Skip to main content
Log in

The legacy of wetland drainage on the remaining peat in the Sacramento — San Joaquin Delta, California, USA

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 55–80% of the original peat layer on the farmed islands has been lost due to land-surface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 2900–5700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • AOAC International. 1997. Official methods of analysis of AOAC International, 16th edition. AOAC International, Arlington, VA, USA.

    Google Scholar 

  • Armentano, R. V. 1980. Drainage of organic soils as a factor in the world carbon cycle. BioScience 30: 825–30.

    Article  Google Scholar 

  • Atwater, B. F. 1980. Attempts to correlate late Quaternary climatic records between San Francisco Bay, the Sacramento-San Joaquin Delta, and the Mokelumne River, California. Ph.D. Dissertation. University of Delaware, Newark, DE, USA.

    Google Scholar 

  • Atwater, B. F. and D. F. Belknap. 1980. Tidal-wetland deposits of the Sacramento-San Joaquin Delta, California. Pacific Coast Paleogeography Symposium 4: 89–103.

    Google Scholar 

  • Atwater, B. F., S. G. Conard, J. N. Dowden, C. W. Hedel, and R. L. MacDonald. 1979. History, landforms, and vegetation of the estuary’s tidal marshes. p. 347–85, San Francisco Bay: The Urbanized Estuary: Proceedings of the Fifty-Eighth Annual Meeting of the Pacific Division/American Association for the Advancement of Science. California Academy of Sciences, San Francisco, San Francisco State University, San Francisco, CA, USA.

    Google Scholar 

  • Brandof, K. L. 1992. Impact of ditching and road construction on Red Lake Peatland. p. 163–72. In H. E. Wright, Jr., B. A. Coffin, and N. E. Aaseng (eds.) The Patterned Peatlands of Minnesota. University of Minnesota Press, Minneapolis, MN, USA.

    Google Scholar 

  • Burke, W. 1963. Drainage of blanket peat at Glenamory. p. 809–17, In R. A. Robertson (ed.) Proceedings of the Second International Peat Congress. USSR, Leningrad.

  • California Department of Water Resources. 1980. Subsidence of organic soils in the Sacramento-San Joaquin Delta. Central District, Sacramento, CA, USA.

  • Chan, K. Y. 2002. Bulk density. p. 128–30. In R. Lal (ed.) Encyclopedia of Soil Science. Taylor & Francis Group, Oxford, UK.

    Google Scholar 

  • Church, J. A. and N. J. White. 2006. A 20th century acceleration in global sea-level rise. Geophysical Research Letters 33: L01602, doi:10.1029/2005GL024826.

    Article  Google Scholar 

  • Conner, W. H. and J. W. Day, Jr. 1991. Variations in vertical accretion in a Louisiana swamp. Journal of Coastal Research 7: 617–22.

    Google Scholar 

  • Dachnowski-Stokes, A. P. 1936. Peat land in the Pacific Coast states in relation to land and water resources. U.S. Department of Agriculture, Washington, DC, USA. Miscellaneous Publication 248.

    Google Scholar 

  • Day, J. W. Jr., J. D. Gunn, W. J. Folan, A. Yanez-Arancibia, and B. P. Horton. 2007. Emergence of complex societies after sea level stabilized. Eos, Transactions, American Geophysical Union 88: 169–70.

    Article  Google Scholar 

  • Deverel, S. J. and D. A. Leighton. 2008. Subsidence causes and rates in the Sacramento-San Joaquin Delta and Suisun Marsh. San Francisco Estuary and Watershed Science, in press.

  • Deverel, S. J., D. A. Leighton, and M. R. Finlay. 2007. Processes affecting agricultural drainwater quality and organic carbon loads in California’s Sacramento-San Joaquin Delta. San Francisco Estuary and Watershed Science. Vol. 5, Issue 2 [May 2007]. Article 2. http://repositories.cdlib.org/jmie/sfews/ vol5iss2/art2

  • Deverel, S. J. and S. A. Rojstaczer. 1996. Subsidence of agricultural lands in the Sacramento-San Joaquin Delta, California: role of aqueous and gaseous carbon fluxes. Water Resources Research 32: 2359–67.

