The 2023 MDPI Annual Report has
been released!
 
15 pages, 3962 KiB  
Article
Preparation of Nb5+ Doped Na3V2(PO4)3 Cathode Material for Sodium Ion Batteries
by Jingming Wan, Xu Yang and Tian Xia
Materials 2024, 17(11), 2697; https://doi.org/10.3390/ma17112697 (registering DOI) - 3 Jun 2024
Abstract
Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) due to the abundance and low cost of sodium resources. Cathode material plays a crucial role in the performance of sodium ion batteries determining the capacity, cycling stability, and rate [...] Read more.
Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) due to the abundance and low cost of sodium resources. Cathode material plays a crucial role in the performance of sodium ion batteries determining the capacity, cycling stability, and rate capability. Na3V2(PO4)3 (NVP) is a promising cathode material due to its stable three-dimensional NASICON structure, but its discharge capacity is low and its decay is serious with the increase of cycle period. We focused on modifying NVP cathode material by coating carbon and doping Nb5+ ions for synergistic electrochemical properties of carbon-coated NVP@C as a cathode material. X-ray diffraction analysis was performed to confirm the phase purity and crystal structure of the Nb5+ doped NVP material, which exhibited characteristic diffraction peaks that matched well with the NASICON structure. Nb5+-doped NVP@C@Nbx materials were prepared using the sol–gel method and characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Raman and Brunauer -Emmett-Teller (BET) analysis. First-principles calculations were performed based on density functional theory. VASP and PAW methods were chosen for these calculations. GGA in the PBE framework served as the exchange-correlation functional. The results showed the NVP unit cell consisted of six NVP structural motifs, each containing octahedral VO6 and tetrahedral PO4 groups to form a polyanionomer [V2(PO4)3] along with the c-axis direction by PO4 groups, which had Na1(6b) and Na2(18e) sites. And PDOS revealed that after Nb doping, the d orbitals of the Nb atoms also contributed electrons that were concentrated near the Fermi surface. Additionally, the decrease in the effective mass after Nb doping indicated that the electrons could move more freely through the material, implying an enhancement of the electron mobility. The electrochemical properties of the Nb5+ doped NVP@C@Nb cathode material were evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge tests, electrochemical impedance spectroscopy (EIS), and X-ray photoelectric spectroscopy (XPS). The results showed that NVP@C@Nb0.15 achieved an initial discharge capacity as high as 114.27 mAhg−1, with a discharge capacity of 106.38 mAhg−1 maintained after 500 cycles at 0.5C, and the retention rate of the NVP@C@Nb0.15 composite reached an impressive 90.22%. NVP@C@Nb0.15 exhibited low resistance and high capacity, enabling it to create more vacancies and modulate crystal structure, ultimately enhancing the electrochemical properties of NVP. The outstanding performance can be attributed to the Nb5+-doped carbon layer, which not only improves electronic conductivity but also shortens the diffusion length of Na+ ions and electrons, as well as reduces volume changes in electrode materials. These preliminary results suggested that the as-obtained NVP@C@Nb0.15 composite was a promising novel cathode electrode material for efficient sodium energy storage. Full article
Show Figures

Figure 1

17 pages, 6436 KiB  
Article
The Enhanced Photoluminescence Properties of Carbon Dots Derived from Glucose: The Effect of Natural Oxidation
by Pei Zhang, Yibo Zheng, Linjiao Ren, Shaojun Li, Ming Feng, Qingfang Zhang, Rubin Qi, Zirui Qin, Jitao Zhang and Liying Jiang
Nanomaterials 2024, 14(11), 970; https://doi.org/10.3390/nano14110970 (registering DOI) - 3 Jun 2024
Abstract
The investigation of the fluorescence mechanism of carbon dots (CDs) has attracted significant attention, particularly the role of the oxygen-containing groups. Dual-CDs exhibiting blue and green emissions are synthesized from glucose via a simple ultrasonic treatment, and the oxidation degree of the CDs [...] Read more.
The investigation of the fluorescence mechanism of carbon dots (CDs) has attracted significant attention, particularly the role of the oxygen-containing groups. Dual-CDs exhibiting blue and green emissions are synthesized from glucose via a simple ultrasonic treatment, and the oxidation degree of the CDs is softly modified through a slow natural oxidation approach, which is in stark contrast to that aggressively altering CDs’ surface configurations through chemical oxidation methods. It is interesting to find that the intensity of the blue fluorescence gradually increases, eventually becoming the dominant emission after prolonging the oxidation periods, with the quantum yield (QY) of the CDs being enhanced from ~0.61% to ~4.26%. Combining the microstructure characterizations, optical measurements, and ultrafiltration experiments, we hypothesize that the blue emission could be ascribed to the surface states induced by the C–O and C=O groups, while the green luminescence may originate from the deep energy levels associated with the O–C=O groups. The distinct emission states and energy distributions could result in the blue and the green luminescence exhibiting distinct excitation and emission behaviors. Our findings could provide new insights into the fluorescence mechanism of CDs. Full article
(This article belongs to the Special Issue Photofunctional Nanomaterials and Nanostructures)
Show Figures

