Skip to main content
Log in

Patterns of tree species richness in forested wetlands

  • Regular Submissions
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

The number of tree species, or alpha diversity, in terrestrial forests decreases with increasing latitude. However, it is not known whether forests in flooded areas follow the same diversity patterns as upland forests. A good reason for doubt is the evidence that herbaceous wetland plants are most diverse at temperate latitudes. Wetlands are subject to strong environmental constraints, such as flooding, peat (acidity), cold, and salinity, which may be particularly limiting to tree growth and richness. We sampled 12 plots and collected published data from 245 plots of forested wetland around the world. The data were sorted into five categories based upon environmental constraints: tropical freshwater, temperate freshwater, temperate peat, tropical saline, and temperate saline. There was a significant difference in tree richness among the five categories (One-way ANOVA p<0.0001), from a mean of 31 species in tropical freshwater floodplains to 2 in temperate saline wetlands. Generally, tree richness increased with decreasing latitude, but the regression only accounted for 1.6% of the variation. It seems that species richness within forested wetlands is controlled by the cumulative number of environmental constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adam, P. 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Arrhenius, O. 1921. Species and area. Journal of Ecology 9:95–99.

    Article  Google Scholar 

  • Austin, M. P., J. G. Pausas, and A. O. Nicholls. 1996. Patterns of tree species richness in relation to environment in southeastern New South Wales, Australia. Australian Journal of Ecology 21:154–164.

    Article  Google Scholar 

  • Axelrod, D. I. 1970. Mesozoic paleogeography and early angiosperm history. The Botanical Review 36:277–319.

    Article  Google Scholar 

  • Bay, R. R. 1967. Ground water and vegetation in two peat bogs in northern Minnesota. Ecology 48:308–310.

    Article  Google Scholar 

  • Brown, J. H. 1996. Macroecology. University of Chicago Press, Chicago, IL. USA.

    Google Scholar 

  • Connell, J. H. 1975. Some mechanisms producing structure in natural communities: a model and evidence from field experiments. p. 460–490.In M. I. Cody and J. Diamond (eds.) Ecology and Evolution of Communities. Harvard University Press, Cambridge, MA, USA.

    Google Scholar 

  • Connor, E. F. and E. D. McCoy. 1979. The statistics and biology of the species-area relationship. American Naturalist 113:791–833.

    Article  Google Scholar 

  • Cowling, R. M., P. W. Rundel, B. B. Lamont, M. K. Arroyo, and M. Arianoutsou. 1996. Plant diversity in Mediterrancan-climate regions. Trends in Ecology and Evolution 11:362–366.

    Article  Google Scholar 

  • Crow, G. E. 1993. Species diversity in aquatic angiosperms: latitudinal patteras. Aquatic Botany 44:229–258.

    Article  Google Scholar 

  • Currie, D. J. 1991. Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist 137:27–49.

    Article  Google Scholar 

  • Currie, D. J. and V. Paquin. 1987. Large-scale biogeographical patterns of species richness in trees. Nature 329:326–327.

    Article  Google Scholar 

  • Dansereau, P. and F. Segadas-Vianna. 1952. Ecological study of the peat bogs of eastern North America. Canadian Journal of Botany 30:490–520.

    Article  Google Scholar 

  • Delcourt, H. R. and P. A. Delcourt. 1991. Quaternary Ecology. A Paleoecological Perspective. Chapman and Hall, London, UK.

    Google Scholar 

  • Denslow, J. L. 1987. Tropical rain forest gaps and tree species diversity. Annual Review of Ecology and Systematics 18:431–451.

    Article  Google Scholar 

  • Ehrlich, A. and P. Ehrlich. 1981. Extinction. The Causes and Consequences of the Disappearance of Species. Random House, New York, NY, USA.

    Google Scholar 

  • Fonda, R. W. 1974. Forest succession in relation to river terrace development in Olympic National Park, Washington. Ecology 55:927–942.

    Article  Google Scholar 

  • Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:1–34.

    Article  Google Scholar 

  • Glaser, P. H. 1992. Raised bogs in eastern North America- regional controls for species richness and floristic assemblages. Journal of Ecology 80:535–554.

    Article  Google Scholar 

  • Gorham, E. 1967. Some Chemical Aspects of Wetland Ecology. p. 20–38.In Technical Mem. Committee on Geotechnical Research, National Research Council of Canada, No. 90.

  • Grime, J. P. 1973a. Competitive exclusion in herbaceous vegetation. Nature 242:344–347.

    Article  Google Scholar 

  • Grime, J. P. 1973b. Control of species density in herbaceous vegetation. Journal of Environmental Management 1:151–167.

    Google Scholar 

  • Groombridge, B. 1992. Global Biodiversity: Status of the Earth’s Living Resources. Chapman & Hall, London, UK.

    Google Scholar 

  • Grubb, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Review 52:107–145.

    Google Scholar 

  • Keddy, P. A. and L. H. Fraser. (in press) On the diversity of land plants.Ecoscience.

  • Keddy, P. A. and P. MacLellan. 1990. Centrifugal organization in forests. Oikos 59:75–84.

    Article  Google Scholar 

  • King, S. L. 1995. Effects of flooding regimes on two impounded bottomland hardwood stands. Wetlands 15:272–284.

