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Strong electronic correlations and especially the interplay between cor-

relations and disorder lead to many interesting and quite unexpected phe-

nomena. A short summary of our recent investigations into the properties

of strongly correlated electron systems with and without disorder using the

dynamical mean-field theory is presented.
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1. Introduction

The exceptional properties of strongly correlated electron systems have fas-
cinated physicists for several decades already [1–9]. New correlated electron ma-
terials and unexpected correlation phenomena are discovered every year. Often
the properties of those systems are influenced by disorder. Unfortunately, real
materials and even model systems with strong electronic correlations and disorder
are notoriously hard to investigate theoretically because standard approximations
are invalid in the most interesting parameter regime — that of intermediate cou-
pling. Here the recently developed dynamical mean-field theory (DMFT) [10–17]
has proved to be an almost ideal mean-field approximation since it may be used
at arbitrary coupling. For this reason the DMFT has been successfully employed
in the investigation of electronic correlation effects in theoretical models and even
real materials [10–19].

The investigations of electronic correlations and their interplay with disorder
by means of the DMFT has led to the discovery of several unexpected properties
and phenomena. Examples are: (i) a purely electronic mechanism leading to kinks

(549)
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in the electronic dispersion relation [20]; (ii) a novel type of the Mott–Hubbard
metal–insulator transition (MIT) away from integer filling in the presence of binary
alloy disorder [21]; (iii) an enhancement of the Curie temperature in correlated
electron systems with binary alloy disorder [22, 23]; and (iv) unusual effects of
correlations and disorder on the Mott–Hubbard and Anderson MITs, respectively
[24, 25]. Below we describe and explain these often surprising results.

The fundamental electronic correlation models investigated here are the
Anderson–Hubbard model

H =
∑

ij,σ

tijc
+
iσcjσ +

∑

iσ

εiniσ + U
∑

i

ni↑ni↓, (1)

where tij is the hopping matrix element, U is the local Coulomb interaction, c+
iσ

is the fermionic creation operator for an electron with spin σ in the Wannier
state i, and niσ is the particle number operator; and the Anderson–Falicov–
Kimball model

H =
∑

ij

tijc
†
i cj +

∑

i

εic
†
i ci + U

∑

i

f†i fic
†
i ci, (2)

where c†i (f†i ) and ci (fi) are fermionic creation and annihilation operators for
mobile (immobile) particles at a lattice site i. Furthermore, tij is the hopping
amplitude for mobile particles between sites i and j, and U is the local interaction
energy between mobile and immobile particles occupying the same site. The ionic
energy εi in both models is a random, independent variable which describes the
local, quenched disorder affecting the motion of the mobile particles. At large U

the models are reduced to t−J-like Hamiltonians with spin-exchange interactions
between the fermions [26].

The disorder part is modeled by a corresponding probability distribution
function (PDF) P (εi). For P (εi) = 0 the system is called pure. For binary alloy
disorder we assume

P (εi) = xδ

(
εi +

∆
2

)
+ (1− x)δ

(
εi − ∆

2

)
, (3)

where ∆ is the energy difference between the two atomic energies which provides
a measure of the disorder strength, while x and 1 − x are the concentrations of
the two alloy atoms. Another model of disorder which we use is one with the
continuous PDF

P (εi) =
Θ(∆

2 − |εi|)
∆

, (4)

with Θ as the step function. Again the parameter ∆ is a measure of the disorder
strength.

2. Kinks in the electronic dispersion

Dispersion relations characterize quasiparticles and collective excitations of
many-body systems. The coupling between them may lead to kinks, i.e. abrupt
changes in the slope of the dispersion. Such kinks thus carry important informa-
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tion about interactions in a many-body system. Recently we have found a novel,
purely electronic mechanism yielding kinks in the electron dispersions [20]. This
mechanism does not require a coupling of two different excitations as in previously
known cases. Our theory applies to strongly correlated metals whose spectral func-
tion shows well separated Hubbard subbands and central peak as, for example, in
transition metal-oxides.

For a microscopic description of these electronic kinks we use the Hubbard
model (1) without disorder. For simplicity, we focus here on a single band with a
particle–hole symmetry. The model was solved using the DMFT at T = 0 [20].

