Skip to main content
Log in

On the whole spectrum of Timoshenko beams. Part II: further applications

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The problem of free vibrations of the Timoshenko beam model has been addressed in the first part of this paper. A careful analysis of the governing equations has shown that the vibration spectrum consists of two parts, separated by a transition frequency, which, depending on the applied boundary conditions, might be itself part of the spectrum. Here, as an extension, the case of a doubly clamped beam is considered. For both parts of the spectrum, the values of natural frequencies are computed and the expressions of eigenmodes are provided: this allows to acknowledge that the nature of vibration modes changes when moving across the transition frequency. This case is a meaningful example of more general ones, where the wave-numbers equation cannot be written in a factorized form and hence must be solved by general root-finding methods for nonlinear transcendental equations. These theoretical results can be used as further benchmarks for assessing the correctness of the numerical values provided by several numerical techniques, e.g. finite element models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({\mathbf{A}}\) :

Coefficient matrix for the homogenous system

\({\mathbf{A}_r}\) :

Coefficient matrix for the reduced homogenous system

\({\mathbf{X}}\) :

Unknown column matrix for the homogenous system

\({\mathbf{X}_r}\) :

Unknown column matrix for the reduced homogenous system

\({\mathbf{0}}\) :

Right-hand-side column matrix for homogeneous system

\({\mathbf{0}_{r}}\) :

Right-hand-side column matrix for reduced homogeneous system

A :

Cross section area

\({A_{1}}\), \({A_{2}}\), \({A_{3}}\), \({A_{4}}\) :

Integration constants for \({V}\), first part of the spectrum

\({A_{1n}}\), \({A_{2n}}\), \({A_{3n}}\), \({A_{4n}}\) :

Integration constants for the n-th eigenmode

B :

Cross section depth (and width)

\({B_{1}}\), \({B_{2}}\), \({B_{3}}\), \({B_{4}}\),:

Integration constants for \({\Phi}\), first part of the spectrum

\({C}\) :

Constant factor (see Eq. (3.17))

\({C_{1}}\), \({C_{3}}\), \({C_{4}}\) :

Integration constants for \({V}\), transition frequency

\({\tilde{C}_{1}}\), \({\tilde{C}_{3}}\), \({\tilde{C}_{4}}\), \({\tilde{D}_{1}}\) :

integration constants for the n-th eigenmode at transition frequency

\({D_{1}}\) :

Integration constant for \({\Phi}\), transition frequency

\({E}\) :

Young’s modulus

\({E_{1}}\), \({E_{2}}\), \({E_{3}}\), \({E_{4}}\) :

Integration constants for \({V}\), second part of the spectrum

\({E_{1n}}\), \({E_{2n}}\), \({E_{3n}}\), \({E_{4n}}\) :

Integration constants for the n-th eigenmode

\({G}\) :

Shear modulus

\({I}\) :

Cross section mass moment of inertia

\({L}\) :

Beam length

\({\tilde{L}}\) :

Special value of beam length

\({V}\) :

Vibration mode for transversal displacement

\({f_{\lambda}}\) :

Space frequency associated with wave-number \({\lambda}\)

\({f_{\lambda_n}}\) :

Space frequency associated with the n-th vibration mode

\({k}\), \({k_1}\), \({k_2}\) :

Integer values corresponding to wave-numbers of vibration modes

t :

Time variable

v :

Transversal displacement

x :

Space variable (beam abscissa)

z :

Dummy space variable

\({z^{\star}}\) :

Normalized dummy space variable

\({\Phi}\) :

Vibration mode for section rotation

\({\hat{\alpha}_1}\) :

Coefficient of eigenmode for generalized wave-number

\({\hat{\alpha}_{1n}}\) :

Value of \({\hat{\alpha}_1}\) for n-th vibration mode

\({\alpha_1}\), \({\alpha_2}\) :

Eigenmode coefficients for first/second wave-number

\({\alpha_{1n}}\), \({\alpha_{2n}}\) :

Values of \({\alpha_1}\), \({\alpha_2}\) for n-th vibration mode

\({\tilde{\alpha}_2}\) :

Eigenmode coefficient for second wave-number at transition frequency

\({\varepsilon}\) :

Predefined convergence tolerance

\({\kappa}\) :

Shear correction factor

\({\hat{\lambda}_{1}}\) :

Generalized wave-number (first part of the spectrum)

\({\lambda_1}\) :

First wave-number (second part of the spectrum)

\({\lambda_2}\) :

Second wave-number (first and second part of the spectrum)

\({\tilde{\lambda}_{2}}\) :

