Skip to main content
Log in

The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Small amounts of felsic, evolved plutonic rocks, often called oceanic plagiogranites, always occur as veins or small stocks within the gabbroic section of the oceanic crust. Four major models are under debate to explain the formation of these rocks: (1) late-stage differentiation of a parental MORB melt, (2) partial melting of gabbroic rocks, (3) immiscibility in an evolved tholeiitic liquid, and (4) assimilation and partial melting of previously altered dikes. Recent experimental data in hydrous MORB-type systems are used to evaluate the petrogenesis of oceanic plagiogranites within the deep oceanic crust. Experiments show that TiO2 is a key parameter for the discrimination between different processes: TiO2 is relatively low in melts generated by anatexis of gabbros which is a consequence of the low TiO2 contents of the protolith, due to the depleted nature of typical cumulate gabbros formed in the oceanic crust. On the other hand, TiO2 is relatively high in those melts generated by MORB differentiation or liquid immiscibility. Since the TiO2 content of many oceanic plagiogranites is far below that expected in case of a generation by simple MORB differentiation or immiscibility, these rocks may be regarded as products of anatexis. This may indicate that partial melting processes triggered by water-rich fluids are more common in the deep oceanic crust than believed up to now. At slow-spreading ridges, seawater may be transported via high-temperature shear zones deeply into the crust and thus made available for melting processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alabaster T, Pearce JA, Malpas J (1982) The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contrib Miner Petrol 81:168–183

    Article  Google Scholar 

  • Aldiss DT (1981) Plagiogranites from the ocean crust and ophiolites. Nature 289:577–578

    Article  Google Scholar 

  • Amri I, Benoit M, Ceuleneer G (1996) Tectonic setting for the genesis of oceanic plagiogranites: evidence from a paleo-spreading structure in the Oman ophiolite. Earth Planet Sci Lett 139:177–194

    Article  Google Scholar 

  • Aumento F (1969) Diorites from the mid-Atlantic ridge at 45°N. Science 165:1112–1113

    Article  Google Scholar 

  • Barker F (1979) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, p 659

    Google Scholar 

  • Beard JS (1998) Polygenetic tonalite-trondhjemite-granodiorite (TTG) magmatism in the Smartville Complex, northern California with a note on LILE depletion in plagiogranites. Miner Petrol 64:15–45

    Article  Google Scholar 

  • Bébien J (1991) Enclaves in plagiogranites of the Guevgueli ophiolitic complex, Macedonia, Greece. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Developments in petrology, vol 13. Elsevier, Amsterdam, Oxford, New York, pp 205–219

  • Bébien J, Dautaj N, Shallo M, Turku I, Barbarin B (1997) Diversité des plagiogranites ophiolitiques: l’exemple albanais. C R Acad Sci Paris 324:875–882

    Google Scholar 

  • Beccaluva L, Ohnenstetter D, Ohnenstetter M, Venturelli G (1977) The trace element geochemistry of Corsican ophiolites. Contrib Miner Petrol 64:11–31

    Article  Google Scholar 

  • Beccaluva L, Chinchilla-Chaves AL, Coltorti M, Giunta G, Siena F, Vaccaro C (1999) Petrological and structural significance of the Santa Elena-Nicoya ophiolitic complex in Costa Rica and geodynamic implications. Contrib Miner Petrol 11:1091–1107

    Google Scholar 

  • Berndt J, Koepke J, Holtz F (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46:135–167

    Article  Google Scholar 

  • Bézos A, Humler E (2005) The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69:711–725

    Article  Google Scholar 

  • Borsi L, Schärer U, Gaggero L, Crispini L (1996) Age, origin and geodynamic significance of plagiogranites in lherzolites and gabbros of the Piedmont-Ligurian ocean basin. Earth Planet Sci Lett 140:227–241

    Article  Google Scholar 

  • Bosch D, Jamais M, Boudier F, Nicolas A, Dautria J-M, Agrinier P (2004) Deep and high-temperature hydrothermal circulation in the Oman ophiolite—petrological and isotopic evidence. J Petrol 45:1181–1208