    Article  CAS  Google Scholar 

  • Deverel, S. J., B. Wang, and S. Rojstaczer. 1998. Subsidence of organic soils, Sacramento-San Joaquin Delta, California. p. 489–502. In J. W. Borchers (ed.) Land Subsidence Case Studies and Current Research. Association of Engineering Geologist Special Publication No. 8.

  • Drexler, J. Z., C. S. de Fontaine, and D. L. Knifong. 2007. Age determination of the remaining peat in the Sacramento-San Joaquin Delta, California, USA. U.S. Geological SurveyOpen File Report 2007-1303. 2 pp.

  • Everett, K. R. 1983. Histosols. p. 1–53. In L. P. Wilding, N. E. Smeck, and G. F. Hall (eds.) Pedogenesis and Soil Taxonomy, II. The Soil Orders. Elsevier Scientific Publishers, Amsterdam, The Netherlands.

    Chapter  Google Scholar 

  • Ewing, J. M. and M. J. Vepraskas. 2006. Estimating primary and secondary subsidence in an organic soil 15, 20, and 30 years after drainage. Wetlands 26: 119–30.

    Article  Google Scholar 

  • Gambolati, G., M. Putti, P. Teatini, M. Camporese, S. Ferraris, G. G. Stori, V. Nicoletti, S. Silvestri, F. Rizzetto, and L. Tosi. 2005. Peat land oxidation enhances subsidence in the Venice watershed. Eos, Transactions, American Geophysical Union 86: 217–24.

    Article  Google Scholar 

  • Gilbert, G. K. 1917. Hydraulic-mining debris in the Sierra Nevada. U.S. Geological Survey, U.S. Government Printing Office, Washington, DC, USA. Professional Paper 105.

    Google Scholar 

  • Givelet, N., G. Le Roux, A. Cheburkin, B. Chen, J. Frank, M. Goodsite, H. Kempter, M. Krachler, T. Noernberg, N. Rausch, S. Rheinberger, F. Roos-Barraclough, A. Sapkota, C. Scholz, and W. Shotyk. 2004. Suggested protocol for collecting, handling and preparing peat cores and peat samples for physical, chemical, mineralogical and isotopic analyses. Journal of Environmental Monitoring 6: 481–92.

    Article  CAS  PubMed  Google Scholar 

  • Hambright, K. D. and T. Zohary. 1999. The Hula Valley (northern Israel) wetlands rehabilitation project. p. 173–180. In W. Streever (ed.) An International Perspective on Wetland Rehabilitation. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Heiri, O., A. F. Lotter, and G. Lemcke. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments; reproducibility and comparability of results. Journal of Paleolimnology 25: 101–10.

    Article  Google Scholar 

  • Hickman, J. C. (ed.) The Jepson Manual. University of California Press, Berkeley, CA, USA.

  • Ibanez, C., C. Antoni, J. W. Day, Jr., and A. Curco. 1997. Morphologic development, relative sea level rise and sustainable management and sediment in the Ebre Delta, Spain. Journal of Coastal Conservation 3: 191–202.

    Article  Google Scholar 

  • Ingebritsen, S. E. and M. E. Ikehara. 1999. Sacramento-San Joaquin Delta: the sinking heart of the state. p. 83–94. In D. Galloway, D. R. Jones, and S. E. Ingebritsen (eds.) Land Subsidence in the United States. Circular 1182. U.S. Geological Survey, Reston, VA, USA.

    Google Scholar 

  • Ingebritsen, S. E., M. E. Ikehara, D. L. Galloway, and D. R. Jones. 2000. Delta subsidence in California. U.S. Department of the Interior, U.S. Geological Survey, Reston, VA, USA. Fact Sheet FS-005-00, 4 pp.

    Google Scholar 

  • Kool, D. M., P. Buurman, and D. H. Hoekman. 2006. Oxidation and compaction of a collapsed peat dome in central Kalimantan. Geoderma 137: 217–25.

    Article  CAS  Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands, third edition. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Mount, J. and R. Twiss. 2005. Subsidence, sea level rise, seismicity in the Sacramento-San Joaquin Delta. San Francisco Estuary and Watershed Science Vol. 3, Issue 1 (March), http:// repositories.cdlib.org/jmie/sfews/vol3/issl/art5.

  • Nieuwenhuis, H. S. and F. Schokking. 1997. Land subsidence in drained peat areas of the Province of Friesland, The Netherlands. Quarterly Journal of Engineering Geology 30: 37–48.