    Google Scholar 

  • Kozlowski, T. T. 1984. Responses of woody plants to flooding. p. 129–163.In T. T. Kozlowski (ed.) Flooding and Plant Growth. Academic Press, Orlando, FL, USA.

    Google Scholar 

  • Larcher, W. 1995. Physiological Plant Ecology. Springer-Verlag. Berlin, Germany.

    Google Scholar 

  • Levitt, J. 1972. Responses of Plants to Environmental Stresses. Academic Press. New York, NY, USA.

    Google Scholar 

  • Levitt, J. 1980. The nature of stress injury and resistance. p. 11–21.In Responses of Plants to Environmental Stresses. 2nd Edition. Academic Press, New York, NY, USA.

    Google Scholar 

  • Lugo, A. E., M. Brinson, and S. Brown (eds.) 1990. Forested Wetlands. Elsevier, New York, NY, USA.

    Google Scholar 

  • MacArthur, R. and O. E. Wilson. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Malecki, R. A., J. R. Lassoie, E. Rieger, and T. Seamans. 1983. Effects of long-term artificial flooding on a northern bottomland hardwood community. Forest Science 29:535–544.

    Google Scholar 

  • May, R. M. 1988. How many species are there on Earth? Science 241:1441–1449.

    Article  PubMed  CAS  Google Scholar 

  • McKevlin M. R., D. D. Hook, and W. H. McKee Jr. 1995. Growth and nutrient use efficiency of water tupelo seedlings in flooded and well-drained soil. Tree Physiology 15:753–758.

    PubMed  Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink 1986. Wetlands, Van Nostrand Reinhold Company, New York, NY, USA.

    Google Scholar 

  • Moore, P. 1991. Ups and downs in peatland. Nature 353:299–300.

    Article  Google Scholar 

  • Moore, D. R. J., P. A. Keddy, C. L. Gaudet, and I. C. Wisheu. 1989. Conservation of wetlands: Do infertile wetlands deserve a higher priority. Biological Conservation 47:203–217.

    Article  Google Scholar 

  • Myers, R. L. 1990. Plam swamps. p. 267–286.In A. E. Lugo, M. Brinson, and S. Brown (eds.) Forested Wetlands, Elsevier, New York, NY, USA.

    Google Scholar 

  • Niklas, K. J., B. H. Tittney, and A. H. Knoll. 1983. Patterns in vascular land plant diversification. Nature 303:614–616.

    Article  Google Scholar 

  • Peel, R. K. 1978. Forest vegetation of the Colorado Front Range: patterns of species diversity. Vegetatio 37:65–78.

    Article  Google Scholar 

  • Phillips, D. L. and D. J. Shure. 1990. Patch-size effects on early succession in southern appalachian forest. Ecology 71:204–212.

    Article  Google Scholar 

  • Pool, D. J., S. C. Snedaker, and A. E. Lugo. 1977. Structure of mangrove forests in Florida, Puerto Rico, Mexico and Costa Rica. Biotropica 9:195–212.

    Article  Google Scholar 

  • Ricklefs, R. E. and D. Schluter (eds.) 1993. Species Diversity: Historical and Geographical Perspectives. University of Chicago Press, Chicago, IL, USA.

    Google Scholar 

  • Rosenzweig, M. L. 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Rozema, J. and J. A. C. Verkleij (eds.). 1991. Ecological Responses to Environmental Stresses. Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Specht, A. and R. L. Specht. 1993. Specles richness and canopy productivity of Australian plant communities. Biodiversity and Conservation 2:152–167.

    Article  Google Scholar 

  • Tolliver, K. S., D. W. Martin, and D. R. Young. 1997. Freshwater and saltwater flooding response for woody species common to barrier island swales. Wetlands 17:10–18.

    Article  Google Scholar 

  • Tomlinson, P. B. 1986. The Botany of Mangrove. Cambridge University Press, NY, USA.

    Google Scholar 

  • Toner, M. and P. A. Keddy. 1997. River hydrology and riparian wetlands: a predictive model for ecological assembly. Ecological Applications 7:236–246.

    Article  Google Scholar 

  • Treshow, M. 1970. Environment and Plant Response. McGraw-Hill Book Company, New York, NY, USA.

    Google Scholar 

  • Tschudy, R. H., C. L. Pillmore, C. J. Orth, J. S. Gilmore, and J. D. Knight. 1984. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior. Science 225:1030–1032.

    Article  PubMed  CAS  Google Scholar 

  • Vitt, D. H. 1990. Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients. Botanical Journal of the Linnean Society 104:35–59.

    Article  Google Scholar 

  • van Breeman, N. 1995. How Sphagnum bogs down other plants. Trends in Ecology and Evolution 10:270–275.

    Article  Google Scholar 

  • Whittaker, R. H. 1956. Vegetation of the Great Smoky Mountains. Ecological Monographs 26:1–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teri M. Keogh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keogh, T.M., Keddy, P.A. & Fraser, L.H. Patterns of tree species richness in forested wetlands. Wetlands 19, 639–647 (1999). https://doi.org/10.1007/BF03161701

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161701

Key Words

Navigation