Figure 1

20 pages, 1390 KiB  
Review
Spontaneous Tumor Regression and Reversion: Insights and Associations with Reduced Dietary Phosphate
by Ronald B. Brown
Cancers 2024, 16(11), 2126; https://doi.org/10.3390/cancers16112126 (registering DOI) - 3 Jun 2024
Abstract
Tumors that spontaneously shrink from unknown causes in tumor regression, and that return to normal cells in tumor reversion, are phenomena with the potential to contribute new knowledge and novel therapies for cancer patient survival. Tumorigenesis is associated with dysregulated phosphate metabolism and [...] Read more.
Tumors that spontaneously shrink from unknown causes in tumor regression, and that return to normal cells in tumor reversion, are phenomena with the potential to contribute new knowledge and novel therapies for cancer patient survival. Tumorigenesis is associated with dysregulated phosphate metabolism and an increased transport of phosphate into tumor cells, potentially mediated by phosphate overload from excessive dietary phosphate intake, a significant problem in Western societies. This paper proposes that reduced dietary phosphate overload and reregulated phosphate metabolism may reverse an imbalance of kinases and phosphatases in cell signaling and cellular proliferation, thereby activating autophagy in tumor regression and reversion. Dietary phosphate can also be reduced by sickness-associated anorexia, fasting-mimicking diets, and other diets low in phosphate, all of which have been associated with tumor regression. Tumor reversion has also been demonstrated by transplanting cancer cells into a healthy microenvironment, plausibly associated with normal cellular phosphate concentrations. Evidence also suggests that the sequestration and containment of excessive phosphate within encapsulated tumors is protective in cancer patients, preventing the release of potentially lethal amounts of phosphate into the general circulation. Reducing dietary phosphate overload has the potential to provide a novel, safe, and effective reversion therapy for cancer patients, and further research is warranted. Full article
Show Figures

Figure 1

21 pages, 2740 KiB  
Review
Natural Factors of Microplastics Distribution and Migration in Water: A Review
by Xianjin An, Yanling Wang, Muhammad Adnan, Wei Li and Yaqin Zhang
Water 2024, 16(11), 1595; https://doi.org/10.3390/w16111595 (registering DOI) - 3 Jun 2024
Abstract
Microplastics are widely present worldwide and are of great concern to scientists and governments due to their toxicity and ability to serve as carriers of other environmental pollutants. The abundance of microplastics in different water bodies varied significantly, mainly attributed to the initial [...] Read more.
Microplastics are widely present worldwide and are of great concern to scientists and governments due to their toxicity and ability to serve as carriers of other environmental pollutants. The abundance of microplastics in different water bodies varied significantly, mainly attributed to the initial emission concentration of pollutants and the migration ability of pollutants. The migration process of microplastics determines the abundance, fate, and bioavailability of microplastics in water. Previous studies have proved that the physicochemical properties of water bodies and the properties of microplastics themselves are important factors affecting their migration, but the change in external environmental conditions is also one of the main factors controlling the migration of microplastics. In this paper, we focus on the effects of meteorological factors (rainfall, light, and wind) on the distribution and migration of microplastics and conclude that the influence of meteorological factors on microplastics mainly affects the inflow abundance of microplastics, the physical and chemical properties of water, and the dynamics of water. At the same time, we briefly summarized the effects of aquatic organisms, water substrates, and water topography on microplastics. It is believed that aquatic organisms can affect the physical and chemical properties of microplastics through the physical adsorption and in vivo transmission of aquatic plants, through the feeding behavior, swimming, and metabolism of animals, and through the extracellular polymers formed by microorganisms, and can change their original environmental processes in water bodies. A full understanding of the influence and mechanism of external environmental factors on the migration of microplastics is of great theoretical significance for understanding the migration law of microplastics in water and comprehensively assessing the pollution load and safety risk of microplastics in water. Full article
Show Figures

Figure 1

19 pages, 3821 KiB  
Article
Unveiling Tst3, a Multi-Target Gating Modifier Scorpion α Toxin from Tityus stigmurus Venom of Northeast Brazil: Evaluation and Comparison with Well-Studied Ts3 Toxin of Tityus serrulatus
by Diogo Vieira Tibery, João Antonio Alves Nunes, Daniel Oliveira da Mata, Luis Felipe Santos Menezes, Adolfo Carlos Barros de Souza, Matheus de Freitas Fernandes-Pedrosa, Werner Treptow and Elisabeth Ferroni Schwartz
Toxins 2024, 16(6), 257; https://doi.org/10.3390/toxins16060257 (registering DOI) - 3 Jun 2024
Abstract
Studies on the interaction sites of peptide toxins and ion channels typically involve site-directed mutations in toxins. However, natural mutant toxins exist among them, offering insights into how the evolutionary process has conserved crucial sequences for activities and molecular target selection. In this [...] Read more.
Studies on the interaction sites of peptide toxins and ion channels typically involve site-directed mutations in toxins. However, natural mutant toxins exist among them, offering insights into how the evolutionary process has conserved crucial sequences for activities and molecular target selection. In this study, we present a comparative investigation using electrophysiological approaches and computational analysis between two alpha toxins from evolutionarily close scorpion species of the genus Tityus, namely, Tst3 and Ts3 from T. stigmurus and T. serrulatus, respectively. These toxins exhibit three natural substitutions near the C-terminal region, which is directly involved in the interaction between alpha toxins and Nav channels. Additionally, we characterized the activity of the Tst3 toxin on Nav1.1-Nav1.7 channels. The three natural changes between the toxins did not alter sensitivity to Nav1.4, maintaining similar intensities regarding their ability to alter opening probabilities, delay fast inactivation, and induce persistent currents. Computational analysis demonstrated a preference for the down conformation of VSD4 and a shift in the conformational equilibrium towards this state. This illustrates that the sequence of these toxins retained the necessary information, even with alterations in the interaction site region. Through electrophysiological and computational analyses, screening of the Tst3 toxin on sodium isoform revealed its classification as a classic α-NaTx with a broad spectrum of activity. It effectively delays fast inactivation across all tested isoforms. Structural analysis of molecular energetics at the interface of the VSD4-Tst3 complex further confirmed this effect. Full article
Show Figures