    Article  Google Scholar 

  • Boudier F, Nicolas A, Mainprice D (2005) Does anisotropy of thermal contraction control hydrothermal circulation at the moho level below fast spreading oceanic ridges? Int Geol Rev 47:101–112

    Google Scholar 

  • Brown EH, Bradshaw JY, Mustoe GE (1979) Plagiogranite and keratophyre in ophiolite Fidalgo Island, Washington. Part I Geol Soc Am Bull 90:493–507

    Article  Google Scholar 

  • Cann JR, Blackman DK, Smith DK, McAllister E, Janssen B, Mello S, Avgerinos E, Pascoe AR, Escartin J (1997) Corrugated slip surfaces formed at ridge-transform intersections on the mid-Atlantic ridge. Nature 385:329–332

    Article  Google Scholar 

  • Cannat M (1996) How thick is the magmatic crust at slow spreading oceanic ridges? J Geophys Res Solid Earth 101:2847–2857

    Article  Google Scholar 

  • Cannat M, Bideau D, Bougault H (1992) Serpentinized peridotites and gabbros in the mid-Atlantic ridge axial valley at 15°37′N and 16°52′n. Earth Planet Sci Lett 109:87–106

    Article  Google Scholar 

  • Cannat M, Karson JA, Miller DJ et al (1995a) Proceedings of the ODP, Initial Reports, vol 153. Ocean Drilling Program, College Station, pp 798

  • Cannat M, Mevel C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E, Reynolds J (1995b) Thin crust, ultramafic exposures, and rugged faulting patterns at mid-Atlantic ridge (22°–24°N). Geology 23:49–52

    Article  Google Scholar 

  • Cannat M, Ceuleneer G, Fletcher J (1997) Localization of ductile strain and the magmatic evolution of gabbroic rocks drilled at the mid-Atlantic ridge (23°N). In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Proceedings of the ODP, Science Research, vol 153. Ocean Drilling Program, College Station, pp 77–98

  • Casey JF (1997) Comparison of major- and trace-element geochemistry of abyssal peridotites and mafic plutonic rocks with basalts from the MARK region of the mid-Atlantic ridge. In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Proceedings of the ODP, Science Research, vol 153. Ocean Drilling Program, College Station, pp 181–241

  • Christie DM, Carmichael ISE, Langmuir CH (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79:397–411

    Article  Google Scholar 

  • Coleman RG, Peterman ZE (1975) Oceanic plagiogranite. J Geophys Res 80:1099–1108

    Article  Google Scholar 

  • Coleman RG, Donato MM (1979) Oceanic plagiogranite revisited. In: Barker F (eds) Trondhjemites, dacites, and related rocks. Elsevier, Amsterdam, pp 149–167

    Google Scholar 

  • Coogan LA, Wilson RN, Gillis KM, MacLeod CJ (2001) Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry. Geochim Cosmochim Acta 65:4339–4357

    Article  Google Scholar 

  • Dick HJB, Natland JH, Miller DJ et al (1999) Proceedings of the ODP, Initial Reports, vol 176. College Station, pp 1–314. http://www.odp.tamu.edu/publications/176_IR/VOLUME/CHAPTERS/CHAP_03.PDF. Cited 29 Jan 2003

  • Dick HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu YL, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm HU, Yoshinobu A (2000) A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179:31–51

    Article  Google Scholar 

  • Dick HJB, Ozawa K, Meyer PS, Niu Y, Robinson PT, Constantin M, Hebert R, Maeda J, Natland JH, Hirth JG, Mackie SM (2002) Primary silicate mineral chemistry of a 1.5-km section of very slow spreading lower ocean crust: ODP Hole 735B, Southwest Indian Ridge. In: Natland JH, Dick HJB, Miller DJ, Von Herzen RP (eds) Proceedings of ODP, Science Research, vol 176, chap 10. Ocean Drilling Program, College Station, pp 1–61. http://www.odp.tamu.edu/publications/176_SR/VOLUME/CHAPTERS/SR176_10.PDF. Cited 22 Jan 2003

  • Dixon S, Rutherford MJ (1979) Plagiogranites as late-stage immiscible liquids in ophiolite and mid-oceanic ridge suites: an experimental study. Earth Planet Sci Lett 45:45–60

