrysts and salic xenoliths in Scottish alkali basalts: derivatives of deep crustal intrusions and small-melt fractions from the upper mantle. Minereral Mag 73:934–956

    Google Scholar 

  • Visonà D, Caironi V, Carraro A, Dallai L, Fioretti AM, Fanning M (2007) Zircon megacrysts from basalts of the Venetian Volcanic Province (NE Italy): U–Pb ages, oxygen isotopes and REE data. Lithos 94:168–180

    Article  Google Scholar 

  • Wall F, Williams CT, Woolley AR (1996) Pyrochlore from weathered carbonatite at Lueshe, Zaire. Mineral Mag 60:731–750

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Article  Google Scholar 

  • Yu Y, Xu X, Chen X (2010) Genesis of zircon megacrysts in Cenozoic alkali basalts and the heterogeneity of subcontinental lithospheric mantle, eastern China. Mineral Petrol 100:75–94

    Article  Google Scholar 

  • Zurevinski SE, Mitchell RH (2004) Extreme compositional variation of pyrochlore-group minerals at the Oka Carbonatite Complex, Quebec: evidence of magma mixing? Can Mineral 42:1159–1168

    Article  Google Scholar 

Download references

Acknowledgements

The field work and mineral separation (J.U.) were supported by the Czech Science Foundation project No. 205/09/1170 within the Research Program of the Institute of Geology, v. v. i., Acad. Sci. CR. The study was also supported by the Deutsche Forschungsgemeinschaft (DFG) project “Zirkon-Megakristalle in Alkalibasalten und Phonolithen am Beispiel des Lausitzer Vulkanfeldes“. Rainer Thomas is acknowledged for Raman-spectroscopic investigations. We are thankful to Daniel Atencio for clarification of nomenclature problems regarding the pyrochlore-group. Pavel Uher and an anonymous reviewer provided valuable comments and suggestions, which helped to improve the paper. Associate Editor Lutz Nasdala is acknowledged for recommendations ought to think more in-depth about the multifaceted origin of the placer zircon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Seifert.

Additional information

Editorial handling: L. Nasdala

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, W., Förster, HJ., Rhede, D. et al. Mineral inclusions in placer zircon from the Ohře (Eger) Graben: new data on “strontiopyrochlore”. Miner Petrol 106, 39–53 (2012). https://doi.org/10.1007/s00710-012-0221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-012-0221-y

Keywords

Navigation