Decoupling and destabilizing in spontaneously broken supersymmetry

Jonathan A. Bagger and Adam F. Falk
Phys. Rev. D 76, 105026 – Published 27 November 2007

Abstract

The supersymmetric analog of the Goldberger-Treiman relation plays a critical role in the low energy effective theory of models in which supersymmetry is spontaneously broken in a hidden sector. The interactions that connect the hidden and visible sectors break a global symmetry, which implies that the low energy theory must be constructed consistently in inverse powers of the messenger scale. The Goldberger-Treiman relation determines the couplings of the Goldstino to the visible sector fields. These couplings are fixed by the soft supersymmetry breaking terms within a power counting scheme that is stable under radiative corrections. We describe the power counting of the low energy effective theory, first for a toy model of extended technicolor and then for the supersymmetric standard model. One implication of this work for supersymmetry phenomenology is the observation that Goldstino loops can destabilize the weak scale if the low energy theory is not constructed consistently. Another is that Goldstino loops induce all visible sector operators not forbidden by symmetries. The magnitudes of these operators are determined by the consistent power counting of the low energy effective theory.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 24 August 2007

DOI:https://doi.org/10.1103/PhysRevD.76.105026

©2007 American Physical Society

Authors & Affiliations

Jonathan A. Bagger and Adam F. Falk

  • Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 76, Iss. 10 — 15 November 2007

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×