Second wave-number at transition frequency

\({\lambda_{1n}}\) :

First wave-number for n-th vibration mode

\({\lambda_{2n}}\) :

Second wave-number for n-th vibration mode

\({\lambda_{1}^{\star2}}\) :

First root (squared) of wave-numbers equations

\({\lambda_{2}^{\star2}}\) :

Second root (squared) of wave-numbers equations

\({\nu}\) :

Poisson’s ratio

\({\xi}\) :

Dimensionless space variable (dimensionless beam abscissa)

\({\rho}\) :

Beam density (mass per unit volume)

\({\sigma_n}\), \({\hat{\chi}_n}\) :

Eigenmode coefficient for first part of spectrum for n-th vibration mode

\({\tau_n}\), \({\chi_n}\) :

Eigenmode coefficient for second part of spectrum for n-th vibration mode

φ :

Section rotation

\({\hat{\chi}}\) :

Eigenmode coefficient for first part of spectrum, doubly clamped beam

\({\chi}\) :

Eigenmode coefficients for second part of spectrum, doubly clamped beam

\({\omega}\) :

Angular frequency

\({\tilde{\omega}}\) :

Angular frequency at the transition value (cut-off frequency)

\({\omega^{\star}}\) :

Limiting value (upper/lower bound) for angular frequency

\({\omega_n}\) :

Angular frequency (theoretical value) for n-th vibration mode

References

  1. Timoshenko S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. (Series 5) 41, 744–746 (1921)

    Article  Google Scholar 

  2. Timoshenko S.P.: On the transverse vibrations of bars of uniform cross-section. Philos. Mag. (Series 5) 43, 125–131 (1922)

    Article  Google Scholar 

  3. Traill-Nash R.W., Collar A.R.: The effects of shear flexibility and rotatory inertia on the bending vibrations of beams. Q. J. Mech. Appl. Math. 6, 186–222 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  4. Downs B.: Transverse vibration of a uniform, simply supported Timoshenko beam without transverse deflection. J. Appl. Mech. 43, 671–674 (1976)

    Article  MATH  Google Scholar 

  5. Abbas B.A.H., Thomas J.: The second frequency spectrum of Timoshenko beams. J. Sound Vib. 51, 123–137 (1977)

    Article  Google Scholar 

  6. Bhashyam G.R., Prathap G.: The second frequency spectrum of Timoshenko beams. J. Sound Vib. 76, 407–420 (1981)

    Article  Google Scholar 

  7. Levinson M., Cooke D.W.: On the two frequency spectra of Timoshenko beams. J. Sound Vib. 84, 319–326 (1982)

    Article  MATH  Google Scholar 

  8. Stephen N.G.: The second frequency spectrum of Timoshenko beams. J. Sound Vib. 80, 578–582 (1982)

    Article  Google Scholar 

  9. Prathap G.: The two frequency spectra of timoshenko beams—A re-assessment. J. Sound Vib. 90, 443–445 (1983)

    Article  Google Scholar 

  10. Levinson M.: Author’s reply. J. Sound Vib. 90, 445–446 (1983)

    Article  MATH  Google Scholar 

  11. Nesterenko V.V.: A theory for transverse vibrations of the Timoshenko beam. PMM-J. Appl. Math. Mech. 57, 669–677 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nesterenko V.V., Chervyakov A.M.: Parabolic approximation to the theory of transverse vibrations of rods and beams. J. Appl. Mech. Tech. Phys. 35, 306–309 (1994)

    Article  MATH  Google Scholar 

  13. Olsson P., Kristensson G.: Wave splitting of the Timoshenko beam equation in the time domain. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 45, 866–881 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ekwaro-Osire S., Maithripala D.H.S., Berg J.M.: A series expansion approach to interpreting the spectra of the Timoshenko beam. J. Sound Vib. 240, 667–678 (2001)

    Article  MATH  Google Scholar 

  15. Stephen N.G.: The second spectrum of Timoshenko beam theory—further assessment. J. Sound Vib. 292, 372–389 (2006)

    Article  MATH  Google Scholar 

  16. Stephen N.G., Puchegger S.: On the valid frequency range of Timoshenko beam theory. J. Sound Vib. 297, 1082–1087 (2006)

    Article  Google Scholar 

  17. Bhaskar A.: Elastic waves in Timoshenko beams: the ‘lost and found’ of an eigenmode. Proc. R. Soc. A Math. Phys. Eng. Sci. 465, 239–255 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Senjanović I., Vladimir N.: Physical insight into Timoshenko beam theory and its modification with extension. Struct. Eng. Mech. 48(4), 519–545 (2013)