Figure 1

22 pages, 2385 KiB  
Review
Dendritic Cells: A Bridge between Tolerance Induction and Cancer Development in Transplantation Setting
by Dario Troise, Barbara Infante, Silvia Mercuri, Valeria Catalano, Elena Ranieri and Giovanni Stallone
Biomedicines 2024, 12(6), 1240; https://doi.org/10.3390/biomedicines12061240 (registering DOI) - 3 Jun 2024
Abstract
Dendritic cells (DCs) are a heterogeneous group of antigen-presenting cells crucial for fostering allograft tolerance while simultaneously supporting host defense against infections and cancer. Within the tumor microenvironment, DCs can either mount an immune response against cancer cells or foster immunotolerance, presenting a [...] Read more.
Dendritic cells (DCs) are a heterogeneous group of antigen-presenting cells crucial for fostering allograft tolerance while simultaneously supporting host defense against infections and cancer. Within the tumor microenvironment, DCs can either mount an immune response against cancer cells or foster immunotolerance, presenting a dual role. In immunocompromised individuals, posttransplant malignancies pose a significant health concern, with DCs serving as vital players in immune responses against cancer cells. Both recipient- and donor-derived DCs play a critical role in the rejection process, infiltrating the transplanted organ and sustaining T-cell responses. The use of immunosuppressive drugs represents the predominant approach to control this immunological barrier in transplanted organs. Evidence has shed light on the immunopharmacology of these drugs and novel strategies for manipulating DCs to promote allograft survival. Therefore, comprehending the mechanisms underlying this intricate microenvironment and the effects of immunosuppressive therapy on DCs is crucial for developing targeted therapies to reduce graft failure rates. This review will delve into the fundamental immunobiology of DCs and provide a detailed exploration of their clinical significance concerning alloimmune responses and posttransplant malignancies. Full article
Show Figures

Figure 1

19 pages, 7835 KiB  
Article
Evaluation of Data Sufficiency for Interannual Knowledge Transfer of Crop Type Classification Models
by Mohammadreza Osouli and Faramarz F. Samavati
Remote Sens. 2024, 16(11), 2007; https://doi.org/10.3390/rs16112007 (registering DOI) - 3 Jun 2024
Abstract
We present a study on the effectiveness of using varying data sizes to transfer crop type classification models from one year to the next, emphasizing the balance between data sufficiency and model accuracy. The significance of crop detection through satellite imaging lies in [...] Read more.
We present a study on the effectiveness of using varying data sizes to transfer crop type classification models from one year to the next, emphasizing the balance between data sufficiency and model accuracy. The significance of crop detection through satellite imaging lies in its potential to enhance agricultural productivity and resource management. Machine learning, particularly techniques like long short-term memory (LSTM) models, has become instrumental in interpreting these satellite data due to its predictive accuracy and adaptability. However, the direct application of models trained in one year to subsequent years poses challenges due to variations in environmental conditions and agricultural practices. Fine-tuning pre-existing models is a prevalent strategy to overcome these temporal discrepancies, though it necessitates a careful evaluation of the quantity and relevance of new data. This study explores the cost–benefit of fine-tuning existing models versus developing new ones based on the quantity of new data, utilizing LSTM models for their transferability and practicality in agricultural applications. Experiments conducted using satellite data from farms in southern Alberta reveal that smaller datasets, with fewer than 25 fields per class, can effectively fine-tune models for accurate interannual classification, while larger datasets are more conducive to training new models. This poses a key challenge in optimizing data usage for crop classification, straddling the line between data sufficiency and computational efficiency. The findings offer valuable insights for optimizing data use in crop classification, benefiting both academic research and practical agricultural applications. Full article
Show Figures

Figure 1

16 pages, 4819 KiB  
Article
Morphological and Physiological Responses of Weigela florida ‘Eva Rathke’ to Biostimulants and Growth Promoters
by Dezső Kovács, Katalin Horotán, László Orlóci, Marianna Makádi, István Dániel Mosonyi, Magdolna Sütöri-Diószegi and Szilvia Kisvarga
Horticulturae 2024, 10(6), 582; https://doi.org/10.3390/horticulturae10060582 (registering DOI) - 3 Jun 2024
Abstract
Ornamental horticulture and breeding, as well as urban landscape architecture, are facing increasing challenges driven by an intensely changing climate and urbanisation. The expansion of cities should be combined with an overall growth of green spaces, where ornamental plant species and cultivars will [...] Read more.
Ornamental horticulture and breeding, as well as urban landscape architecture, are facing increasing challenges driven by an intensely changing climate and urbanisation. The expansion of cities should be combined with an overall growth of green spaces, where ornamental plant species and cultivars will have to withstand a diverse range of environmental conditions, whereby they are often exposed to multiple stress factors. One of the most widely used ornamental shrub species Weigela florida ‘Eva Rathke’ was treated with the growth promoters Bistep with humic and fulvic acid, Kelpak® seaweed extract, and Yeald Plus with a high zinc content to test their applicability in a plant nursery. Bistep decreased the physiological parameters (the transpiration rate by 60%, the evapotranspiration rate by 56.5%, and the proline stress enzyme content level by 82.2%), indicating the stress level of the treated plants. The activity of β-glucosidase decreased with all growth-promoting treatments (11.5% for Kelpak and 9.5% for Yeald Plus), as did β-glucosaminidase (22.1% for Kelpak and 9.8% for Yeald Plus), but Bistep treatment reduced the activity of the enzymes less (9.9% for β-glucosidase and 3.3% for β-glucosaminidase). The measured alkaline phosphatase enzyme activity increased with treatment (by 10.7% for Kelpak, 11.7% for Yeald Plus, and 12.63% for Bistep). Based on the results, it was concluded that Bistep and Yeald Plus may be suitable for use in the studied variety, whereas Kelpak® may not be suggested in plant nurseries for growing W. florida ‘Eva Rathke’ plants. Full article
(This article belongs to the Special Issue The Role of Plant Growth Regulators in Ornamental Plants)
Show Figures

