Restricted spin-range correction in the Oslo method: The example of nuclear level density and γ-ray strength function from Pu239(d,pγ)Pu240

F. Zeiser, G. M. Tveten, G. Potel, A. C. Larsen, M. Guttormsen, T. A. Laplace, S. Siem, D. L. Bleuel, B. L. Goldblum, L. A. Bernstein, F. L. Bello Garrote, L. Crespo Campo, T. K. Eriksen, A. Görgen, K. Hadynska-Klek, V. W. Ingeberg, J. E. Midtbø, E. Sahin, T. Tornyi, A. Voinov, M. Wiedeking, and J. Wilson
Phys. Rev. C 100, 024305 – Published 5 August 2019

Abstract

The Oslo method has been applied to particle-γ coincidences following the Pu239(d,p) reaction to obtain the nuclear level density (NLD) and γ-ray strength function (γSF) of Pu240. The experiment was conducted with a 12 MeV deuteron beam at the Oslo Cyclotron Laboratory. The low spin transfer of this reaction leads to a spin-parity mismatch between populated and intrinsic levels. This is a challenge for the Oslo method as it can have a significant impact on the extracted NLD and γSF. We have developed an iterative approach to ensure consistent results even for cases with a large spin-parity mismatch, in which we couple Green's function transfer calculations of the spin-parity dependent population cross section to the nuclear decay code rainier. The resulting γSF shows a pronounced enhancement between 2–4 MeV that is consistent with the location of the low-energy orbital M1 scissors mode.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 8 April 2019
  • Revised 21 June 2019
  • Corrected 19 February 2021

DOI:https://doi.org/10.1103/PhysRevC.100.024305

©2019 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Corrections

19 February 2021

Correction: Item (iv) and the corresponding footnote 4 in Sec. 5 contained errors and have been fixed.

Authors & Affiliations

F. Zeiser1,*, G. M. Tveten1, G. Potel2, A. C. Larsen1, M. Guttormsen1, T. A. Laplace3, S. Siem1, D. L. Bleuel4, B. L. Goldblum3, L. A. Bernstein3, F. L. Bello Garrote1, L. Crespo Campo1, T. K. Eriksen1, A. Görgen1, K. Hadynska-Klek1, V. W. Ingeberg1, J. E. Midtbø1, E. Sahin1, T. Tornyi1, A. Voinov5, M. Wiedeking6, and J. Wilson7

  • 1Department of Physics, University of Oslo, N-0316 Oslo, Norway
  • 2Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
  • 3Department of Nuclear Engineering, University of California, Berkeley, California 94720, USA
  • 4Lawrence Livermore National Laboratory, Livermore, California 94551, USA
  • 5Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
  • 6iThemba LABS, P.O. Box 722, Somerset West 7129, South Africa
  • 7Institut de Physique Nucléaire d'Orsay, CNRS/Université Paris-Sud, Université Paris Saclay, 91406 Orsay Cedex, France

  • *fabio.zeiser@fys.uio.no

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 100, Iss. 2 — August 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×