    Article  Google Scholar 

  • Penland, S. and K. E. Ramsey. 1990. Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988. Journal of Coastal Research 6: 323–42.

    Google Scholar 

  • Price, J. S. and S. M. Schlotzhauer. 1999. Importance of shrinkage and compression in determining water storage changes in peat: the case of a mined peatland. Hydrological Processes 13: 2591–2601.

    Article  Google Scholar 

  • Prokopovich, N. P. 1985. Subsidence of peat in California and Florida. Bulletin of the Association of Engineering Geologists 22: 395–420.

    Google Scholar 

  • Reimer, P. J., M. G. L. Baillie, E. Bard, A. Bayliss, J. W. Beck, C. J. H. Bertrand, P. G. Blackwell, C. E. Buck, G. S. Burr, K. B. Cutler, P. E. Damon, R. L. Edwards, R. G. Fairbanks, M. Friedrich, T. P. Guilderson, A. G. Hogg, K. A. Hughen, B. Kromer, G. McCormac, S. Manning, C. B. Ramsey, R. W. Reimer, S. Remmele, J. R. Southon, M. Stuiver, S. Talamo, F. W. Taylor, J. van der Plicht, and C. E. Weyhenmeyer. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46: 1029–58.

    CAS  Google Scholar 

  • Rojstaczer, S. and S. J. Deverel. 1993. Time dependence in atmospheric carbon inputs from drainage of organic soils. Geophysical Research Letters 20: 1383–86.

    Article  CAS  Google Scholar 

  • Rojstaczer, S. and S. J. Deverel. 1995. Land subsidence in drained histosols and highly organic mineral soils of California. Soil Science Society of America Journal 59: 1162–67.

    Article  CAS  Google Scholar 

  • Rojstaczer, S. A., R. E. Hamon, S. J. Deverel, and C. A. Massey. 1991. Evaluation of selected data to assess the causes of subsidence in the Sacramento-San Joaquin Delta, California. U.S. Geological Survey, Sacramento, CA, USA. Open-File Report 91-0193, 16 pp.

    Google Scholar 

  • Schothorst, C. J. 1977. Subsidence of low moor peat soils in the western Netherlands. Geoderma 17: 265–91.

    Article  Google Scholar 

  • Stephens, J. C., L. H. Allen, Jr., and E. Chen. 1984. Organic soil subsidence. p. 107–22. In T. L. Holzer (ed.) Man-induced land subsidence. Reviews in Engineering Geology VI. Geological Society of America.

  • Stuiver, M. and P. J. Reimer. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35: 215–30.

    Google Scholar 

  • Thompson, J. 1957. The settlement geography of the Sacramento-San Joaquin Delta, California. Ph.D. Dissertation. Stanford University, Stanford, CA, USA.

    Google Scholar 

  • United States Department of Agriculture Soil Conservation Service. 2006. Keys to soil taxonomy. Tenth edition. ftp:// ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/keys.pdf

  • U.S. Salinity Laboratory Staff. 1954. Alkaline-earth carbonates by gravimetric loss of carbon dioxide. p. 105. In L. A. Richards (ed.) Diagnosis and improvement of saline and alkali soils, USDA Agricultural Handbook 60.

  • Weir, W. W. 1950. Subsidence of peat lands of the Sacramento-San Joaquin Delta, California. Hilgardia 20: 37–56.

    Google Scholar 

  • Wells, L. E. 1995. Radiocarbon dating of Holocene tidal marsh deposits: Applications to reconstructing relative sea level changes in the San Francisco estuary. p. 3.95–3.102. In J. S. Noller, W. R. Lettis, and J. M. Sowers (eds.) Quaternary Geochronology and Paleoseismology. Nuclear Regulatory Commission, Washington, DC, USA.

    Google Scholar 

  • Wright, H. E., Jr. 1991. Coring tips. Journal of Paleolimnology 6: 37–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Z. Drexler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drexler, J.Z., de Fontaine, C.S. & Deverel, S.J. The legacy of wetland drainage on the remaining peat in the Sacramento — San Joaquin Delta, California, USA. Wetlands 29, 372–386 (2009). https://doi.org/10.1672/08-97.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/08-97.1

Key Words

Navigation