Figure 1

13 pages, 1154 KiB  
Review
Targeting Cancers with oHSV-Based Oncolytic Viral Immunotherapy
by Rakin Tammam Nasar, Ifeanyi Kingsley Uche and Konstantin G. Kousoulas
Curr. Issues Mol. Biol. 2024, 46(6), 5582-5594; https://doi.org/10.3390/cimb46060334 (registering DOI) - 3 Jun 2024
Abstract
The recent success of cancer immunotherapies, such as immune checkpoint inhibitor (ICIs), monoclonal antibodies (mAbs), cancer vaccines, and adoptive cellular therapies (ACTs), has revolutionized traditional cancer treatment. However, these immunotherapeutic modalities have variable efficacies, and many of them exhibit adverse effects. Oncolytic viral [...] Read more.
The recent success of cancer immunotherapies, such as immune checkpoint inhibitor (ICIs), monoclonal antibodies (mAbs), cancer vaccines, and adoptive cellular therapies (ACTs), has revolutionized traditional cancer treatment. However, these immunotherapeutic modalities have variable efficacies, and many of them exhibit adverse effects. Oncolytic viral Immunotherapy (OViT), whereby viruses are used to directly or indirectly induce anti-cancer immune responses, is emerging as a novel immunotherapy for treating patients with different types of cancer. The herpes simplex virus type-1 (HSV-1) possesses many characteristics that inform its use as an effective OViT agents and remains a leading candidate. Its recent clinical success resulted in the Food and Drug Administration (FDA) approval of Talimogene laherparevec (T-VEC or Imlygic) in 2015 for the treatment of advanced melanoma. In this review, we discuss recent advances in the development of oncolytic HSV-1-based OViTs, their anti-tumor mechanism of action, and efficacy data from recent clinical trials. We envision this knowledge may be used to inform the rational design and application of future oHSV in cancer treatment. Full article
(This article belongs to the Special Issue Research on Virus-Induced Cellular and Molecular Responses)
Show Figures

Figure 1

8 pages, 1703 KiB  
Perspective
Hope on the Horizon? Aptamers in Diagnosis of Invasive Fungal Infections
by Sadegh Khodavaisy and Jianping Xu
Genes 2024, 15(6), 733; https://doi.org/10.3390/genes15060733 (registering DOI) - 3 Jun 2024
Abstract
Despite remarkable advances in the diagnosis of invasive fungal infections (IFIs), rapid, specific, sensitive, and cost-effective detection methods remain elusive. Due to their stability, ease of production, and specificity to signature molecules of fungal pathogens, short single-stranded sequences of DNA, RNA, and XNA, [...] Read more.
Despite remarkable advances in the diagnosis of invasive fungal infections (IFIs), rapid, specific, sensitive, and cost-effective detection methods remain elusive. Due to their stability, ease of production, and specificity to signature molecules of fungal pathogens, short single-stranded sequences of DNA, RNA, and XNA, collectively called aptamers, have emerged as promising diagnostic markers. In this perspective, we summarize recent progress in aptamer-based diagnostic tools for IFIs and discuss how these tools could potentially meet the needs and provide economical and simple solutions for point-of-care for better management of IFIs. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2024)
Show Figures

Figure 1

15 pages, 574 KiB  
Review
Antimicrobial Stewardship: A Correct Management to Reduce Sepsis in NICU Settings
by Veronica Notarbartolo, Bintu Ayla Badiane, Vincenzo Insinga and Mario Giuffrè
Antibiotics 2024, 13(6), 520; https://doi.org/10.3390/antibiotics13060520 (registering DOI) - 3 Jun 2024
Abstract
The discovery of antimicrobial drugs has led to a significant increase in survival from infections; however, they are very often prescribed and administered, even when their use is not necessary and appropriate. Newborns are particularly exposed to infections due to the poor effectiveness [...] Read more.
The discovery of antimicrobial drugs has led to a significant increase in survival from infections; however, they are very often prescribed and administered, even when their use is not necessary and appropriate. Newborns are particularly exposed to infections due to the poor effectiveness and the immaturity of their immune systems. For this reason, in Neonatal Intensive Care Units (NICUs), the use of antimicrobial drugs is often decisive and life-saving, and it must be started promptly to ensure its effectiveness in consideration of the possible rapid evolution of the infection towards sepsis. Nevertheless, the misuse of antibiotics in the neonatal period leads not only to an increase in the development and wide spreading of antimicrobial resistance (AMR) but it is also associated with various short-term (e.g., alterations of the microbiota) and long-term (e.g., increased risk of allergic disease and obesity) effects. It appears fundamental to use antibiotics only when strictly necessary; specific decision-making algorithms and electronic calculators can help limit the use of unnecessary antibiotic drugs. The aim of this narrative review is to summarize the right balance between the risks and benefits of antimicrobial therapy in NICUs; for this purpose, specific Antimicrobial Stewardship Programs (ASPs) in neonatal care and the creation of a specific antimicrobial stewardship team are requested. Full article
(This article belongs to the Special Issue Infections and Sepsis in the Intensive Care Unit)
Show Figures