    Article  Google Scholar 

  • Dixon-Spulber S, Rutherford MJ (1983) The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J Petrol 24:1–25

    Google Scholar 

  • Engel CG, Fisher RL (1975) Granitic to ultramafic rock complexes of the Indian Ocean Ridge system, western Indian Ocean. Geol Soc Am Bull 96:1553–1578

    Article  Google Scholar 

  • Expedition 305 Scientists (2005) Oceanic core complex formation, Atlantis Massif—oceanic core complex formation, Atlantis Massif, mid-Atlantic Ridge: drilling into the footwall and hanging wall of a tectonic exposure of deep, young oceanic lithosphere to study deformation, alteration, and melt generation. IODP Preliminary Report 305, DOI 10.2204/iodp.pr.305.2005

  • Expedition 309, 312 Scientists (2006) Superfast spreading rate crust 2 and 3: a complete in situ section of upper oceanic crust formed at a superfast spreading rate. IODP Preliminary Report 312 (in press)

  • Feig S, Koepke J, Snow J (2006) Effect of water on tholeiitic basalt phase equilibria—an experimental study under oxidizing conditions. Contrib Miner Petrol (in press). DOI 10.1007/s00410-006-0123-2

  • Flagler PA, Spray JG (1991) Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology 19:70–73

    Article  Google Scholar 

  • Floyd PA, Yaliniz MK, Goncuoglu MC (1998) Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, central Anatolian Crystalline Complex, Turkey. Lithos 42:225–241

    Article  Google Scholar 

  • Gaggero L, Cortesogno L (1997) Metamorphic evolution of oceanic gabbros: recrystallization from subsolidus to hydrothermal conditions in the MARK area (ODP Leg 153). Lithos 40:105–131

    Article  Google Scholar 

  • Gerlach DC, Leeman WP, Avé Lallemant HG (1981) Petrology and geochemistry of plagiogranite in the Canyon Mountain ophiolite, Oregon. Contrib Miner Petrol 72:82–92

    Article  Google Scholar 

  • Ghazi AM, Hassanipak AA, Mahoney JJ, Duncan RA (2004) Geochemical characteristics, 40Ar–39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, S.E. Iran. Tectonophysics 393:175–196

    Article  Google Scholar 

  • Gillis KM, Coogan LA (2002) Anatectic migmatites from the roof of an ocean ridge magma chamber. J Petrol 43:2075–2095

    Article  Google Scholar 

  • Hart SR, Blusztajn J, Dick HJB, Meyer PS, Muehlenbachs K (1999) The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim Cosmochim Acta 63:4059–4080

    Article  Google Scholar 

  • Hatzipanagiotou K, Lekkas E, Migiros G (1995) Plagiogranites in the ultrabasic rocks of the Koziakas Mountain (Central Greece). Z Dt Geol Ges 146:479–486

    Google Scholar 

  • Irvine TN, Findlay TC (1972) Alpine peridotite with particular reference to the Bay of Islands Igeneous Complex. Univ Ottawa Earth Phys Branch Publ 42:97–128

    Google Scholar 

  • Jacobsen JK, Veksler IV, Tegner C, Brooks CK (2005) Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology 33:885–888

    Article  Google Scholar 

  • Jahn B (1986) Mid-ocean ridge or marginal basin origin of the East Taiwan ophiolite: chemical and isotopic evidence. Contrib Miner Petrol 92:194–206

    Article  Google Scholar 

  • Johannes W, Koepke J (2001) Uncomplete reaction of plagioclase in experimental dehydration melting of amphibolite. Aust J Earth Sci 48:581–590

    Article  Google Scholar 

  • Johnson MC, Anderson AT, Rutherford MJ (1994) Pre-eruptive volatile contents of magmas. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Review in Mineral, vol 30. Mineralogical Society of America, Washington, DC, United States, pp 281–330

  • Juster TC, Grove TL, Perfit MR (1989) Experimental constraints on the generation of Fe-Ti basalts, andesites, and rhyodacites at the Galapagos spreading centre, 85°W and 95°W. J Geophys Res 94:9251–9274