The effective dispersion relation Ek of the one-particle excitation is deter-
mined by the singularities of G(k, ω) = [ω+µ− εk−Σ (k, ω)]−1, which give rise to
peaks in the spectral function A(k, ω) = −Im G(k, ω)/π. Here ω is the frequency,
µ — the chemical potential, εk — the bare dispersion relation, and Σ (k, ω) is the
self-energy. If the damping given by the imaginary part of Σ (k, ω) is not too large,
the effective dispersion Ek is thus determined by

Ek + µ− εk−ReΣ (k, Ek) = 0. (5)
Any kinks in Ek that do not originate from εk must therefore be due to changes
in the slope of ReΣ (k, ω).

We use the DMFT self-consistency equations to express Σ (k, ω) = Σ (ω)
as Σ (ω) = ω + µ − 1/G(ω) − ∆(G(ω)), where G(ω) =

∫
G(k, ω)dk is the local

Green function (averaged over k) and ∆(G) is an energy-dependent hybridization
function, expressed here as a function of G(ω).

Kinks in ReΣ (ω) appear at a new small energy scale which emerges quite
generally for a three-peak spectral function A(ω), cf. Fig. 1. The Kramers–
Kronig relations imply that Re G(ω) is small near the dips of A(ω), located at
±Ω . Therefore, Re G(ω) has a maximum and a minimum at ±ωmax inside the
central spectral peak (Fig. 1b). This directly leads to kinks in ReΣ (ω) for the
following reason. There are two contributions to Σ (ω): ω + µ − 1/G(ω) and
−∆(G(ω)). While Re(ω + µ − 1/G(ω)) is linear in the large energy window
|ω| < Ω (Fig. 1d), the term –Re∆(G(ω)) is approximately proportional to –
ReG(ω) (at least to the first order in a moment expansion), and thus remains
linear only in a much narrower energy window |ω| < ωmax. The sum of these
two contributions produces pronounced kinks in the real part of the self-energy
at ±ω∗, where ω∗ = 0.41ωmax is the energy, where Re G(ω) has maximum cur-
vature (marked by circles in Fig. 1c). The Fermi-liquid (FL) regime with slope
∂ReΣ (ω)/∂ω = 1−1/ZFL thus extends only throughout a small part of the central
peak (|ω| < ω∗). At intermediate energies (ω∗ < |ω| < Ω) the slope is then given
by ∂ReΣ (ω)/∂ω = 1 − 1/ZCP, where CP stands for the central peak. The kinks
at ±ω∗ mark the crossover between these two slopes. As a consequence, there is
also a kink at ω∗ in the effective band structure Ek.

The FL regime terminates at the kink energy scale ω∗, which cannot be
determined within FL theory itself. The quantities ω∗ and ZCP can all nevertheless
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Fig. 1. Local propagator and self-energy for a strongly correlated system. (a) Corre-

lation-induced three-peak spectral function A(ω) = −Im G(ω)/π with dips at ±Ω =

0.45 eV. (b) Corresponding real part of the propagator, –Re G(ω), with minimum

and maximum at ±ωmax inside the central spectral peak. (c) Real part of the self-

energy with kinks at ±ω∗ (circles), located at the points of maximum curvature of

Re G(ω) (ω∗ = 0.4ωmax = 0.03 eV). (d) ω − 1/G(ω) contributes to the self-energy.

In general Re(ω − 1/G(ω)) is linear in |ω| < Ω . The other contribution to the self-

-energy is −∆(G(ω)) ≈ −(m2−m2
1)G(ω) (to the lowest order in the moments mi of εk;

here m2 −m2
1 = 0.5 eV2). Therefore, the nonlinearity of –Re G(ω) at ±ω∗ determines

the location of kinks. (Hubbard model in DMFT, cubic lattice, interaction U = 3.5 eV,

band width W ≈ 3.46 eV, n = 1, ZFL = 0.086; after Ref. [20]).

be expressed in terms of ZFL and the bare density of states alone; explicitly, one
finds ω∗ = 0.41ZFLD, where D is an energy scale of the noninteracting system,
e.g., D is approximately given by half the band width [20].
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The energy scale ω∗ involves only the bare band structure which can be ob-
tained, for example, from band structure calculations, and the FL renormalization
ZFL = 1/(1− ∂ReΣ (0)/∂ω) ≡ m/m∗ known from, e.g., specific heat measure-
ments or many-body calculations. We note that since phonons are not involved in
this mechanism, ω∗ shows no isotope effect. For strongly interacting systems, in
particular close to a metal–insulator transition, ω∗ can become quite small, e.g.,
smaller than the Debye energy.

