Skip to main content
Log in

Numerical simulations of transport of non-ergodic solute plumes in heterogeneous aquifers

  • Article
  • Published:
Stochastic Hydrology and Hydraulics Aims and scope Submit manuscript

Abstract

Transport of non-ergodic solute plumes by steady-state groundwater flow with a uniform mean velocity, μ, were simulated with Monte Carlo approach in a two-dimensional heterogeneous and statistically isotropic aquifer whose transmissivity, T, is log-normally distributed with an exponential covariance. The ensemble averages of the second spatial moments of the plume about its center of mass, <S i i (t)>, and the plume centroid covariance, R i i (t) (i=1,2), were simulated for the variance of Y=log T, σ Y 2=0.1, 0.5 and 1.0 and line sources normal or parallel to μ of three dimensionless lengths, 1, 5, and 10. For σ Y 2=0.1, all simulated <S i i (t)>−S i i (0) and R i i (t) agree well with the first-order theoretical values, where S i i (0) are the initial values of S i i (t). For σ Y 2=0.5 and 1.0 and the line sources normal to μ, the simulated longitudinal moments, <S 11(t)>−S 11(0) and R 11(t), agree well with the first-order theoretical results but the simulated transverse moments <S 22(t)>−S 22(0) and R 22(t) are significantly larger than the first-order values. For the same two larger values of σ Y 2 but the line sources parallel to μ, the simulated <S 11(t)>−S 11(0) are larger than but the simulated R 11 are smaller than the first-order values, and both simulated <S 22(t)>−S 22(0) and R 22(t) stay larger than the first-order values. For a fixed value of σ Y 2, the summations of <S i i (t)>−S i i (0) and R i i , i.e., X i i (i=1,2), remain almost the same no matter what kind of source simulated. The simulated X 11 are in good agreement with the first-order theory but the simulated X 22 are significantly larger than the first-order values. The simulated X 22, however, are in excellent agreement with a previous modeling result and both of them are very close to the values derived using Corrsin's conjecture. It is found that the transverse moments may be significantly underestimated if less accurate hydraulic head solutions are used and that the decreasing of <S 22(t)>−S 22(0) with time or a negative effective dispersivity, defined as , may happen in the case of a line source parallel to μ where σ Y 2 is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YK., Lin, J. Numerical simulations of transport of non-ergodic solute plumes in heterogeneous aquifers. Stochastic Hydrology and Hydraulics 12, 117–140 (1998). https://doi.org/10.1007/s004770050013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004770050013

Keywords

Navigation