    Google Scholar 

  • Juteau T, Ernewein M, Reuber I, Whitechurch H, Dahl R (1988) Duality of magmatism in the plutonic sequence of the Sumail Nappe, Oman. Tectonophysics 151:107–135

    Article  Google Scholar 

  • Karson JA, Klein EM, Hurst SD, Lee CE, Rivizzigno PA, Curewitz D, Morris AR, Hess Deep ‘99 Scientific Party (2002) Structure of uppermost fast-spread oceanic crust exposed at the Hess Deep Rift: implications for subaxial processes at the East Pacific Rise. Geochem Geophys Geosyst 8:2001GC000155

  • Kempton PD, Hunter AG (1997) A Sr-, Nd-, Pb-, O-isotope study of plutonic rocks from MARK, Leg 153: implications for mantle heterogeneity and magma chamber processes. In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Proceedings of the ODP, Science Research, vol 153. Ocean Drilling Program, College Station, pp 305–319

  • Koepke J (1986) Die Ophiolithe der südägäischen Inselbrücke. PhD Thesis, Technical University of Braunschweig, 204 pp

  • Koepke J, Berndt J, Bussy F (2003) An experimental study on the shallow-level magmatization of ferrogabbros from the Fuerteventura Basal Complex, Canary Islands. Lithos 69:105–125

    Article  Google Scholar 

  • Koepke J, Feig ST, Snow J, Freise M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Miner Petrol 146:414–432

    Article  Google Scholar 

  • Koepke J, Feig ST, Horn I, Snow J (2005a) Hydrothermal activities at very high temperatures in the lower oceanic crust: evidence from gabbros drilled at the mid-Atlantic Ridge (ODP Leg 153). Beiheft No 1 zum. Eur J Miner 17:71

    Google Scholar 

  • Koepke J, Feig ST, Snow J (2005b) Hydrous partial melting within the lower oceanic crust. Terra Nova 17:286–291

    Article  Google Scholar 

  • Koepke J, Feig ST, Snow J (2005c) Late-stage magmatic evolution of oceanic gabbros as a result of hydrous partial melting: evidence from the ODP Leg 153 drilling at the mid-Atlantic Ridge. Geochem Geophys Geosyst 6:2004GC000805

  • Kontak DJ, De Young MYD, Dostal J (2002) Late-stage crystallization history of the Jurassic North Mountain Basalt, Nova Scotia, Canada. I. Textural and chemical evidence for pervasive development of silicate-liquid immiscibility. Can Miner 40:1287–1311

    Google Scholar 

  • Lagabrielle Y, Bideau D, Cannat M, Karson JA, Mével C (1998) Ultramafic-mafic plutonic rock suites exposed along the mid-Atlantic Ridge (10°N–30°N). Symmetrical-asymmetrical distribution and implications for seafloor spreading processes. In: Buck WR, Delaney PT, Karson JA, Lagabrielle Y (eds) Faulting and magmatism at mid-ocean ridges. American Geophysical Union, Washington, pp 153–176

    Google Scholar 

  • Lanphere MA, Coleman RG (1981) Sr isotopic tracer study of the Samail ophiolite, Oman. J Geophys Res 86(B4):2709–2720

    Google Scholar 

  • Le Maitre RW (1989) A classification of the igneous rocks and glossary of terms. Blackwell, Oxford, p 193

    Google Scholar 

  • Lehnert K, Su Y, Langmuir CH, Sarbas B, Nohl U (2000) A global geochemical database structure for rocks. Geochem Geophys Geosyst 1:1999GC000026

    Google Scholar 

  • Lippard SJ, Shelton AW, Gass IG (1986) The ophiolite of Northern Oman. In: Geological Society Memoir, 11. Blackwell, Oxford, pp 178

  • Maeda J, Naslund HR, Jang YD, Kikawa E, Tajima T, Blackburn WH (2002) High-temperature fluid migration within oceanic layer 3 gabbros, Hole 735B, Southwest Indian Ridge: implications for the magmatic–hydrothermal transition at slow spreading mid-ocean ridges. In: Natland JH, Dick HJB, Miller DJ, Von Herzen RP (eds) Proceedings of the ODP, Science Research, vol 176, chap 4. Ocean Drilling Program, College Station, pp 1–56. http://www.odp.tamu.edu/publications/176_SR/VOLUME/CHAPTERS/SR176_04.PDF. Cited 22 Jan 2003