3. Metal–insulator transition at fractional filling

The Mott–Hubbard MIT occurs upon increasing the interaction strength U

in the models (1) and (2) if the number of electrons Ne is commensurate with the
number of lattice sites NL or, more precisely, if the ratio N e/NL is an odd integer.
At zero temperature it is a continuous transition whereas at finite temperatures
the transition is of the first order [27, 17]. Surprisingly, in the presence of binary
alloy disorder the MIT occurs at fractional filling [21].

We describe this situation by using the Anderson–Hubbard model (1) with
the distribution (3) which corresponds to a binary-alloy system composed of two
different atoms A and B. The atoms are distributed randomly on the lattice and
have ionic energies εA,B, with εB − εA = ∆. The concentration of A (B) atoms
is given by x = NA/NL (1 − x = NB/NL), where NA (NB) is the number of the
corresponding atoms.

From the localization theorem (the Hadamard–Gerschgorin theorem in ma-
trix algebra) it is known that if the Hamiltonian (1), with a binary alloy distri-
bution for εi, is bounded, then there is a gap in the single-particle spectrum for
sufficiently large ∆ À max(|t|, U). Hence at ∆ = ∆c the density of states (DOS)
splits into two parts corresponding to the lower and the upper alloy subbands with
centers of mass at the ionic energies εA and εB, respectively. The width of the
alloy gap is of the order of ∆. The lower and upper alloy subband contains 2xNL

and 2(1− x)NL states, respectively.
New possibilities appear in systems with correlated electrons and binary

alloy disorder [21]. The Mott–Hubbard metal–insulator transition can occur at
any filling n = x or 1 + x, corresponding to a half–filled lower or to a half-filled
upper alloy subband, respectively, as shown schematically for n = x in Fig. 2.
The Mott insulator can then be approached either by increasing U when ∆ ≥ ∆c

(alloy band splitting limit), or by increasing ∆ when U ≥ Uc (Hubbard band
splitting limit). The nature of the Mott insulator in the binary alloy system can
be understood physically as follows. Due to the high energy cost of the order of
U the randomly distributed ions with lower (higher) local energies εi are singly
occupied at n = x (n = 1 + x), i.e., the double occupancy is suppressed. In the
Mott insulator with n = x the ions with higher local energies are empty and do
not contribute to the low-energy processes in the system. Likewise, in the Mott
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Fig. 2. Left: Schematic plot representing the Mott–Hubbard metal–insulator transition

in a correlated electron system with the binary alloy disorder. The shapes of spectral

functions A(ω) are shown for different interactions U and disorder strengths ∆. Increas-

ing ∆ at U = 0 leads to splitting of the spectral function into the lower (LAB) and the

upper (UAB) alloy subbands, which contain 2xNL and 2(1− x)NL states, respectively.

Increasing U at ∆ = 0 leads to the occurrence of lower (LHB) and upper (UHB) Hub-

bard subbands. The Fermi energy for filling n = x is indicated by µ. At n = x (or

n = 1 + x, not shown in the plot) the LAB (UAB) is half-filled. In this case an increase

in U and ∆ leads to the opening of a correlation gap at the Fermi level and the system

becomes a Mott insulator. Right: Two possible insulating states in the correlated elec-

tron system with binary-alloy disorder. When U < ∆ the insulating state is an alloy

Mott insulator with an excitation gap in the spectrum of the order of U . When U > ∆

the insulating state is an alloy charge transfer insulator with an excitation gap of the

order of ∆; after Ref. [21].

insulator with n = 1 + x the ions with lower local energies are double occupied
implying that the lower alloy subband is blocked and does not play any role.

For U > Uc(∆) in the Mott insulating state with binary alloy disorder one
may use the lowest excitation energies to distinguish two different types of insu-
lators. Namely, for U < ∆ an excitation must overcome the energy gap between
the lower and the upper Hubbard subbands, as indicated in Fig. 2. We call this
insulating state an alloy Mott insulator. On the other hand, for ∆ < U an ex-
citation must overcome the energy gap between the lower Hubbard subband and
the upper alloy-subband, as shown in Fig. 2. We call this insulating state an alloy
charge transfer insulator.