Figure 1

14 pages, 2204 KiB  
Article
Emphasizing the Potential of Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) Spectroscopy Combined with Chemometrics, for Classification of Greek Grape Marc Spirits
by Evangelia Anastasia Tsapou, Vassilia J. Sinanoglou, George Ntourtoglou and Elisabeth Koussissi
Beverages 2024, 10(2), 42; https://doi.org/10.3390/beverages10020042 (registering DOI) - 3 Jun 2024
Abstract
Grape marc spirits, such as the Greek tsipouro/tsikoudia, reflect the cultural heritage of winemaking traditions worldwide. This study explored the application of Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) spectroscopy combined with chemometrics for its potential as a fast classification methodology for spirit characterization. [...] Read more.
Grape marc spirits, such as the Greek tsipouro/tsikoudia, reflect the cultural heritage of winemaking traditions worldwide. This study explored the application of Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) spectroscopy combined with chemometrics for its potential as a fast classification methodology for spirit characterization. ATR-FTIR spectra from thirty-nine products revealed distinctive bands corresponding to various chemical constituents, such as alcohols, organic acids, water, carbohydrates, and phenols. Principal Component Analysis (PCA) was performed on all acquired ATR-FTIR data and 78.50% of the total variance in the data was explained. Also, partial least squares–discriminant analysis (PLS-DA), used for the classification of products based on their major geographic origin, gave a correct classification of 89.5% for the north and 83.3% for the south of Greece. Classification of the type of distillations used was with 74.36% accuracy. Significant markers were identified through analysis, such as those associated with the O-H bending vibrations of phenols or alcohols, contributing to the discrimination of grape marc spirits from Crete when compared with the other four main geographical origin designations. By combining ATR-FTIR spectroscopy with chemometrics, this research gave insights into the origins and compositional variations of the spirits, providing an opportunity for a quality control assessment tool. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages)
Show Figures

Figure 1

20 pages, 8469 KiB  
Article
Prediction Models of Collaborative Behaviors in Dyadic Interactions: An Application for Inclusive Teamwork Training in Virtual Environments
by Ashwaq Zaini Amat, Abigale Plunk, Deeksha Adiani, D. Mitchell Wilkes and Nilanjan Sarkar
Signals 2024, 5(2), 382-401; https://doi.org/10.3390/signals5020019 (registering DOI) - 3 Jun 2024
Abstract
Collaborative virtual environment (CVE)-based teamwork training offers a promising avenue for inclusive teamwork training. The incorporation of a feedback mechanism within virtual training environments can enhance the training experience by scaffolding learning and promoting active collaboration. However, an effective feedback mechanism requires a [...] Read more.
Collaborative virtual environment (CVE)-based teamwork training offers a promising avenue for inclusive teamwork training. The incorporation of a feedback mechanism within virtual training environments can enhance the training experience by scaffolding learning and promoting active collaboration. However, an effective feedback mechanism requires a robust prediction model of collaborative behaviors. This paper presents a novel approach using hidden Markov models (HMMs) to predict human behavior in collaborative interactions based on multimodal signals collected from a CVE-based teamwork training simulator. The HMM was trained using k-fold cross-validation, achieving an accuracy of 97.77%. The HMM was evaluated against expert-labeled data and compared against a rule-based prediction model, demonstrating the superior predictive capabilities of the HMM, with the HMM achieving 90.59% accuracy compared to 76.53% for the rule-based model. These results highlight the potential of HMMs to predict collaborative behaviors that could be used in a feedback mechanism to enhance teamwork training experiences despite the complexity of these behaviors. This research contributes to advancing inclusive and supportive virtual learning environments, bridging gaps in cross-neurotype collaborations. Full article
Show Figures

Figure 1

13 pages, 1768 KiB  
Article
Adapted Physical Activity Programs for Children with Autism Spectrum Disorder and Neurotypical Children: Differences between Online and Face-to-Face Training
by Marta Zanghì, Federico Roggio, Alessandro Castorina, Piero Pavone and Giuseppe Musumeci
Sci 2024, 6(2), 32; https://doi.org/10.3390/sci6020032 (registering DOI) - 3 Jun 2024
Abstract
During the COVID-19 pandemic, physical activity was significantly decreased in all age groups. The purpose of this study is to investigate children’s motor skills by administering an adapted physical activity program for the development of coordination skills. The sample consisted of 28 children [...] Read more.
During the COVID-19 pandemic, physical activity was significantly decreased in all age groups. The purpose of this study is to investigate children’s motor skills by administering an adapted physical activity program for the development of coordination skills. The sample consisted of 28 children aged 8 to 12 years, 20 neurotypical children and 8 with ASD-HF. Data collection employed various methods, including a personal information form, a leisure time exercise questionnaire, a semi-structured interview, and the Harre Dexterity Circuit for assessing physical activity improvements. The results of the two-way analysis of variance (two-way ANOVA) Tukey HSD test showed the differences between the specific groups, ASD-P vs. ASD-O (p < 0.001), ASD-O vs. AB-O (p < 0.001), ASD-O vs. AB-P (p < 0.001), ASD-O vs. AB-P (p = 0.136), ASD-P vs. AB-P (p < 0.0010, and AB-P vs. AB-O (p = 0.003). As result, both groups showed strong interest in practicing physical activity, and no statistical difference was found in doing so at home or in attendance, showing that physical activity practice is a tool for parent–child bonding and mutual enjoyment, emphasizing that the mixed approach yielded positive results in all participants. Full article
(This article belongs to the Special Issue Feature Papers—Multidisciplinary Sciences 2023)
Show Figures