  • Malpas J (1979) Two contrasting trondhjemite associations from transported ophiolites in Western Newfoundland: initial report. In: Barker F (eds) Trondhjemites, dacites, and related rocks. Elsevier, Amsterdam, pp 465–487

    Google Scholar 

  • McBirney AR, Nakamura Y (1974) Immiscibility in late-stage magmas of the Skaergaard intrusion. Carnegie Inst Wash Yb 73:348–352

    Google Scholar 

  • McCulloch MT, Gregory RT, Wasserburg GJ, Taylor HP (1981) Sm-Nd, Rb-Sr, and 18O/16O systematics in an oceanic crustal section: evidence from the Samail ophiolite. J Geophys Res 86(B4):2721–2735

    Google Scholar 

  • Mével C (1988) Metamorphism in ocean layer 3, Gorringe Bank, Eastern Atlantic. Contrib Miner Petrol 100:496–509

    Article  Google Scholar 

  • Mével C, Cannat M (1991) Lithospheric stretching and hydrothermal processes in oceanic gabbros from slow-spreading ridges. In: Peters T, Nicolas A, Coleman RG (eds) Ophiolite genesis and evolution of the oceanic lithosphere. Kluwer, Dordrecht, pp 293–312

    Google Scholar 

  • Michael PJ, Schilling J-G (1989) Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater-influenced components. Geochim Cosmochim Acta 53:3131–3143

    Article  Google Scholar 

  • Miyashiro A (1973) The Troodos ophiolitic complex was probably formed in an island arc. Earth Planet Sci Lett 19:218–224

    Article  Google Scholar 

  • Moores EM (1969) Petrology and structure of the Vourinos ophiolitic complex of northern Greece. Geol Soc Am Spec Pap 118:1–69

    Google Scholar 

  • Moores EM, Vine FJ (1971) Troodos massif, cyprus and other ophiolites as oceanic crust—evaluation and implications. Phil Trans R Soc Lond A 268:443–466

    Google Scholar 

  • Muller B, Klotzli U, Schaltegger U, Flisch M (1996) Early Cambrian oceanic plagiogranite in the Silvretta Nappe, eastern Alps: geochemical, zircon U-Pb and Rb-Sr data from garnet-hornblende-plagioclase gneisses. Geol Rundschau 85:822–831

    Article  Google Scholar 

  • Natland JH (2002) Magnetic susceptibility as an index of the lithology and composition of gabbros, ODP Leg 176, Hole 735B, Southwest Indian Ridge. In: Natland JH, Dick HJB, Miller DJ, Von Herzen RP (eds) Proceedings of the ODP, Science Research, vol 176. Ocean Drilling Program, College Station, pp 1–69. http://www.odp.tamu.edu/publications/176_SR/VOLUME/CHAPTERS/SR176_11.PDF. Cited 22 Sep 2003

  • Natland JH, Dick HJB (2001) Formation of the lower ocean crust and the crystallization of gabbroic cumulates at a very slowly spreading ridge. J Volc Geotherm Res 110:191–233

    Article  Google Scholar 

  • Natland JH, Dick HJB (2002) Stratigraphy and composition of gabbros drilled at ODP Hole 735B, Southwest Indian Ridge: a synthesis of geochemical data. In: Natland JH, Dick HJB, Miller DJ, Von Herzen RP (eds) Proceedings of the ODP, Science Research, vol 176. Ocean Drilling Program, College Station, pp 1–69. http://www.odp.tamu.edu/publications/176_SR/VOLUME/SYNTH/SYNTH.PDF Cited 26 Sep 2003

  • Natland JH, Meyer PS, Dick HJB, Bloomer SH (1991) Magmatic oxides and sulfides in gabbroic rocks from ODP Hole 735B and the later development of the liquid line of descent. In: Von Herzen RP, Robinson PT, et al (eds) Proceedings of the ODP, Science Research, vol 118. Ocean Drilling Program, College Station, pp 41–73