In Fig. 3 we present a particular phase diagram for the Anderson–Hubbard
model at filling n = 0.5 showing a Mott–Hubbard type of MIT with a typical
hysteresis.
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Fig. 3. Ground state phase diagram of the Hubbard model with binary-alloy disorder at

filling n = x = 0.5. The filled (open) dots represent the boundary between paramagnetic

metallic (PM) and paramagnetic insulating (PI) phases as determined by DMFT with

the initial input given by the metallic (insulating) hybridization function. The horizontal

dotted line represents Uc obtained analytically from an asymptotic theory in the limit

∆ → ∞. Inset: hysteresis in the spectral functions at the Fermi level obtained from

DMFT with an initial metallic (insulating) host represented by filled (open) symbols

and solid (dashed) lines; after Ref. [21].

4. Disorder-induced enhancement of the Curie temperature

Itinerant ferromagnetism in the pure Hubbard model occurs only away from
half-filling and if the DOS is asymmetric and peaked at the lower edge [28, 29].
While the Curie temperature increases with the strength of the electron interaction
one would expect it to be lowered by disorder. However, our investigations show
that in some cases the Curie temperature can actually be increased by binary alloy
disorder [22, 23].

Indeed, the Curie temperature as a function of alloy concentration exhibits
a very rich and interesting behavior as is shown in Fig. 4. At some concentrations
and certain values of U , ∆, and n, the Curie temperature is enhanced above the
corresponding value for the non-disordered case (x = 0 or 1). This is shown in the
upper part of Fig. 4 for 0 < x < 0.2. The relative increase in Tc can be as large as
25%, as is found for x ≈ 0.1 at n = 0.7, U = 2 and ∆ = 4 (upper part of Fig. 4).

This unusual enhancement of Tc is caused by three distinct features of inter-
acting electrons in the presence of binary alloy disorder:

i) The Curie temperature in the non-disordered case T p
c ≡ Tc(∆ = 0), depends

non-monotonically on band filling n [28]. Namely, T p
c (n) has a maximum

at some filling n = n∗(U), which increases as U is increased; see also our
schematic plots in Fig. 5.
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Fig. 4. Curie temperature as a function of alloy concentration x at U = 2 (upper part)

and 6 (lower part) for n = 0.7 and disorder ∆ = 1 (dashed lines) and 4 (solid lines);

after Refs. [22, 23]. Temperatures are in the energy units.

ii) As was described above, in the alloy-disordered system the band is split
when ∆ À W . As a consequence, for n < 2x and T ¿ ∆ electrons occupy
only the lower alloy subband and for n > 2x both the lower and upper alloy
subbands are filled. In the former case the upper subband is empty while
in the latter case the lower subband is completely full. Effectively, one can
therefore describe this system by a Hubbard model mapped onto either the
lower or the upper alloy subband, respectively. The second subband plays
a passive role. Hence, the situation corresponds to a single band with the
effective filling neff = n/x for n < 2x and neff = (n− 2x)/(1−x) for n > 2x.
It is then possible to determine Tc from the phase diagram of the Hubbard
model without disorder.

iii) The disorder leads to a reduction of T p
c (neff) by a factor α = x if the Fermi

level is in the lower alloy subband or α = 1 − x if it is in the upper alloy
subband, i.e. we find

T c(n) ≈ αT p
c (neff), (6)

when ∆ À W . Hence, as illustrated in Fig. 5, Tc can be determined by
T p

c (neff). Surprisingly, then, it follows that for suitable U and n the Curie
temperature of a disordered system can be higher than that of the corre-
sponding non-disordered system (cf. Fig. 5).
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Fig. 5. Schematic plots explaining the filling dependence of Tc for interacting electrons

with strong binary alloy disorder. Curves represent T p
c , the Curie temperature for the

pure system, as a function of filling n at two different interactions U1 ¿ U2. Left: For

n < x, Tc of the disordered system can be obtained by transforming the open (for U1)

and the filled (for U2) point from n to neff = n/x, and then multiplying T p
c (n/x) by x

as indicated by arrows. One finds T c(n) < T p
c (n) for U1, but T c(n) > T p

c (n) for U2.

Right: For n > x, Tc of the disordered system can be obtained by transforming T p
c (n)

from n to neff = (n− 2x)/(1− x), and then multiplying T p
c [(n− 2x)/(1− x)x] by 1− x

as indicated by arrows. One finds T c(n) > T p
c (n) for U1, but T c(n) < T p

c (n) for U2;

after Refs. [22, 23].