Figure 1

13 pages, 771 KiB  
Article
The Androgen Dehydroepiandrosterone Sulfate Shows a Greater Relationship with Impulsivity than Testosterone in a Healthy Male Sample
by Anton Aluja, Ferran Balada, Óscar García, Neus Aymamí and Luis F. García
Brain Sci. 2024, 14(6), 569; https://doi.org/10.3390/brainsci14060569 (registering DOI) - 3 Jun 2024
Abstract
This study was designed to examine the relationships among the impulsivity construct as a personality trait, the dehydroepiandrosterone sulfate (DHEA-S), and testosterone in a sample of 120 healthy middle-aged males (Mage = 44.39; SD = 12.88). The sum of the three BIS-11 [...] Read more.
This study was designed to examine the relationships among the impulsivity construct as a personality trait, the dehydroepiandrosterone sulfate (DHEA-S), and testosterone in a sample of 120 healthy middle-aged males (Mage = 44.39; SD = 12.88). The sum of the three BIS-11 scales, the SR, and the five UPPS-P scales correlated with DHEA-S 0.23 (p < 0.006) and testosterone 0.19 (p < 0.04), controlling for age. Partial correlations showed that DHEA-S was significantly related to motor impulsivity (0.24; p < 0.008), Sensitivity to Reward (0.29; p < 0.002), Lack of Premeditation (0.26; p < 0.05), and, to a lesser extent, Sensation Seeking (0.19; p < 0.04) and Positive Urgency (0.19; p < 0.04). Testosterone correlated with attention impulsivity (0.18; p < 0.04), Sensation Seeking (0.18; p < 0.04), and Positive Urgency (0.22; p < 0.01). Sensitivity to Reward, Negative Urgency, and Positive Urgency were significant predictors of DHEA-S (R2 = 0.28), and Positive Urgency for testosterone (R2 = 0.09). Non-parametric LOESS graphical analyses for local regression allowed us to visualize the non-linear relationships between the impulsivity scales with the two androgens, including non-significant trends. We discuss the implications of these results for impulsive biological personality traits, the limitations of our analyses, and the possible development of future research. Full article
Show Figures

Figure 1

10 pages, 698 KiB  
Communication
Role of Diagnostic Nerve Blocks in the Goal-Oriented Treatment of Spasticity with Botulinum Toxin Type A: A Case–Control Study
by Mirko Filippetti, Stefano Tamburin, Rita Di Censo, Martina Adamo, Elisa Manera, Jessica Ingrà, Elisa Mantovani, Salvatore Facciorusso, Marco Battaglia, Alessio Baricich, Andrea Santamato, Nicola Smania and Alessandro Picelli
Toxins 2024, 16(6), 258; https://doi.org/10.3390/toxins16060258 (registering DOI) - 3 Jun 2024
Abstract
The goal-setting process is pivotal in managing patients with disabling spasticity. This case–control study assessed the role of diagnostic nerve blocks in guiding the goal-setting process within goal-targeted treatment of spasticity with botulinum neurotoxin-A. In this case–control study, patients with disabling spasticity underwent [...] Read more.
The goal-setting process is pivotal in managing patients with disabling spasticity. This case–control study assessed the role of diagnostic nerve blocks in guiding the goal-setting process within goal-targeted treatment of spasticity with botulinum neurotoxin-A. In this case–control study, patients with disabling spasticity underwent either a goal-setting process based on the patient’s needs and clinical evaluation (control group) or additional diagnostic nerve block procedures (case group). All enrolled patients underwent a focal treatment with botulinum neurotoxin-A injection and a 1-month follow-up evaluation during which goal achievement was quantified using the goal attainment scaling-light score system. Data showed a higher goal achievement rate in the case group (70%) than in the control group (40%). In conclusion, diagnostic nerve blocks may help guide the goal-setting process within goal-targeted treatment of spasticity with botulinum neurotoxin-A towards more realistic and achievable goals, thereby improving the outcomes of botulinum neurotoxin-A injection. Future studies should better explore the role of diagnostic nerve blocks to further personalize botulinum neurotoxin-A according to individual patients’ preferences and requirements. Full article
Show Figures

Figure 1

8 pages, 233 KiB  
Article
Risk Factors Associated with Children’s Behavior in Dental Clinics: A Cross-Sectional Study
by Rana Abdullah Alamoudi, Nada Bamashmous, Nuha Hamdi Albeladi and Heba Jafar Sabbagh
Children 2024, 11(6), 677; https://doi.org/10.3390/children11060677 (registering DOI) - 3 Jun 2024
Abstract
One of the most crucial tasks of pediatric dentists is to control children’s negative behaviors. This study aimed to assess dental behavior and the associated risk factors among children aged 4–12. This cross-sectional study recruited healthy, unaffected children aged 4 to 12 years. [...] Read more.
One of the most crucial tasks of pediatric dentists is to control children’s negative behaviors. This study aimed to assess dental behavior and the associated risk factors among children aged 4–12. This cross-sectional study recruited healthy, unaffected children aged 4 to 12 years. Parents were interviewed regarding the sociodemographic details and characteristics of their children’s dental visits. Two collaborative dentists examined the children for dental caries (DMFT/DMFT) and behavioral status (Frankl’s behavior rating scale). This study included 439 children: 27.3% exhibited uncooperative behavior, and the mean DMFT/dmft was 8.46 ± 3.530. Uncooperative behavior significantly increased when the dental visit was scheduled as an emergency treatment (p = 0.134; Adjusted Odds Ratio (AOR): 1.530) and when there was an elevated DMFT/DMFT ratio (p < 0.001; AOR: 1.308). This study revealed a significant association between children’s uncooperative behavior and their first dental visit, emphasizing the need for tailored strategies to address behavioral challenges when scheduling pediatric dental care. The proactive measures included controlling caries and avoiding emergencies. Full article
16 pages, 5890 KiB  
Article
Revisiting the Serçe Limanı Sail Plan
by Nathan Helfman, Josef Rott and Deborah Cvikel
J. Mar. Sci. Eng. 2024, 12(6), 937; https://doi.org/10.3390/jmse12060937 (registering DOI) - 3 Jun 2024
Abstract
The reconstruction of the Serçe Limanı ship proposed a double-masted rig consisting of two sails with a total combined area of 100 m2. That proposal considered provenance evidence and appraised hydrodynamic and hydrostatic conditions. The current paper proposes an alternative rig [...] Read more.
The reconstruction of the Serçe Limanı ship proposed a double-masted rig consisting of two sails with a total combined area of 100 m2. That proposal considered provenance evidence and appraised hydrodynamic and hydrostatic conditions. The current paper proposes an alternative rig consisting of a single sail. By applying computational fluid analysis and hydrostatic stability software to evaluate hull resistance, sail propulsion, and heeling moments, it has been demonstrated that a sail of no less than 150 m2 was suited to propel the Serçe Limanı. One of the two suitable alternative sails tested has been selected. Full article
Show Figures