    Article  Google Scholar 

  19. Cazzani, A., Stochino, F., Turco, E.: On the whole spectrum of Timoshenko beams. Part I: a theoretical revisitation. Z. Angew. Math. Phys. (ZAMP), pp. 1–30 (2016). doi:10.1007/s00033-015-592-0

  20. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. J. Appl. Math. Mech./Z. Angew. Math. Mech. (ZAMM), pp. 1–25 (2016, accepted)

  21. Han S.M., Benaroya H., Wei T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225, 935–988 (1999)

    Article  MATH  Google Scholar 

  22. Goens E.: Über die Bestimmung des Elastizitätsmoduls von Stäben mit Hilfe von Biegungsschwingungen. Annalen der Physik (Series 5) 403, 649–678 (1931)

    Article  MATH  Google Scholar 

  23. Pilkey W.D.: Formulas for Stress, Strain, and Structural Matrices, 2nd edition. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  24. Wolfram S.: The Mathematica Book, 5th edition. Wolfram Media, Champaign (2003)

    MATH  Google Scholar 

  25. Bishop R.E.D., Johnson D.C.: The Mechanics of Vibrations. Cambridge University Press, Cambridge (1960)

    MATH  Google Scholar 

  26. Graff K.F.: Wave Motion in Elastic Solids. Oxford University Press, London (1975)

    MATH  Google Scholar 

  27. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids, (2014). doi:10.1177/1081286514531265

  28. Cazzani A., Malagù M., Turco E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Contin. Mech. Thermodyn. 28(1), 139–156 (2016)

    Article  MathSciNet  Google Scholar 

  29. Cazzani A., Malagù M., Turco E., Stochino F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21(2), 182–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chiozzi, A., Malagù, M., Tralli, A., Cazzani, A.: ArchNURBS: NURBS-based tool for the structural safety assessment of masonry arches in MATLAB. J. Comput. Civil Eng. (2015). doi:10.1061/(ASCE)CP.1943-5487.0000481

  31. Cuomo M., Contrafatto L., Greco L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    Article  MathSciNet  Google Scholar 

  32. Greco L., Cuomo M.: An implicit G 1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Greco L., Cuomo M.: B-Spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  MathSciNet  Google Scholar 

  34. Cazzani A., Garusi E., Tralli A., Atluri S.N.: A four-node hybrid assumed-strain finite element for laminated composite plates. Comput. Mater. Contin. 2, 23–38 (2005)

    MATH  Google Scholar 

  35. Bilotta A., Formica G., Turco E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. (Commun. Numer. Methods Eng.) 26, 1155–1175 (2010)

    Article  MATH  Google Scholar 

  36. Turco E., Caracciolo P.: Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements. Comput. Methods Appl. Mech. Eng. 190, 691–706 (2000)

    Article  MATH  Google Scholar 

  37. Rizzi N., Varano V., Gabriele S.: Initial postbuckling behavior of thin-walled frames under mode interaction. Thin Walled Struct. 68, 124–134 (2013)

    Article  Google Scholar 

  38. Gabriele, S., Rizzi, N., Varano, V.: A 1D higher gradient model derived from Koiter’s shell theory. Math. Mech. Solids, (2014). doi:10.1177/1081286514536721

  39. Rizzi N., Varano V.: The effects of warping on the postbuckling behaviour of thin-walled structures. Thin Walled Struct. 49(9), 1091–1097 (2011)

    Article  Google Scholar 

  40. Zulli D., Luongo A.: Bifurcation and stability of a two-tower system under wind-induced parametric, external and self-excitation. J. Sound Vib. 331(2), 365–383 (2012)

    Article  Google Scholar 

  41. Pignataro M., Rizzi N., Ruta G., Varano V.: The effects of warping constraints on the buckling of thin-walled structures. J. Mech. Mater. Struct. 4(10), 1711–1727 (2009)

    Article  Google Scholar 

  42. Ruta G.C., Varano V., Pignataro M., Rizzi N.L.: A beam model for the flexural–torsional buckling of thin-walled members with some applications. Thin Walled Struct. 46(7–9), 816–822 (2008)

    Article  Google Scholar 

  43. Presta F., Hendy C.R., Turco E.: Numerical validation of simplified theories for design rules of transversely stiffened plate girders. Struct. Eng. 86(21), 37–46 (2008)

    Google Scholar 

  44. Piccardo G., Ranzi G., Luongo A.: A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Math. Mech. Solids 19(8), 900–924 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Piccardo, G., Tubino, F., Luongo, A.: Equivalent nonlinear beam model for the 3-D analysis of shear-type buildings: application to aeroelastic instability. Int. J. Non Linear Mech. (2015). doi:10.1016/j.ijnonlinmec.2015.07.013