  • Nicolas A (1989) Structures of ophiolites and dynamics of oceanic lithosphere. Kluwer, Dordrecht, pp 376

    Google Scholar 

  • Nicolas A, Mainprice D (2005) Burst of high-temperature seawater injection throughout accreting oceanic crust: a case study in Oman ophiolite. Terra Nova 17:326–330

    Article  Google Scholar 

  • Nicolas A, Mainprice D, Boudier F (2003) High temperature seawater circulation throughout crust of oceanic ridges. A model derived from the Oman ophiolite. J Geophys Res 108(B8):2371

    Article  Google Scholar 

  • Niu Y, Gilmore T, Mackie S, Greig A, Bach W (2002) Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion. In: Natland JH, Dick HJB, Miller DJ, Von Herzen RP (eds) Proceedings of the ODP, Science Research, vol 176. Ocean Drilling Program, College Station, pp 1–60. http://www.odp.tamu.edu/publications/176_SR/VOLUME/CHAPTERS/SR176_08.PDF. Cited 22 Jan 2003

  • Osborn EF (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magmas. Am J Sci 257:609–647

    Article  Google Scholar 

  • Parmentier EM, Morgan JP (1990) Spreading rate dependence of 3-dimensional structure in oceanic spreading centers. Nature 348:325–328

    Article  Google Scholar 

  • Pedersen RB, Malpas J (1984) The origin of oceanic plagiogranites from the Karmoy ophiolite, western Norway. Contrib Miner Petrol 88:36–52

    Article  Google Scholar 

  • Phelps D, Avé Lallemant HG (1980) The Sparta ophiolite complex, northeast Oregon: a plutonic equivalent to low K2O island-arc volcanism. Am J Sci 280A:345–358

    Google Scholar 

  • Philpotts AR (1979) Silicate liquid immiscibility in tholeiitic basalts. J Petrol 20:99–118

    Google Scholar 

  • Philpotts AR (1982) Compositions of immiscible liquids in volcanic rocks. Contrib Miner Petrol 80:201–218

    Article  Google Scholar 

  • Reston TJ, Weinrebe W, Grevemeyer I, Flueh ER, Mitchell NC, Kirstein L, Kopp C, Kopp H (2002) A rifted inside corner massif on the mid-Atlantic Ridge at 5°S. Earth Planet Sci Lett 200:255–269

    Article  Google Scholar 

  • Robinson PT, Von Herzen RP et al (1993) Proceedings of the ODP, Initial Reports, vol 118. College Station, pp 826

  • Ryerson FJ, Watson EB (1987) Rutile saturation in magmas: implications for Ti-Nb-Ta depletion in island-arc basalts. Earth Planet Sci Lett 86:225–239

    Article  Google Scholar 

  • Sato H (1978) Segregation vesicles and immiscible liquid droplets in ocean-floor basalt of Hole 396B, IPOD/DSDP Leg 46. In: Dimitriev L, Heirtzler J, et al (eds) Initial reports of the Deep Sea Drilling Project, vol 46. U.S. Government Printing Office, Washington, pp 283–291

  • Saunders AD, Tarney J, Stern CR, Dalziel IWD (1979) Geochemistry of mesozoic marginal basin floor igneous rocks from southern Chile. Part I. Geol Soc Am Bull 90:237–258

    Article  Google Scholar 

  • Shastry A, Srivastava RK, Chandra R, Jenner GA (2001) Fe-Ti enriched mafic rocks from South Andaman ophioite suite: implications of late stage liquid immiscibility. Curr Sci 80:453–454

    Google Scholar 

  • Shi P (1993) Low-pressure phase relationships in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2 at 1100°C, with implications for the differentiation of basaltic magmas. J Petrol 34:743–762

    Google Scholar 

  • Shipboard Scientific Party (1999) Site 735. In: Dick HJB, Natland JH, Miller DJ et al (eds) Proceedings of the ODP, Initial Reports, vol 176. Ocean Drilling Program, College Station, pp 1–314. http://www.odp.tamu.edu/publications/176_IR/176TOC.HTM. Cited 28 May 2004

  • Silantyev SA (1998) Origin conditions of the mid-Atlantic Ridge plutonic complex at 13°–17°N. Petrology 6:381–421

    Google Scholar 

  • Snyder D, Carmichael ISE, Wiebe RA (1993) Experimental study of liquid evolution in an Fe-rich, layered mafic intrusion: constraints of Fe-Ti oxide precipitation on the T-fO2 and T-ρ paths of tholeiitic magmas. Contrib Miner Petrol 113:73–86

    Article  Google Scholar 

  • Spray JG, Dunning GR (1991) A U/Pb age for the Shetland Islands oceanic fragment, Scottish Caledonides: evidence from anatectic plagiogranites in ‘layer 3’ shear zones. Geol Mag 128:667–671

    Article  Google Scholar 

  • Stakes D, Mével C, Cannat M, Chaput T (1991) Metamorphic stratigraphy of hole 735B. In: Von Herzen RP, Robinson PT et al (eds) Proceedings of the ODP, Science Research, vol 118. Ocean Drilling Program, College Station, pp 153–180

  • Stakes DS, Taylor HP (1992) The northern Samail ophiolite—an oxygen isotope, microprobe, and field-study. J Geophys Res Solid Earth 97:7043–7080

    Google Scholar 

  • Steyrer HP, Finger F (1995) Bericht 1994 über petrographische Untersuchungen am Hartenstein-Gneis auf Blatt 37 Mautern. Jb Geol B A 138:566–568

    Google Scholar 

  • Thayer TP (1977) Some implications of sheeted dike swarms in ophiolitic complexes. Geotectonics 11:419–426

    Google Scholar 

  • Thompson GM, Malpas J, Smith IEM (1997) The geochemistry of tholeiitic and alkalic plutonic suites within the northland ophiolite, northern New Zealand; magmatism in a back arc basin. Chem Geol 142:213–223

    Article  Google Scholar 

  • Thy P, Lofgren GE (1994) Experimental constraints on the low-pressure evolution of transitional and mildly alkalic basalts: the effect of Fe-Ti oxide minerals and the origin of basaltic andesites. Contrib Miner Petrol 116:340–351

    Article  Google Scholar 

  • Thy P, Lesher CE, Mayfield JD (1999) Low-pressure melting studies of basalt and basaltic andesite from the southeast Greenland continental margin and the origin of dacites at site 917. In: Larsen HC, Duncan RA, Allan JF, Brooks K (eds) Proceedings of the ODP, Science Research, vol 163. Ocean Drilling Program, College Station, pp 95–112

  • Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170

    Google Scholar 

  • Tsikouras B, Hatzipanagiotou K (1998) Plagiogranite and leucogranite relationships in an ophiolite on the Thethys Ocean (Samothraki, N. Aegean, Greece). N Jb Miner Mh 1:13–35

    Google Scholar 

  • Tucholke BE (1998) Discovery of “megamullions” reveals gateways into the oceanic crust and upper mantle. Oceanus 41:15–19

    Google Scholar 

  • Ulrich T, Borsien G-R (1996) Fedoz metagabbros and Forno metabasalt (Val Malenco, N Italy): comparative petrographic and geochemical investigations. Schweiz Miner Petrogr Mitt 76:521–535

    Google Scholar 

  • Vetter S, Stakes D (1990) The northern Semail plutonic suite: field and trace element evidence for repeated magma injection in the construction of back-arc crust. In: Ophiolites and oceanic crust, special volume. Cyprus Geological Survey, Nicosia, pp 397–412

  • Wilson et al (2006) Drilling to gabbro in intact ocean crust. Science 312:1016–1020

    Article  Google Scholar 

Download references

Acknowledgment

Otto Diedrichs’s careful sample preparation is gratefully acknowledged. The manuscript has been substantially improved after thorough reviews by L. Coogan and an unknown reviewer. We would also like to thank P. Thy and Y. Niu for helpful comments on an earlier version of the manuscript. Valuable editorial advice from J. Hoefs is acknowledged. Funding for this research was provided by grants from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Koepke.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koepke, J., Berndt, J., Feig, S.T. et al. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contrib Mineral Petrol 153, 67–84 (2007). https://doi.org/10.1007/s00410-006-0135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-006-0135-y

Keywords

Navigation