Figure 1

15 pages, 2066 KiB  
Article
Impact of Artisanal Gold Mining in Community Conserved Areas with High Biodiversity Using a Multi-Criteria Approach: A Case Study in Colombia
by Franco Hernan Gomez, Natalia Pelegri, Juan Guillermo Lopez, Kelly Cristina Torres and Mentore Vaccari
Pollutants 2024, 4(2), 276-290; https://doi.org/10.3390/pollutants4020018 (registering DOI) - 3 Jun 2024
Abstract
Artisanal small-scale gold mining (ASGM) using mercury affects community agreements for the conservation of forests (CoS) and lakes (CoH), which have a high level of biodiversity in the Peasant Reserve Zone of the Cimitarra River Valley (ZRC-VRC) in Colombia. In this research, a [...] Read more.
Artisanal small-scale gold mining (ASGM) using mercury affects community agreements for the conservation of forests (CoS) and lakes (CoH), which have a high level of biodiversity in the Peasant Reserve Zone of the Cimitarra River Valley (ZRC-VRC) in Colombia. In this research, a multi-criteria approach (MCA) was applied to analyze the impact of ASGM. This analysis is based on the community environmental agreements to preserve CoS and CoH areas, the ecological importance of these areas, as well as the results of mercury dispersion in the Cimitarra river basin, with concentrations found 40 km downstream of the mining area of 0.09 µgTHg L−1 in the Cimitarra river, 0.07 µgTHg L−1 in the CoH, and 0.01 mgTHg kg−1 in the tissues of macrophytes, as well as the increase in deforestation since 2020 in the CoS, due to a 1.8% (990 ha) loss of forest cover, with 693 ha of the forest cover loss coinciding with areas related to the opening of new mines. The MCA showed that the main impact is found within the criterion Social and armed conflict, followed by Deforestation. This research offers recommendations to reduce impact scores, such as the implementation of a sustainable development plan (PDS) of the ZRC-VRC, and it highlights the urgent need to safeguard the community conservation areas. Full article
(This article belongs to the Special Issue The Effects of Global Anthropogenic Trends on Ecosystems)
Show Figures

Figure 1

16 pages, 607 KiB  
Article
The Ripple Effect: Quality of Life and Mental Health of Parents of Children with Attention Deficit Hyperactivity Disorder in Saudi Arabia: A Cross-Sectional Study
by Shuliweeh Alenezi, Samah H. Alkhawashki, Muneera Alkhorayef, Sarah Alarifi, Shahad Alsahil, Renad Alhaqbani and Nouf Alhussaini
Children 2024, 11(6), 678; https://doi.org/10.3390/children11060678 (registering DOI) - 3 Jun 2024
Abstract
Introduction: Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental condition in children in Saudi Arabia. ADHD significantly impacts children and their families, particularly by increasing parental stress and diminishing quality of life. In Saudi Arabia, there is a research gap regarding the [...] Read more.
Introduction: Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental condition in children in Saudi Arabia. ADHD significantly impacts children and their families, particularly by increasing parental stress and diminishing quality of life. In Saudi Arabia, there is a research gap regarding the quality of life and coping mechanisms of parents managing children with ADHD. This study assesses levels of depression and anxiety, quality of life, and coping strategies among parents of children diagnosed with ADHD. Methods: We conducted a cross-sectional online survey with 151 parents of ADHD-diagnosed children, utilizing the WHOQOL-Brief for life quality, the Brief-COPE for coping strategies, and the Patient Health Questionnaire (PHQ) for depression (PHQ9-9 items) and generalized anxiety (GAD7-7 items) modules. Results: Among the parents surveyed, 36% reported moderate to severe depression, while 39.1% experienced moderate to high anxiety levels. Quality of life was significantly positively correlated with higher household monthly income (HHI), employment status, sibling count, and effective coping strategies. Conversely, a parent’s age, educational level, and, in particular, maternal status were inversely related to anxiety levels, with fathers displaying higher maladaptive coping scores. Conclusion: This study sheds light on the considerable anxiety and depression experienced by parents of children with ADHD, significantly affecting their quality of life. Lower quality of life among parents is associated with high levels of depression, anxiety, and ineffective coping strategies. These insights highlight the critical need for interventions to aid parental mental health, thereby improving their overall quality of life amidst ADHD challenges. Full article
Show Figures