5. Continuously connected insulating phases
in strongly correlated systems with disorder

The Mott–Hubbard MIT is caused by the Coulomb correlations in the pure
system. By contrast, the Anderson MIT, also referred to as the Anderson localiza-
tion, is due to coherent backscattering from randomly distributed impurities in a
system without interaction [30]. It is therefore a challenge to investigate the effect
of the simultaneously presence of interactions and disorder on electronic systems
[24, 25]. In particular, the question arises whether it will suppress or enlarge a
metallic phase. And what about the Mott and Anderson insulating phases: will
they be separated by a metallic phase? Possible scenarios are schematically plotted
in Fig. 6.

The Mott–Hubbard MIT is characterized by the opening of a gap in the
density of states at the Fermi level. At the Anderson localization transition the
character of the spectrum at the Fermi level changes from a continuous spectrum
to a dense, pure point spectrum. It is plausible to assume that both MITs can
be characterized by a single quantity, namely, the local density of states (LDOS).
Although the LDOS is not an order parameter associated with a symmetry break-
ing phase transition, it discriminates between a metal and an insulator, which is
driven by correlations and disorder, cf. insets to Fig. 6.
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Fig. 6. Possible phases and phase transitions triggered by interaction and disorder

in the same system. According to DMFT investigations the simultaneous presence of

correlations and disorder enhances the metallic regime (thick line); the two insulating

phases are connected continuously. Insets show different local density of states when

disorder or interaction is switched off.

In a disordered system the LDOS depends on a particular realization of the
disorder in the system. To obtain a full understanding of the effects of disorder
it would therefore in principle be necessary to determine the entire probability
distribution function of the LDOS, which is almost never possible. Instead one
might try to calculate moments of the LDOS. This, however, is insufficient because
the arithmetically averaged LDOS (first moment) stays finite at the Anderson
MIT [31]. It was already pointed out by Anderson [30] that the “typical” values of
random quantities, which are mathematically given by the most probable values
of the probability distribution functions, should be used to describe localization.
The geometric mean is defined by

Ageom = exp(〈ln A(εi)〉dis), (7)
and differs from the arithmetical mean given by

Aarith = 〈A(εi)〉dis, (8)
where 〈F (εi)〉dis =

∫
dεiP(εi)F (εi) is an arithmetic mean of function F (εi). The

geometrical mean gives an approximation of the most probable (“typical”) value
of the LDOS and vanishes at a critical strength of the disorder, hence providing
an explicit criterion for the Anderson localization [30, 32–34].
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Fig. 7. Non-magnetic ground state phase diagram of the Anderson–Hubbard (left) and

Anderson–Falicov–Kimball (right) models at half-filling as calculated by DMFT with

the typical local density of states; after Refs. [24, 25].

A non-perturbative framework for investigations of the Mott–Hubbard MIT
in lattice electrons with a local interaction and disorder is provided by the DMFT
[17, 15]. If in this approach the effect of local disorder is taken into account
through the arithmetic mean of the LDOS [35] one obtains, in the absence of
interactions, the well-known coherent potential approximation (CPA) [36], which
does not describe the physics of Anderson localization. To overcome this deficiency
Dobrosavljević et al. [33] incorporated the geometrically averaged LDOS into
the self-consistency cycle and thereby derived a mean-field theory of Anderson
localization which reproduces many of the expected features of the disorder-driven
MIT for non-interacting electrons. This scheme uses only one-particle quantities
and is therefore easily incorporated into the DMFT for disordered electrons in
the presence of phonons [37], or Coulomb correlations [24, 25]. In particular,
the DMFT with geometrical averaging allows to compute phase diagrams for the
Anderson–Hubbard model (1) and the Anderson–Falicov–Kimball model (2) with
the continuous probability distribution function (4) at half-filling [24, 25]. In
this way we found that, although in both models the metallic phase is enhanced
for small and intermediate values of the interaction and disorder, metallicity is
finally destroyed. Surprisingly, the Mott and Anderson insulators are found to be
continuously connected. Phase diagrams for the non-magnetic ground state are
shown in Fig. 7.

6. Conclusions

The physics of correlated electron systems is known to be extremely rich.
Therefore their investigation continues to unravel novel and often surprising phe-
nomena. The presence of disorder further enhances this complexity. Here we
discussed several remarkable features induced by correlations with and without
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disorder, which came as a surprise when they were first discovered, but which
after all have physically intuitive explanations.
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