  46. dell'Isola, F., Madeo, A., Placidi, L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. ZAMM-J. Appl. Math. Mech. 92(1), 52–71 (2012)

  47. Berezovski, A., Giorgio, I., Della Corte, A.: Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math. Mech. Solids, (2015). doi:10.1177/1081286515572244

  48. Andreaus, U., Baragatti, P., Placidi, L.: Experimental and numerical investigations of the responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under harmonic excitation. Int. J. Non Linear Mech. (2015). doi:10.1016/j.ijnonlinmec.2015.10.007

  49. Chiaia, B., Kumpyak, O., Placidi, L., Maksimov, V.: Experimental analysis and modeling of two-way reinforced concrete slabs over different kinds of yielding supports under short-term dynamic loading. Eng. Struct. 96, 88–99 (2015). doi:10.1016/j.engstruct.2015.03.054

  50. Andreaus, U., Chiaia, B., Placidi, L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. 25(2–4), 375–398 (2013). doi:10.1007/s00161-012-0266-5

  51. dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), (2015). doi:10.1007/s00033-015-0556-4

  52. Andreaus U., Giorgio I., Madeo A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 66(1), 209–237 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Grillo A., Federico S., Wittum G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Non Linear Mech. 47(2), 388–401 (2012)

    Article  Google Scholar 

  54. Federico S., Grillo A., Imatani S., Giaquinta G., Herzog W.: An energetic approach to the analysis of anisotropic hyperelastic materials. Int. J. Eng. Sci. 46, 164–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Alibert J.-J., Della Corte A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 66, 2855–2870 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. dell’Isola F., Andreaus U., Placidi L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang Y., Ching W., Misra A.: Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J. Nanomech. Micromech. 1(2), 60–71 (2011)

    Article  Google Scholar 

  58. dell’Isola, F., Della Corte, A., Giorgio, I., Scerrato, D.: Pantographic 2D sheets: discussion of some numerical investigations and potential applications. Int. J. Non Linear Mech. (2015). doi:10.1016/j.ijnonlinmec.2015.10.010

  59. Rahali, Y., Giorgio, I., Ganghoffer J., F., dell'Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

  60. Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids (2015). doi:10.1177/1081286515576821

  61. Carcaterra, A., dell'Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogenous systems: A mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal.218(3), 1239–1262 (2015)

  62. Neff P., Ghiba I.-D., Madeo A., Placidi L., Rosi G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 26(5), 639–681 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Del Vescovo D., Giorgio I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  64. Placidi L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 27(4), 623–638 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  65. Eremeyev V.A., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85, 125–152 (2006)

  66. Eremeyev V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49, 1993–2005 (2012)

  67. Challamel N., Kocsis A., Wang C.M.: Discrete and non-local elastica. Int. J. Non Linear Mech. 77, 128–140 (2015)

    Article  Google Scholar 

  68. Roveri N., Carcaterra A.: Damage detection in structures under travelling loads by the Hilbert-Huang transform. Mech. Syst. Signal Process. 28, 128–144 (2012)

    Article  Google Scholar 

  69. Bilotta A., Turco E.: A numerical study on the solution of the Cauchy problem in elasticity. Int. J. Solids Struct. 46, 4451–4477 (2009)

    Article  MATH  Google Scholar 

  70. Bilotta, A., Turco, E.: Numerical sensitivity analysis of corrosion detection. Math. Mech. Solids, (2014). doi:10.1177/1081286514560093

  71. Alessandrini G., Bilotta A., Morassi A., Turco E.: Computing volume bounds of inclusions by EIT measurements. J. Sci. Comput. 33(3), 293–312 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. Buffa, F., Cazzani, A., Causin, A., Poppi, S., Sanna, G.M., Solci, M., Stochino, F., Turco, E.: The Sardinia Radio Telescope: a comparison between close range photogrammetry and FE models. Math. Mech. Solids, (2015). doi:10.1177/1081286515616227

  73. Stochino, F., Cazzani, A., Poppi, S., Turco, E.: Sardinia Radio Telescope finite element model updating by means of photogrammetric measurements. Math. Mech. Solids, (2015). doi:10.1177/1081286515616046

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cazzani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazzani, A., Stochino, F. & Turco, E. On the whole spectrum of Timoshenko beams. Part II: further applications. Z. Angew. Math. Phys. 67, 25 (2016). https://doi.org/10.1007/s00033-015-0596-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-015-0596-9

Mathematics Subject Classification

Keywords

Navigation