Graphical abstract

12 pages, 1119 KiB  
Article
Development of High Surface Area Organosilicate Nanoparticulate Thin Films for Use in Sensing Hydrophobic Compounds in Sediment and Water
by Sangho Bok, Venumadhav R. Korampally, Jacob K. Stanley, Keshab Gangopadhyay, Shubhra Gangopadhyay and Jeffery A. Steevens
Biosensors 2024, 14(6), 288; https://doi.org/10.3390/bios14060288 (registering DOI) - 3 Jun 2024
Abstract
The scope of this study was to apply advances in materials science, specifically the use of organosilicate nanoparticles as a high surface area platform for passive sampling of chemicals or pre-concentration for active sensing in multiple-phase complex environmental media. We have developed a [...] Read more.
The scope of this study was to apply advances in materials science, specifically the use of organosilicate nanoparticles as a high surface area platform for passive sampling of chemicals or pre-concentration for active sensing in multiple-phase complex environmental media. We have developed a novel nanoporous organosilicate (NPO) film as an extraction phase and proof of concept for application in adsorbing hydrophobic compounds in water and sediment. We characterized the NPO film properties and provided optimization for synthesis and coatings in order to apply the technology in environmental media. NPO films in this study had a very high surface area, up to 1325 m2/g due to the high level of mesoporosity in the film. The potential application of the NPO film as a sorbent phase for sensors or passive samplers was evaluated using a model hydrophobic chemical, polychlorinated biphenyls (PCB), in water and sediment. Sorption of PCB to this porous high surface area nanoparticle platform was highly correlated with the bioavailable fraction of PCB measured using whole sediment chemistry, porewater chemistry determined by solid-phase microextraction fiber methods, and the Lumbriculus variegatus bioaccumulation bioassay. The surface-modified NPO films in this study were found to highly sorb chemicals with a log octanol-water partition coefficient (Kow) greater than four; however, surface modification of these particles would be required for application to other chemicals. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Figure 1

22 pages, 5943 KiB  
Article
Trichostatin A Promotes Cytotoxicity of Cisplatin, as Evidenced by Enhanced Apoptosis/Cell Death Markers
by Yang Zhou, Qun Luo, Fangang Zeng, Xingkai Liu, Juanjuan Han, Liangzhen Gu, Xiao Tian, Yanyan Zhang, Yao Zhao and Fuyi Wang
Molecules 2024, 29(11), 2623; https://doi.org/10.3390/molecules29112623 (registering DOI) - 3 Jun 2024
Abstract
Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the cytotoxicity of the genotoxic anticancer drug cisplatin, yet the underlying mechanism remains poorly understood. Herein, we revealed that TSA at a low concentration (1 μM) promoted the cisplatin-induced activation of caspase-3/6, which, in [...] Read more.
Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the cytotoxicity of the genotoxic anticancer drug cisplatin, yet the underlying mechanism remains poorly understood. Herein, we revealed that TSA at a low concentration (1 μM) promoted the cisplatin-induced activation of caspase-3/6, which, in turn, increased the level of cleaved PARP1 and degraded lamin A&C, leading to more cisplatin-induced apoptosis and G2/M phase arrest of A549 cancer cells. Both ICP-MS and ToF-SIMS measurements demonstrated a significant increase in DNA-bound platinum in A549 cells in the presence of TSA, which was attributable to TSA-induced increase in the accessibility of genomic DNA to cisplatin attacking. The global quantitative proteomics results further showed that in the presence of TSA, cisplatin activated INF signaling to upregulate STAT1 and SAMHD1 to increase cisplatin sensitivity and downregulated ICAM1 and CD44 to reduce cell migration, synergistically promoting cisplatin cytotoxicity. Furthermore, in the presence of TSA, cisplatin downregulated TFAM and SLC3A2 to enhance cisplatin-induced ferroptosis, also contributing to the promotion of cisplatin cytotoxicity. Importantly, our posttranslational modification data indicated that acetylation at H4K8 played a dominant role in promoting cisplatin cytotoxicity. These findings provide novel insights into better understanding the principle of combining chemotherapy of genotoxic drugs and HDAC inhibitors for the treatment of cancers. Full article
(This article belongs to the Special Issue Chemical Biology in Asia)
Show Figures

Graphical abstract

19 pages, 4025 KiB  
Article
Oncogenic Role of SATB2 In Vitro: Regulator of Pluripotency, Self-Renewal, and Epithelial–Mesenchymal Transition in Prostate Cancer
by Wei Yu, Rashmi Srivastava, Shivam Srivastava, Yiming Ma, Sharmila Shankar and Rakesh K. Srivastava
Cells 2024, 13(11), 962; https://doi.org/10.3390/cells13110962 (registering DOI) - 3 Jun 2024
Abstract
Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial–mesenchymal [...] Read more.
Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial–mesenchymal transition (EMT). In this study, we examined the oncogenic role of SATB2 in prostate cancer and assessed whether overexpression of SATB2 in human normal prostate epithelial cells (PrECs) induces properties of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in prostate cancer cell lines and CSCs, but not in PrECs. Overexpression of SATB2 in PrECs induces cellular transformation which was evident by the formation of colonies in soft agar and spheroids in suspension. Overexpression of SATB2 in PrECs also resulted in induction of stem cell markers (CD44 and CD133), pluripotency-maintaining transcription factors (cMYC, OCT4, SOX2, KLF4, and NANOG), CADHERIN switch, and EMT-related transcription factors. Chromatin immunoprecipitation assay demonstrated that SATB2 can directly bind to promoters of BCL-2, BSP, NANOG, MYC, XIAP, KLF4, and HOXA2, suggesting SATB2 is capable of directly regulating pluripotency/self-renewal, cell survival, and proliferation. Since prostate CSCs play a crucial role in cancer initiation, progression, and metastasis, we also examined the effects of SATB2 knockdown on stemness. SATB2 knockdown in prostate CSCs inhibited spheroid formation, cell viability, colony formation, cell motility, migration, and invasion compared to their scrambled control groups. SATB2 knockdown in CSCs also upregulated the expression of E-CADHERIN and inhibited the expression of N-CADHERIN, SNAIL, SLUG, and ZEB1. The expression of SATB2 was significantly higher in prostate adenocarcinoma compared to normal tissues. Overall, our data suggest that SATB2 acts as an oncogenic factor where it is capable of inducing malignant changes in PrECs by inducing CSC characteristics. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop