Skip to main content
Log in

Seismic Wave Propagation in Composite Elastic Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

It has been known since the time of Biot–Gassman theory (Biot, J Acoust Soc Am 28:168–178, 1956, Gassmann, Naturf Ges Zurich 96:1–24, 1951) that additional seismic waves are predicted by a multicomponent theory. It is shown in this article that if the second or third phase is also an elastic medium then multiple p and s waves are predicted. Futhermore, since viscous dissipation no longer appears as an attenuation mechanism and the media are perfectly elastic, these waves propagate without attenuation. As well, these additional elastic waves contain information about the coupling of the elastic solids at the pore scale. Attempts to model such a medium as a single elastic solid causes this additional information to be misinterpreted. In the limit as the shear modulus of one of the solids tends to zero, it is shown that the equations of motion become identical to the equations of motion for a fluid filled porous medium when the viscosity of the fluid becomes zero. In this limit, an additional dilatational wave is predicted, which moves the fluid though the porous matrix much similar to a heart pumping blood through a body. This allows for a connection with studies which have been done on fluid-filled porous media (Spanos, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α A :

Thermal expansion coefficient for solid A

\({\alpha _A^2}\) :

Defined by Eq. A3 (square of the velocity of a P wave)

\({\beta _A^2}\) :

Defined by Eq. A4 (square of the velocity of an S wave)

γ :

Surface coefficient of heat transfer between solid phases

δ A :

Coefficients defined by the porosity Eq. 38

δ η :

Coefficient of the hyperbolic term in the porosity Eq. 46

δ ik :

Kronecker delta

ζ A :

Constant defined in Eq. 32

η A :

Volume fraction of space occupied by solid A

\({\eta _A^o}\) :

Volume fraction of space occupied by solid A under static conditions

κ A :

Heat conductivity of solid A

\({\kappa _M^A}\) :

Defined by Eq. 34

μ A :

Shear modulus of solid A

μ M , \({\mu _M^A}\) :

Defined by Eq. 33

ρ A :

Mass density of solid A

ρ AB :

Reduced mass of solid A due to interactions with solid B

\({\sigma _{ik}^A}\) :

Stress tensor for solid A

\({\phi}\) :

Velocity potential for dilatational motions

A B :

Surface area bounding solid B

B A :

Body force acting on solid A

B o :

Defined by Eq. 39

\({c_\nu ^A}\) :

Heat capacity of solid A

D ik :

Defined by Eq.A11

ΔD :

Defined by Eq.A5

\({I_i^A}\) :

Defined by Eq. 25

\({I_{ik}^A}\) :

Defined by Eq. 27

\({\vec {J}^{A}}\) :

Defined by Eq. 30

K A :

Bulk Modulus of solid A

K M :

Bulk modulus of the composite material

P ik :

Defined by Eq.A10

ΔP :

Defined by Eq.A6

S ik :

Defined by Eq.A12

ΔS :

Defined by Eq.A7

T A :

Temperature of solid A

\({\bar{{T}}_A}\) :

Average temperature of solid A

T o :

Unperturbed ambient temperature

\({\vec {u}}\) :

Velocities of the interfaces at the macroscale (pore scale)

u ik :

Strain tensor

\({\bar{{u}}_{ik}}\) :

Average of the strain tensor

\({\vec {u}_A}\) :

Average displacement of solid A

\({\vec {u}_s}\) :

Average displacement of solid

\({\vec {u}_f}\) :

Average displacement of fluid

V :

Averaging volume

References

  • Anderson T.B., Jackson R.: Fluid mechanical description of fluidized beds equations of motion. Ind. Eng. Chem. Fundam. 6, 527–539 (1967)

    Article  Google Scholar 

  • Berryman J.G.: Confirmation of Biot’s theory. Appl. Phys. Lett. 37(4), 382–384 (1980)

    Article  Google Scholar 

  • Biot M.A.: Theory of propagation of elastic waves in a fluid saturated porous solid, 1, Low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956). doi:10.1121/1.1908239

    Article  Google Scholar 

  • Dahlen F.A., Tromp J.: Theoretical Global Seismology. Princeton University Press, Princeton, NJ (1998)

    Google Scholar 

  • Davidson, B., Spanos, T.J.T., Dusseault, M.B.: Laboratory experiments on pressure pulse flow enhancement in porous media. In: Proceedings of the CIM Regina Technical Meeting (Oct 1999)

  • de la Cruz V., Sahay P.N., Spanos T.J.T.: Thermodynamics of porous media. Proc. Soc. R. Lond. A. 443, 247–255 (1993)

    Article  Google Scholar 

  • de la Cruz V., Spanos T.J.T.: Thermomechanical coupling during seismic wave propagation in a porous medium. J. Geophys. Res. 94, 637–642 (1989)

    Article  Google Scholar 

  • Dusseault M.B., Davidson B., Spanos T.J.T.: Pressure pulsing: the ups and downs of starting a new technology. J. Can. Petrol. Technol. 39(4), 13–17 (2000)

    Google Scholar 

  • Dusseault, M.B., Shand, D., Meling, T., Spanos, T.J.T., Davidson, B.C.: Field applications of pressure pulsing in porous media, pp. 639–645. In: Proceedings of Second Biot Conference on Poromechanics, Grenoble France Balkema, Rotterdam, 2002

  • Gassmann F.: Uber die elastizitat poroser medien, Vierteljahresschrift d. Naturf. Ges. Zurich 96, 1–24 (1951)

    Google Scholar 

  • Geilikman M.A., Spanos T.J.T., Nyland E.: Porosity diffusion in fluid saturated media. Tectonphysics 217, 111–115 (1993)

    Article  Google Scholar 

  • Gray, P., Davidson, B., MacDonald, A.: Dramatic LNAPL recovery at an Ontario manufacturing facility. Environ. Sci. Eng. (January) 22–24 (2001)

  • Hickey C.J., Spanos T.J.T., de la Cruz V.: Deformation parameters of permeable media. Geophys. J. Int. 121, 359–376 (1995)

    Article  Google Scholar 

  • Johnson D.L.: Equivalence between fourth sound on helium at low temperatures and the Biot slow wave in consolidated porous media. Appl. Phys. Lett. 37(12), 1065–1067 (1980)

    Article  Google Scholar 

  • Landau L.D., Lifshitz E.M.: Fluid Mechanics. Pergamon, Toronto (1975)

    Google Scholar 

  • Newman S.P.: Theoretical derivation of Darcy’s Law. Acta. Mech. 25, 153–170 (1997)

    Article  Google Scholar 

  • Slattery J.C.: Flow of Viscoelastic fluids through porous media. AIChE. J. 13, 1066–1071 (1967)

    Article  Google Scholar 

  • Spanos T.J.T.: The Thermophysics of Porous Media, Monographs and Surveys in Pure and Applied Mathematics. Chapman and Hall/CRC Press, Boca Raton (2002)

    Google Scholar 

  • Wang, J., Dusseault, M.B., Davidson B., Spanos, T.J.T.: Fluid enhancement under liquid pressuire pulsing at low frequency. In: Proceedings UNITAR Conference on Heavy Oil and Tar Sands, p. 7, Beijing, PRC, 1998

  • Whitaker S.: Diffusion and dispersion in porous media. AIChE. J. 13, 420–427 (1967)

    Article  Google Scholar 

  • Yilmaz, O.: Seismic data processing: Investigations in Geophysics, vol 2. Soc. Explor. Geophys. (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. T. Spanos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spanos, T.J.T. Seismic Wave Propagation in Composite Elastic Media. Transp Porous Med 79, 135–148 (2009). https://doi.org/10.1007/s11242-009-9448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9448-4

Keywords

Navigation