The readout electronic of EUSO-Balloon experiment

, , , , , , , , , , , and

Published 26 March 2014 © 2014 IOP Publishing Ltd and Sissa Medialab srl
, , Citation S Ahmad et al 2014 JINST 9 C03050 DOI 10.1088/1748-0221/9/03/C03050

1748-0221/9/03/C03050

Abstract

The EUSO-Balloon experiment is a pathfinder for the satellite mission JEM-EUSO whose goal will be to observe Extensive Air Showers produced in the atmosphere by the passage can detect fluorescent UV photons released by the EAS thanks to Multi-anode photomultipliers (MAPMT) arranged in 6 × 6 matrices inside Photo Detector Modules (PDM). A set of lenses is used to focus the photons on the PDM which can be compared to a UV camera taking pictures every 2.5 μs period (GTU: Gate Time Unit). The experiment consists in launching a balloon, at an altitude of 40 km, equipped with complete PDM and Data Processing systems. This project, supported by CNES and constructed by the JEM-EUSO collaboration, is meant to prove that the technology of such an instrument is possible and that the performance is satisfying, raising the Technical Readiness Level (TRL) of JEM-EUSO. Moreover, complex trigger algorithms will be assessed and the main back ground (night glow plus star light) will be studied.

A complex readout electronic chain has been designed for the EUSO-Balloon project. It contains two elements: the 9 EC units and the 6 EC-ASIC boards. The EC unit includes four 64-channel Multi-Anode Photomultipliers and a set of pcbs used to supply the 14 different high voltages needed by the MAPMTs and to read out the analog anode signals. These signals are transmitted to the EC-ASIC boards which contain 6 SPACIROC ASICs each. During the year 2012, prototypes of each board were produced and tested successfully, leading to the production of the flight model PCBs in 2013.

Export citation and abstract BibTeX RIS

10.1088/1748-0221/9/03/C03050