Simple model of pointlike spacetime defects and implications for photon propagation

M. Schreck, F. Sorba, and S. Thambyahpillai
Phys. Rev. D 88, 125011 – Published 6 December 2013

Abstract

A model in which pointlike defects are randomly embedded in Minkowski spacetime is considered. The distribution of spacetime defects is constructed to be Lorentz invariant. Since it is based on a sprinkling process, it does not introduce a preferred reference frame. A field-theoretic action for the photon and a fermion is set up, in which the photon is assumed not to couple to the defects directly, but via a scalar field. We are interested in signs for Lorentz violation caused by the spacetime defects, which are expected to reveal themselves in the photon sector. A modification of the photon dispersion relation may result as a quantum effect, and we compute it at leading order perturbation theory. The outcome of the calculation is that the photon dispersion law remains conventional, if the defect distribution is dense, homogeneous, and isotropic. This result sheds some new light on Lorentz violation in the framework of a small-scale structure of spacetime. It shows that Lorentz invariance can be preserved even in the presence of a spacetime structure that is supposed to emerge at the Planck scale. This conclusion has already been drawn on general grounds in other publications, where the current paper delivers a demonstration by a direct computation in a simple model.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 1 April 2013

DOI:https://doi.org/10.1103/PhysRevD.88.125011

© 2013 American Physical Society

Authors & Affiliations

M. Schreck*, F. Sorba, and S. Thambyahpillai

  • Institute for Theoretical Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

  • *marco.schreck@kit.edu
  • fabrizio.sorba@kit.edu
  • shiyamala.thambyahpillai@kit.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 12 — 15 December 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×